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RESTRICTED ENERGY INEQUALITIES AND
NUMERICAL APPROXIMATIONS
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Reiko SAKAMOTO

Introduction

Let {4,B;} be linear partial differential operators. Let Q(c R") be a
bounded domain with smooth boundary I'. Our boundary value problem is to
find u e L?(Q) satisfying

) {Au=f in Q,

Bu=yf onl (jelJ)
for given data {f,f;}. We are particularly interested in a method of numerical
approximation of solutions of (P).

The problem (P) is closely connected with its adjoint problem (P*). The
adjoint problem is to find ve L?*(Q) satisfying

A*'v=g mnQ

(P7) {,%’-*v:g- onT (jelJ*)

J J ,
for given data {g,g;}.

Recently, it has become clear that a solution ue L?(Q) of (P) can be
constructed numerically, assuming an energy inequality

(E) ol = C(IIA*UII +> <%’j*vlr>ﬂ,) (ve HI(Q))
jeJ*
(0)2
Here we have two questions:
(1) In case when L2-solutions of (P) are not unique, how can we characterize
the solution, obtained in [1]?
(2) In case when LZ?-solutions of (P*) are not unique, (E*) can not be

satisfied. Is there any numerical method to approach to one of solutions
of (P)?
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In this paper, in stead of (E*), we assume a restricted energy inequality:
(&) loll < Clld™0l| (ve M*, Bolp =0 (jeJ*)),

where M* is a subspace in H(Q) defined in §1. Then we will see that the
method in is applicable. Moreover, we will see that the solution obtained by
our method is unique in a subspace 7 in L*(Q).

§1. Restricted Energy Inequalities
Let

be a differential operator with smooth coefficients defined in a neighborhood of
Q. Let '

Bi=> by(x)oy (je,J<={0,1,....m—1})
v =j

be differential operators with smooth coefficients defined in a neighborhood of T.
We assume that I' is non-characteristic for {4, B; (je€J)}. Namely,

Z a,(x)n(x)" #0 on T,

[vj=m
Z bjy(x)n(x)" #0 on T,
[vI=/

where n(x) is a unit inner normal at x(e I').
Set

JUT={0,1,....m—1}, JNT=¢, J ={jlm—1—jeJ},
B; = (d/dn)) (jeJ°).
Then we can define
B=> Bux)ad, (je{0,1,...,m—1}),
v =j

for which I" is non-characteristic, such that the following Green’s Theorem
holds.
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LEMMA 1.1 (Green’s Theorem). Suppose that u, Au e L*(Q), then it holds
that

d)am) uled iy < Clul + | Aull) (K =0,1,...,m—1)

and
(Au,v) — (u, 47v) = — Z Bjulr, By _1_;Vlr>
jeJ
- Z (Bp-1-julr, Bvlr>  (ve H™(Q)),
jeJ*
where
A* =" (-o)a(x), B = (-8)"Byx)
M=m (Y
NOTATIONS.
(1) (u,0) = (u, U)LZ(Q)> [Jul| = ”uHL2(Q)’

2) A=(1- A)l/ 2 where A is the Laplace-Beltrami operator on T,

(3) <u, 035 = (U, V) gory = (AU, A°V) 2y, WDy = lull gy for w,ve H(I)
(o: real),

4) ueH°(I'): H°(T)3v+ {u,vd> e C (¢ >0).

is well known for u e H™(Q). See Appendix of [3] in case when
u, Au e L*(Q).

REMARK. Set
Pu={Au,Buly (jeD)}, Qu={t,~Bu 1l (jeJ)},
Pro=A{4"v,%vr (jeJ")}, Qv={v,%, vl (Jel)},
then the problem (P) denotes Pu = {f, f; (j€J)} and the problem (P*) denotes
P*v={g,g9; (jeJ*)}, and Green’s Theorem is stated as follows.
GREEN’S THEOREM. Suppose that u, Au e L*(Q), then it holds that
{(d/dm)“ule> iomprj < C(lull + || 4ull)  (k=0,1,...,m—1)
and

[Pu, Q"v] = [Qu, P*v], (ve H™'(Q)),
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where

[F,G]=(f,9)+ > _<fg> for F={f.f; (je))} and G={g,9; (je )},

jeJ

[F,Gl,=(f,9)+Y_<fig> for F={f.f; (jeJ")} and G={g,9; (jeJ")}.

jeJ*

NULL SPACES. Set
K={pecLl*(Q)|Pp=0}, K'={peL’(Q)|P'¢=0}.
Owing to Green’s Theorem, we have

K ={peL*(Q)|[Q4, P*v], =0 (Vve H"(Q))},
K*={¢eL*(Q)|[Pu,Q"¢] =0 (Vue H" ' (Q))}.

Therefore, K and K* are closed subspaces in L2(Q). Set
K*={feLl*Q)|(f,¢) =0 (Vo K)},
K ={feLl’Q)I|(f.4)=0 (K"}

We assume
(A-I) there exists an integer p(= 2m — 1) such that
| K,K* < HP(Q)

throughout this paper.
We define

M*=K"NHIQ)={feH (Q)|(f,¢) =0 (V$e K")}

for an integer ¢ (m < g < p). Then M* is a closed subspace in H7(Q). Let
ue H1(Q), then there exist ¢ € K* and £ € M* such that

u=¢-+¢& and [ull* = |Ig* + 111"
We say that restricted energy inequality (&*) holds, if it holds
(67) lloll = C(IIA*UII + <%*vlr>,,,.) (ve M7),
jeJ*

where w; =¢q—1/2—j.
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We say that restricted energy inequality (&y) holds, if it holds
(¢5) loll = Cll470]| (ve M, %v|r=0 (jeJ)).
Since {B; (j=0,1,...,m—1)} and {#’ (j=0,1,...,m— 1)} are Dirichlet sets,
we have ([4]) ' »

LEmMMA 1.2. Let s = m. : .
i) Let fie H"V27U(I) (j=0,1,...,m—1), then there exists Ue H*(Q)
such that

BJUirzﬁ (jzovla-'-’m_l)a “UHséC Z <ﬁ>s—1/2—j'
je{0,1,...m—1}

ii) Let g; € H V2T (j=0,1,...,m—1), then there exists V € H'(Q)
such that ‘

BVir=g (=01,....m=1), |[V[,£C D <1y
je{o,1,m—1}

LeMMA 1.3. (&) holds iff (&;) holds.
Proor. Suppose that (&) holds. Let ve M*(c HI(Q)).
(1) Set
g=Ave HI™™(Q), ¢;=%vlreH'?I(T) (jeT*).

Then there exists V' € H4() such that

‘@j* VIF =9gj (J € J*)7 “ V”q =C Z <gj>q—1/2—j
jeJ*

from (ii) of (s=q).
(2) Set w=v—V, then we HY(Q) satisfies

{A*w =g— A"V,
Bl =0 (j=7).

Since w e H?(Q), there exist ¢ € K* and £ € M* such that
w=g+&  lwl® = 1gl” +111*

Therefore £ e M* satisfies
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{A*é =g-—A*V,
Ber=0 (jeJlo).
Since (&) holds, we have
1€l = Cll4*¢|| = Cllg— 4™V < C’(Ilgll +> <gj>q—1/2—j)-
jeJ*

(3) In the same way, since V € H9(Q), there exist € K* and 7€ M* such
that

V=v+n, IIVI*=I¥l*+ Il
Hence we have
v=w+V=(@+¥)+(E+n), ¢+¥eK*, E+tneM*
Since ve M*, we have
v=¢+7.

Hence we have

lell = NSl + llmll S NS+ 1V < C(Hgll +y <gj>q—1/2—j>' O

jeJ*

We assume
(AID) (&)
throughout this paper. Then we can define a Hilbert space s# as the closure of
M* by the norm [ ]

(0] = | 4"0ll* + > <B}vlrd] .

jeJ*

Inner product of # is defined by

[w,0] = (A"w, 4"0) + Y (B wlr, B} v,
jeJ*

For a fixed f e L*(Q), define
f:# 20— (v,f)eC
then f is a continuous linear functional on 4. In fact, it holds

[, N = ol 1A = CLalIlfIl - (ve o)
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from Lemma 1.3 Therefore, owing to Riesz’ Theorem in J#, there exists w € #
such that

(f,0) =[w,v] (ve#),

where we say that we # is a Riesz function of f (e L*(Q)).
§2. Existence and Uniqueness

THEOREM 2.1.  Assume (A-1) and (A-I1). Suppose that f € K**. Let w € 3# be
a Riesz function of f. Set u= A*we L*(Q), then u satisfies

Au=f in Q,
(Po) {Bj“|r =0 (jelJ),
and

By1—julr = _Az'u’gj*wh (jeJ%).
Proor. (1) Since w e # satisfy
(f,0) = (4*w, A*v) + 2; (B Wi, B oy, (ve #),
7
u = A*w satisfies
(f,v) — (u, A*v) = ; (BWr, B v|r>, (ve)..... @.
jT
(2) Moreover, we have
(f,v) = (u, A*v) = EJ: {Bwlr, B vlr>,, (veHIQ))...... @'
jeJ*

In fact, let v e H9(Q). Then there exist ¢ € K* and ¢ e M* such that v = ¢ +¢.
Since £ € M* < s, we have from (]

(f,8) = (4, 478) = Y B wlr, B &,

jeJ*
We remark that ¢ satisfies

A"¢=0, #B'gr=0 (jeJ"),
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and (f,¢) =0. Hence we have
(f,0) = (u, A7) = > (B wlr, B o|r D,
jeJ*
(3) From (D', we have
(fs0) = (u,470) =0 (ve2'(Q)).
which means
Au=f in 2'(Q).
Therefore we have
(Au,v) — (u, 4*0) = Y _ (B'wWlr, Bolrd, (veHIQ))...... @D".
jeJ*
(4) Owing to Green’s Theorem, we have

(Au,v) — (u, A"v) = =Y {Bjulr, By_;_vlr>
. jelJ

> (Buor-jtle, B o> (ve H™HQ))...... Q.

jeJ*
Hence, from ()" and Q), we have

Z B wlr B vlr >y, = = Z CBjtlps B0l

jeJ* jeJ

— " (Buorjulp, Bolry (ve HY(Q), ¢’ = max(g,2m — 1)),
jeJ*

which means
Bulr =0 (jeJ), Buul,=—N4Bwl. (jel*). O

COROLLARY 2.1. Assume (A-1) and (A-11). Suppose that {f e L*(Q),
fie H™\27I(T) (j e J)} satisfy

() (fo )+ D <S5 Br_#lr> =0 (e K),
jeJ

that is,

(2) {f: i}, Q74 =0 (¢eK).
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Let Ue H™(Q) satisfy {B;U|r=f; (jeJ)}. Set u= A*w+ U, where w is a
Riesz function of f— AU. Then ue L*(Q) satisfies (P).

ProoF. Since K* = H*"~1(Q), we have
[PU, Q"¢ =[QU,P"¢], =0 (peK"),
owing to Green’s Theorem. Namely, we have
{AU,BU|r (je N}, {68, 1_dlr (e} =0 (4eK”),

which means

(AU, )+ > {f,B_i_#lr>=0 (peK*).

jedJ
Set F = f — AU, then we have
(F.¢)=(f AU, 9) = (f,9) +Y_ <[, B 1 _#lr> (peK”).
jelJ

Therefore, we have F € K*%, iff {f, f;} satisfies ().
Now we apply Mheorem 2.1, then there exists v = 4*w e L*(Q) satisfying

Av=F, Bpl.=0 (jelJ),
where w is a Riesz function of F. Hence u= v+ U ELZ(Q) is a solution of

(P). O

Now we define a subspace t in L*(Q):

T= {u € LX(Q) | Aue LX(Q), (,4)+ Y {Bn-r-julr, Bu1_jblr>_, =0 (Vpe K)}.
jeJ*
We remark that KNz = {0}, because u € KNt satisfies

(u,u) + Z (Bm_1~ju|r,Bm_1_ju|r>_ﬂj =0.
jeJ*

THEOREM 2.2. Assume (A-1) and (A-II). Suppose that f e K*-. Let w be
a Riesz function of f. Then u = A*w €t and u is a solution of (Py). Moreover, a
solution u of (Py) is unique in .

Proor. (1) From [Theorem 2.1, we have
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Qu = {u, —Bp-1-julr (jeJ*)}
— (A", A4 Bl (jeT"),
that is,
Prw={4"w, Bl (je )}
= {u, A" By julr (j€J)}.
(2) Since w, A*w e L?(QQ), we have, owing to Green’s Theorem,
[Pg, QW] = (04, P*w], (¢ H*"'(Q)).

Since K = H*"~(Q), we have

(04, P*w], =0 (¢€K),
that is,
(¢, u) + Z <Bm—1—j¢|raA_Z#ij—l—j“|r> =0 (¢eK),
jeJ*

which means u e 1.
(3) (Uniqueness) Let u; and u; be solutions of (Py), belonging to 7. Then
u=u; —uye KNz Since KNt = {0}, we have u=0. O

Finally, we consider a method to construct a function belonging to K — {0}.

Lemma 2.1. Let Ue H™(Q) satisfy {BiU|r =0 (jeJ)} and U ¢ 1. Set
¢ =A*w+ U, where w is a Riesz function of —AU. Then ¢ € K — {0}.

Proor. From [Theorem 2.1, we have ¢ = 4*w + U € K. On the other hand,
from [Theorem 2.2, we have 4*w € 7. Then we have ¢ ¢ 7. In fact, if we suppose
gert, then U =¢ — A*w € 7, which contradicts to U ¢ 7: The fact ¢ # 0 follows

from ¢ ¢ 7. OJ

LEMMA 2.2. Assume that there exists ¢, K — {0} such that ¢y(x) >0
(x € Q). Let U be a non-negative function satisfying

Ue H™(Q)— {0} and supp[U]E Q,

then U ¢ .
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Proor. We have U ¢, because

(U,60) + Y {Bu-1-;Ulr, A By 1ol = (U, ) > 0. O

jeJ*

§3. Numerical Approximation

Let us say that {vx (k=1,2,...)} is a basis of #, if any finite subset
of {vx (k=1,2,..)} is linearly independent and the space spanned by
{ve (k=1,2,...)} is dense in H#.

The solution u, obtained in §2, can be approximated by the method proposed

in [1], that is,

THEOREM 3.1. Assume (A-I) and (A-II). Let u= A*w, where w is a Riesz
Sunction of given f e K**. Let {vx (k=1,2,...)} be a basis of #. Set

14*01
uN:((f)vl))--"(f»vN))r];l ’
.A*UN
where
[vi,01] -+ [v1,vW]
I'y =
[vn,v1) -+ [vw,vN])
Then

uy —u (N — ) in L*(Q).

ProOF. (1) (Theory of Fourier Series in &) Let {v{*,vs,...} be Schmidt’s
orthonormalization of {v;,v;,...} in #. For we /#, we have

Wy = E (w00 Jof — w in H#,
1<ksN
that is,

u
wy = ([(w,01),...,[w,on])IR'| ¢ | = w in 5,

UN
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where
I'v = ([vj7vk])j,k=1 ..... N-
Moreover, since wy — w in 3, we have
uy =A*wy - A*'w=u _in LZ(Q).
(2) Especially, since w e # is a Riesz function of f, that is,
[w,0] = (f,v) (veH),
we have
w,oe] = (f,o) (k=1,2,...).

Hence we have

wN:((f7vl)a"'a(f7vN))r];1 3
Un
A*vl
uy = A*wy = ((f,01), -, (FLon)TR 0 ] O
A*UN

Since the boundary of Q is smooth, we have

LEMMA 3.1. Let diam(Q) < an (a > 0). Then
{exp(ia”'a-x) | e Z"}

is a basis of H1(Q).
"~ As is shown easily, we have

LemMMA 3.2. Let {vx (k=1,2,...)} be a basis of Hi(Q). Set

vk =@ +¢k (S K", e M),

then the space spanned by {&, (k=1,2,...)} is dense in . Therefore, we
can obtain a subset { (j=1,2,..)}={& (j=1,2,...)} such that {
(j=12,...)} is a basis of #.

Let {v; (j=1,2,...)} ={ox, (=1,2,...)} be a subset of {vx (k=1,2,...)},
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corresponding to {&; (j=1,2,...)} ={& (j=1,2,...)} in Lemma 3.2 Remark
that it holds

.....

.....

and

((f, fk))k:l,z,...,N = ((f, Uk))k:1,2,...N (f eK*).

Hence we have

CoROLLARY 3.1. Assume (A-I) and (A-II). Let u= A*w, where w is a
Riesz function of feK**. Let {vx (k=1,2,...)} be a basis of Hi(Q). Let
{vp, (k=1,2,...)} be a subset of {vx (k=1,2,...)} chosen in the above way. Set

A*v]
uN:((fiv{)"'-v(f’vllv))rl;l ’
A*vy
where

very

Then
uy —»u (N — o) in L*(Q).

Finally, we consider the approximation of ¢ € K — {0} in Theorem 2.3.

THEOREM 3.2. Assume (A-1) and (A-1l). Assume that there exists
$o € K — {0} such that ¢y(x) >0 (xe Q). Let U be a non-negative function

satisfying
Ue H"(Q)—{0} and supp[U]E Q.

Let {vx (k=1,2,...)} be a basis of #. Set

oy = U — (AU, v1),...,(AU,vy))TH! : ,

where

Iy = (ks vsD s=1,2,. ¥
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Then
oy — ¢ (N— o) inL}Q),

and ¢ € K — {0}.
§4. Examples

ExaMPLE 1. Consider Neumann problem:

—Au=f in Q,
{(d/dn)u =fi onI,

where Q € (—n,n)". Then K(= K*) is a space spanned by 1.

LemMMA 4.1. It holds
(6o) lull = CllAul|  (ue M,(d/dn)ulr = 0),
where
M = {ue H*(Q)|(u,1) = 0}.
Proor. Let {¢, (k=0,1,...)} be a complete set of eigen-functions, cor-
responding to eigen-values {lx (k=0,1,...)} such that
—A¢ = Mgy in Q (d/dn)¢, =0 on T,

and (¢jv¢k) =5jk, where 0 =Ag< A S AHh = ---.
Let ue M satisfy

—Au=fel*Q) inQ,
{(d/dn)u =0 onT.

Then, owing to Green’s Theorem, we have
(f,¢k):’1k(ua¢k) (k=071,)

Therefore, we have f e K+,

u="> _(1/4)(f, )b,

k#0

and
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el =14l 21 0l < 2NAN1,

k#0

where ¢ = |4]. U

Let 5# be a Hilbert space, defined by the completion of M by the norm [ ]:
| [0 = |Avl® + <(d/dn)o|r > 5.
Since {e** (ke Z")} is a basis of H*(Q),

{e* = 1Q7 (e*,1) (keZ" - {0})}

is a basis of #. From [Theorem 2.1, Theorem 2.2 and [Corollary 3.1, we have

PROPOSITION 4.1. Suppose that f e L*(Q) and (f,1)=0. Let we # be a
Riesz function of f in #. Set u= —Aw, then ue L*(Q) satisfies

—Au=f in Q,
{(d/dn)u=0 on- T

and (u,1) + <ulp,1>_1/;, = 0. Moreover, set
S = ((f7€ik'x))o<|k|§Na
Ty = (e, ¢ Nocpi<n. o<l <N
= (|kI*[s|*(e®*,e"™) + (k - m)(s - ”)<eik'x|r>eis'x|r>1/2)o<|k|gN,0<|s|§Na
Vv = (=A™ ) <y = (}klzeik'x)0<|k|§N,

and

Un = tf‘er;l VN,
then it holds

uy - u (N — o) in L}Q).

ExaMmpLE 2. Consider Dirichlet problem:

(A —=AYu=f inQ,
{u:ﬂ) onI,

where Q € (—n,7)" and A¢ is the least eigen-value for the eigen-value problem:
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{—Au =Au in Q,
u=20 onl.
Then, K(= K*) is a space spanned by ¢,, where ¢, is an eigen-function cor-
responding to the eigen-value Ao.
LEmMMA 4.2. It holds
(o) lull = CI(—A = Ao)ull (u€ M,uly =0),
where M = {ue H*(Q) | (u,,) = 0}.
Proor. Let {¢, (k=0,1,...)} be a complete set of eigen-functions, cor-
responding to eigen-values {1 (k=0,1,...)} such that
_A¢k = A‘k¢k in Q, ¢k =0 onT,

and (¢;,#;) = I, where 0 < 49 < MEZ LS.
Let ue M satisfy

{(—A —l)u=feL*Q) inQ,
u=20 onl.

Then, owing to Green’s Theorem, we have
(fs ) = (e — o), ) (k=0,1,...).
Therefore, we have f e K+,

u= Z(Ak - AO)_I(f’ ¢k)¢k’

k#0

and

ull®> = 3" (A — 20) 21> 8017 < 2NAN1

k#0

where ¢ = |4} — 4¢|. Ol

Let # be a Hilbert space, defined by the completion of M by the norm [ ]:
(0] = [[(=A = Zo)oll® + <vlrdia 2
Since {e** (ke Z")} is a basis of H?*(Q),
{&(x) = "% — (¥, go)gy (ke Z")}.
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is a basis of #, we have from [Theorem 2.1, Theorem 2.2 and [Corollary 3.1, we

have

PROPOSITION 4.2.  Suppose that f e L*(Q) and (f,¢y) = 0. Let we # be a
Riesz function of [ in #. Set u= (—A — Lo)w, then ue L*(Q) satisfies

{(—A——ﬂ.o)u:f in Q,
u=20 on I’

and (u,$,) + {(d/dn)ulr; (d/dn)do|r>_i_1/» = 0. Moreover, set
v = ((f,eik'x))|k|§N’
Ty = (", " Dyy<n,1=n

— (P = Ao) (I — Ao} (€%, %) + (e, B 1) o s
V= ((=A = 20)e" )<y = ((1kI* = 20)e™ ) <

and

Uy = tf‘Nrj;l VN7

then it holds
uy —u (N — ) in L}Q).

References

[1] R. Sakamoto, Numerical approximation of weak solution for boundary value problems,

Tsukuba J. Math. 26 (2002), 79-94.
[2] R. Sakamoto, Dirichlet-Neumann problem in a domain with piecewise-smooth boundary,

Tsukuba J. Math. 26 (2002), 387-406.
3] R. Sakamoto, Energy method for numerical analysis, to appear.
[4] L. Hormander, Linear partial differential operators, Springer, Berlin (1963).

28-2-507 Fukakusa-Sekiyashiki-cho
Fushimi-ku, Kyoto, Japan, 612-0037



	RESTRICTED ENERGY INEQUALITIES ...
	Introduction
	\S 1. Restricted Energy ...
	\S 2. Existence and Uniqueness
	THEOREM 2.1. ...
	THEOREM 2.2. ...

	\S 3. Numerical Approximation
	THEOREM 3.1. ...
	THEOREM 3.2. ...

	\S 4. Examples
	References


