ON THE REGULARITY OF WEAK SUBELLIPTIC F-HARMONIC MAPS

By

Elisabetta Barletta and Sorin Dragomir

Abstract. Building on work by L. Capogna & D. Danielli & N. Garofalo (cf. [7]–[8]), G. Citti & N. Garofalo & E. Lanconelli (cf. [10]) and P. Hájlasz & P. Strzelecki (cf. [16]) we study local properties of weak subelliptic F-harmonic maps (cf. [4]) of a non-degenerate CR manifold into a sphere S^m , where $\rho(t) = F'(t/2)$, $F \in C^2$, $F(t) \ge 0$, F'(t) > 0, $t \ge 0$. If $\Omega \subset \mathbb{R}^n$ is a bounded domain and X is a Hörmander system on \mathbb{R}^n , we show that any weak solution $\phi \in W_X^{1,D}(\Omega,S^m)$ to the nonlinear subelliptic system $-X^* \cdot (\rho(|X\phi|^2)X\phi) = \rho(|X\phi|^2)\phi|X\phi|^2$ is locally Hölder continuous, where D is a homogeneous dimension of Ω with respect to X, provided that $t^p/K \le \rho(t) \le Kt^p$ for some 0 .

1 Subelliptic Harmonic Maps

Let Ω be a domain in \mathbb{R}^n , $n \geq 2$, and $X := \{X_1, \ldots, X_k\}$ a system of vector fields with smooth real coefficients defined on some open set $U \subseteq \mathbb{R}^n$ with $\Omega \subset\subset U$. Let us assume that X is a Hörmander system on U, i.e. X_1, \ldots, X_k together with their commutators up to a certain fixed length span the tangent space $T_x(U)$, for any $x \in U$. The adjoint of $X_a = b_a^j \partial/\partial x^j$ is given by $X_a^*(f) = -\partial(b_a^j f)/\partial x^j$ for $f \in C_0^1(U)$ and the Hörmander operator is

$$Hu \equiv \sum_{a=1}^{k} X_a^* X_a u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x^i} \left(a^{ij}(x) \frac{\partial u}{\partial x^j} \right),$$

where $a^{ij} = \sum_{a=1}^k b_a^i b_a^j$. Then $a^{ij} \in C^{\infty}(U)$ and a^{ij} is symmetric and positive semidefinite, yet a^{ij} might fail to be positive definite, hence H is a degenerate

Received April 23, 2003. Revised October 17, 2003.

elliptic operator (in the sense of J. M. Bony, [6]). Given a Riemannian manifold (N,h), covered by a single coordinate system $(y^1,\ldots,y^m):N\to \mathbb{R}^m$, a smooth map $\phi:\overline{\Omega}\to N$ is a *subelliptic harmonic map* if it is a critical point of the functional

$$E(\phi) = \frac{1}{2} \int_{\Omega} \sum_{a=1}^{k} (X_a \phi^i) (X_a \phi^j) (h_{ij} \circ \phi) \ dx, \tag{1}$$

where $\phi^i := y^i \circ \phi$ and h_{ij} are the coefficients of h with respect to (y^i) . The notion is due to J. Jost & C-J. Xu, [21]. The Euler-Lagrange equations of the variational principle $\delta E(\phi) = 0$ are

$$H_N\phi^i\equiv H\phi^i+\sum_{a=1}^k(\Gamma^i_{j\ell}\circ\phi)(X_a\phi^j)(X_a\phi^\ell)=0,\quad 1\leq i\leq m.$$

H is a subelliptic operator (in the sense of D. Jerison & A. Sánchez-Calle, [19], p. 46) hence $H_N\phi=0$ is a nonlinear subelliptic system of PDEs, thus motivating the terminology in [21]. By a classical result of L. Hörmander (cf. [18]) H is hypoelliptic and it is indeed a natural problem to extend existence and regularity results known for elliptic PDEs (of a variational origin) to the hypoelliptic case.

The reason for studying subelliptic operators is provided by the function theory in several complex variables. Indeed, let $(M, T_{1,0}(M))$ be a CR submanifold of C^{n+1} and $\bar{\partial}_M f = 0$ the tangential Cauchy-Riemann equations. In order to develop a Hodge theory for the $\bar{\partial}_M$ -complex one needs (cf. e.g. J. J. Kohn, [22]) to consider the Kohn-Rossi laplacian $\square_M = \bar{\partial}_M \bar{\partial}_M^* + \bar{\partial}_M^* \bar{\partial}_M$ and then the principal part of $-\square_M$ may be shown to be a subelliptic operator. To see that J. Jost & C-J. Xu's subelliptic harmonic maps are tied to the same circle of ideas, assume M to be strictly pseudoconvex and consider the canonical S^1 bundle $\pi: C(M) \to M$, cf. e.g. [11], p. 104. Given a contact form θ on M, the total space C(M) carries a Lorentzian metric F_{θ} , the Fefferman metric of (M, θ) [cf. C. Fefferman, [12], for the case of a real hypersurface in C^{n+1} , and J. M. Lee, [23], for an abstract (i.e. not necessarily embedded) strictly pseudoconvex CR manifold]. Let $\{X_1, \ldots, X_{2n}\}$ be a local orthonormal (with respect to the Levi form G_{θ}) frame in the Levi, or maximally complex, distribution H(M) := $Re\{T_{1,0}(M) \oplus T_{0,1}(M)\}$, defined on a local coordinate neighborhood (U, φ) of M. Then $X = \{(d\varphi)X_a : 1 \le a \le 2n\}$ is a Hörmander system on $\varphi(U) \subseteq \mathbb{R}^{2n+1}$. By a result of H. Urakawa et alt., [5], if $\phi: M \to N$ is a smooth map into a Riemannian manifold such that its vertical lift $\phi \circ \pi$ is an ordinary harmonic map (in the sense of B. Fuglede, [14]) of $(C(M), F_{\theta})$ into (N, h), then $\phi \circ \varphi^{-1}$ is a subelliptic harmonic map (with respect to X). Moreover, this class of maps consists (cf. [5]) precisely of the critical points (referred to as *pseudoharmonic maps* in [5]) of the functional

$$E(\phi) = \frac{1}{2} \int_{M} trace_{G_{\theta}}(\pi_{H} \phi^{*} h) \theta \wedge (d\theta)^{n}.$$
 (2)

Here we assume (for simplicity) that M is compact. Also $\pi_H \phi^* h$ denotes the restriction of the bilinear form $\phi^* h$ to $H(M) \otimes H(M)$. See [11] for a brief introduction to CR and pseudohermitian geometry.

The function spaces suited for the study of solutions to $H_N\phi=0$ are the Folland-Stein spaces (cf. G. B. Folland & E. M. Stein, [13])

$$W_X^{1,p}(U) = \{ f \in L^p(U) : X_a f \in L^p(U), 1 \le a \le k \},\$$

where $X_a f$ is meant in distributional sense. As N is covered by a single chart the space $W_X^{1,p}(U,N)$ is also unambiguously defined (it consists of all $\phi: U \to N$ such that $\phi^i \in W_X^{1,p}(U)$, $1 \le i \le m$). Although the equations $H_N \phi = 0$ are nonlinear there is a naturally associated concept of weak solution, that is a map $\phi: U \to N$ such that $\phi \in W_X^{1,2}(U,N)$, and

$$\int_{U} (X\phi^{i}) \cdot (X\varphi) \ dx = \int_{U} (\Gamma^{i}_{j\ell} \circ \phi)(X\phi^{j}) \cdot (X\phi^{\ell}) \varphi \ dx, \quad 1 \leq i \leq m,$$

for any $\varphi \in C_0^{\infty}(U)$. Here, for two vector fields $E = (E_1, \dots, E_k)$ and $F = (F_1, \dots, F_k)$ we set $E \cdot F = \delta^{ab} E_a F_b$.

Given $f \in C^0(\overline{\Omega},N) \cap W_X^{1,2}(\Omega,N)$ such that $f(\overline{\Omega})$ is contained in a regular ball $B(p,r) \subset N$, J. Jost & C-J. Xu have solved (cf. *op. cit.*) the Dirichlet problem $H_N\phi=0$, $\phi|_{\partial\Omega}=f$. It possesses a unique solution $\phi\in W_X^{1,2}(\Omega,N)\cap L^\infty(\Omega,N)$ such that $\phi(\overline{\Omega})\subset B(p,r)$. Moreover, if $\partial\Omega$ is smooth and non-characteristic for X and f is smooth then ϕ is continuous up to the boundary. Z-R. Zhou has redefined (cf. [29]) subelliptic harmonic maps as the smooth solutions $\phi:U\to N$ to

$$\frac{1}{\sqrt{\gamma}}X_b^*(\sqrt{\gamma}\gamma^{ab}X_a\phi^i) - \gamma^{ab}(\Gamma_{j\ell}^i \circ \phi)(X_a\phi^j)(X_b\phi^\ell) = 0, \quad 1 \le i \le m, \tag{3}$$

¹A ball $B(p,r) \subset N$ is regular if $r < \min\{\pi/(2\kappa), i(p)\}$, where κ^2 is an upper bound for the sectional curvature of N and i(p) is the injectivity radius of $p \in N$.

² The boundary $\partial \Omega$ is noncharacteristic for X if for any $x \in \partial \Omega$ there is $a \in \{1, ..., k\}$ such that $X_a(x) \notin T_x(\partial \Omega)$.

where γ_{ab} is a positive definite symmetric matrix of smooth functions on U, $\gamma = \det(\gamma_{ab})$ and $\gamma^{ac}\gamma_{cb} = \delta^a_b$. Existence and continuity up to the boundary of the solution to the Dirichlet problem for (3) may be treated as in [21]. Combining this result with Theorem 1.1 of C-J. Xu & C. Zuily, [28], (dealing with higher interior regularity for a class of quasilinear subelliptic systems which includes (3)) shows that solutions are actually smooth. Z-R. Zhou proves (cf. op. cit.) that two solutions $\phi_1, \phi_2 : \overline{\Omega} \to B(p,r) \subset N$ to (3) with the same boundary values $(\phi_1|_{\partial\Omega} = \phi_1|_{\partial\Omega})$ actually coincide $(\phi_1 = \phi_2)$. A moment's thought shows that, while Z-R. Zhou's concept of a subelliptic harmonic map is more general than that of J. Jost & C-J. Xu (as $\gamma_{ab} = \delta_{ab}$ in [21]), both are but local manifestations of the same global notion, that of a pseudoharmonic map. Indeed, given a non-degenerate CR manifold M and a local frame (not necessarily orthonormal) $\{X_1, \ldots, X_{2n}\}$ of H(M) (defined on a coordinate neighborhood of M) the Euler-Lagrange equations (locally written, with respect to $\{X_a\}$) associated to the functional (2) are precisely the equations (3) (with $\gamma_{ab} := G_{\theta}(X_a, X_b)$).

When $X_a = \partial/\partial x^a$, $1 \le a \le n$, a critical point of (1) is an ordinary harmonic map (cf. e.g. J. Jost, [20], p. 389) $\phi: U \to N$. Then, in analogy with *p*-harmonic maps (cf. e.g. P. Baird & S. Gudmundson, [2]), P. Hájlasz & P. Strzelecki's notion (cf. [16]) of a subelliptic p-harmonic map $\phi: \Omega \to S^m$, that is a critical point of the functional

$$E_p(\phi) = \int_{\Omega} |X\phi|^p dx,$$

appears as quite natural (here $\Omega \subset \mathbb{R}^n$ is a bounded domain and $|X\phi|^2 = \sum_{a=1}^k |X_a\phi|^2$, for a given Hörmander system $X = \{X_a\}$ on \mathbb{R}^n). P. Hájlasz & P. Strzelecki prove (cf. op. cit.) the local Hölder continuity of every subelliptic D-harmonic map $\phi \in W_X^{1,D}(\Omega, S^m)$, where D is a homogeneous dimension of Ω (with respect to X). The subelliptic analog to the exponential harmonic maps (cf. e.g. M. C. Hong, [17]) has not been studied, so far.

Building on ideas due to M. Ara, [1], and K. Uhlenbeck, [27], the first named author has considered (cf. [4]) *F-pseudoharmonic maps* $\phi: M \to N$ of a (compact) strictly pseudoconvex CR manifold M into a Riemannian manifold N, defined as critical points of the functional

$$E_F(\phi) = \int_M F\left(\frac{1}{2} \operatorname{trace}_{G_{\theta}}(\pi_H \phi^* h)\right) \theta \wedge (d\theta)^n, \tag{4}$$

where $F:[0,\infty)\to[0,\infty)$ is a C^2 function such that F'(t)>0. The Euler-Lagrange equations of the variational principle $\delta E_F(\phi)=0$ are (cf. [4])

$$\operatorname{div}(\rho(Q)\nabla^{H}\phi^{i}) + \sum_{a=1}^{2n} \rho(Q)(\Gamma^{i}_{j\ell} \circ \phi)(X_{a}\phi^{j})(X_{a}\phi^{\ell}) = 0, \tag{5}$$

$$\rho(t) := F'(t/2), \quad Q := trace_{G_{\theta}}(\pi_H \phi^* h),$$

where $\{X_a\}$ is a local G_{θ} -orthonormal frame of H(M). The divergence operator is defined with respect to the volume form $\Psi := \theta \wedge (d\theta)^n$, that is $\mathcal{L}_X \Psi = div(X) \Psi$, for any C^1 vector field X on M, and $\nabla^H u := \pi_H \nabla u$, for any $u \in C^1(M)$, where ∇u is the gradient of u with respect to the Webster metric g_{θ} (cf. e.g. [11])

$$g_{\theta}(X, Y) := G_{\theta}(\pi_H X, \pi_H Y) + \theta(X)\theta(Y), \quad X, Y \in T(M),$$

and $\pi_H: T(M) \to H(M)$ is the projection associated to the direct sum decomposition $T(M) = H(M) \oplus RT$. Here T is the characteristic direction of $d\theta$, i.e. the unique (globally defined) vector field on M determined by $\theta(T) = 1$ and $T \rfloor d\theta = 0$. When $N = S^m$ the equations (5) become (by also taking into account the (local) expression of div with respect to $\{X_a\}$)

$$-\sum_{a=1}^{2n} X_a^*(\rho(Q)X_a\phi^i) = \rho(Q)\phi^i |X\phi|^2, \quad 1 \le i \le m,$$
 (6)

$$|X\phi|^2 := \sum_{a=1}^{2n} \sum_{A=1}^{m+1} X_a(\phi^A)^2, \quad \phi^A := y^A \circ \phi,$$

where (y^A) are the Cartesian coordinates on \mathbb{R}^{m+1} . The adjoint X_a^* is with respect to Ψ , i.e. $\int u X_a^* v \Psi = -\int (X_a u) v \Psi$, for any $u \in C_0^\infty$ and $v \in C^\infty$. Taking into account the constraint $\sum_{A=1}^{m+1} \phi_A^2 = 1$ (where $\phi_A = \phi^A$) it follows that ϕ_{m+1} satisfies (6) as well.

Our purpose in the present paper is to start a study of the regularity of weak solutions to (6). In the spirit of P. Hájlasz & P. Strzelecki, [16], we first deal with the problem where $\phi: \Omega \to N$, for some bounded domain $\Omega \subset \mathbb{R}^n$. Then, corresponding to (4) and (6) we have

$$E_F(\phi) = \int_{\Omega} F\left(\frac{1}{2}|X\phi|^2\right) dx,$$

$$-X^* \cdot (\rho(|X\phi|^2)X\phi) = \rho(|X\phi|^2)\phi|X\phi|^2. \tag{7}$$

Compare our (7) to (0.1) in K. Uhlenbeck, [27]. Note that when $F(t) := (2t)^{p/2}$, $t \ge 0$, and m = 1 the left hand side of (7) becomes $\mathcal{L}_p \phi$, where $\mathcal{L}_p u \equiv -X^* \cdot (|Xu|^{p-2})Xu$ is the subelliptic p-Laplacian in [7]. L. Capogna & D. Danielli

& N. Garofalo were (cf. op. cit.) the first to study regularity properties of weak solutions to (a single equation) $\mathcal{L}_p u = 0$.

We shall need the Carnot-Carathéodory distance $d_C(x, y)$ defined as the infimum of T > 0 for which there is an absolutely continuous curve $C : [0, T] \to \mathbb{R}^n$ such that $\dot{C}(t) = \sum_{a=1}^k f_a(t) X_a(C(t))$, for some functions $f_j(t)$ satisfying $\sum_{a=1}^k f_a(t)^2 \le 1$, and C(0) = x, C(T) = y, $x, y \in \mathbb{R}^n$. Also, for a bounded open set $\Omega \subset \mathbb{R}^n$ we recall that a number D is a homogeneous dimension with respect to X if there is a constant C > 0 such that

$$\frac{|B(x,r)|}{|B(x_0,r_0)|} \ge C\left(\frac{r}{r_0}\right)^D,\tag{8}$$

for any ball $B_0 = B(x_0, r_0)$ of center $x_0 \in \Omega$ and radius $0 < r_0 \le diam(\Omega)$, and any ball B = B(x, r) of center $x \in B_0$ and radius $0 < r \le r_0$. Here $B = \{y \in \mathbb{R}^n : d_C(x, y) < r\}$ is a metric ball and $diam(\Omega)$ is the diameter of Ω with respect to d_C . Also |A| denotes the Lebesgue measure of the set A. Clearly, any $D' \ge D$ is a homogeneous dimension of Ω , as well. Our result is

THEOREM 1. Let $X = \{X_1, \ldots, X_k\}$ be a Hörmander system on \mathbb{R}^n such that each $X_a = b_a^A \partial/\partial x^A$ has components $b_a^A(x)$ which are globally Lipschitz on \mathbb{R}^n . Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and D a homogeneous dimension of Ω relative to X. Assume that $t^p/K \leq \rho(t) \leq Kt^p$, for some constant $K \geq 1$ and some $0 . Let <math>\phi \in W_X^{1,D}(\Omega,S^m)$ be a weak solution to the nonlinear subelliptic system (7). Let $R_0 > 0$ and $R_1 \subset \Omega$ such that $R_0 = 0$ for any $R_0 \in \Omega$ for any $R_0 \in \Omega$ for any $R_0 \in \Omega$ for any $R_0 \in \Omega$.

$$I_p(r) := \int_{B(x,r)} |X\phi|^{2(p+1)}(y) \ dy \le Cr^{\gamma}, \quad \gamma := (\log \lambda)/(\log \tau),$$

for any $x \in \Omega_1$ and any $0 < r \le r_0$. Consequently, if $\tau^D < \lambda < \tau^{D-2(p+1)}$ then $\phi \in S^{0,\alpha}_{loc}(\Omega)$ with $\alpha := 1 + (\gamma - D)/(2p + 2)$, hence ϕ is locally Hölder continuous.

The assumption that X_a have globally Lipschitz coefficients guarantees (by Prop. 2.8 in N. Garofalo & D. M. Nhieu, [15]) that a subset in \mathbb{R}^n is bounded with respect to d_C if and only if it is bounded with respect to the Euclidean metric³. The Hölder like spaces (associated to the given Hörmander system) in Theorem 1 are given by

³ If a set A is bounded with respect to the Euclidean metric then A is d_C -bounded, yet the converse fails, in general.

$$S^{0,\alpha}(\Omega) = \left\{ f \in L^{\infty}(\Omega) : \sup_{x,y \in \Omega} \frac{|f(x) - f(y)|}{d_C(x,y)^{\alpha}} < \infty \right\}, \quad 0 < \alpha \le 1.$$

Folland-Stein spaces may be defined on a (not necessarily compact) strictly pseudoconvex CR manifold, as well. For instance, let $W_H^{1,p}(M)$ be the completion of $\{u \in C^\infty(M) \cap L^p(M) : \nabla^H u \in L^p(H(M))\}$ with respect to the norm

$$||u||_{W^{1,p}} := ||u||_{L^p} + ||\nabla^H u||_{L^p},$$

where

$$||u||_{L^p} = \left(\int_M |u|^p \theta \wedge (d\theta)^n\right)^{1/p}, \quad ||X||_{L^p} = \left(\int_M G_{\theta}(X,X)^{p/2} \theta \wedge (d\theta)^n\right)^{1/p}.$$

Of course $L^p(M)$ (respectively $L^p(H(M))$) is the completion of $C_0^\infty(M)$ (respectively of $\Gamma_0^\infty(H(M))$) with respect to the norm $\|\cdot\|_{L^p}$. Also, an analog of the Carnot-Carathéodory metric is available on any strictly pseudoconvex CR manifold M. Let us briefly recall its construction (under the conventions of R. S. Strichartz, [26]). The Levi form

$$G_{ heta}(X,Y):=(d heta)(X,JY),\quad X,\,Y\in H(M),$$

$$J:H(M)\to H(M),\quad J(Z+ar{Z}):=\sqrt{-1}(Z-ar{Z}),\quad Z\in T_{1.0}(M),$$

is a sub-Riemannian metric on H(M) (cf. [26], p. 225) and H(M) satisfies the strong bracket generating hypothesis (as θ is a contact form, cf. [26], p. 229) hence the study of $(M, H(M), G_{\theta})$ lies within sub-Riemannian geometry. A piecewise C^1 curve $\gamma: I \to M$, where $I \subseteq \mathbf{R}$ is an interval, is lengthy if $\dot{\gamma}(t) \in H(M)_{\gamma(t)}$, for every $t \in I$ where $\dot{\gamma}(t)$ is defined. Let $g(x): T_x^*(M) \to H(M)_x$, $x \in M$, be the \mathbf{R} -linear map defined by $G_{\theta,x}(g(x)\alpha,X) = \alpha(X)$, for any $\alpha \in T_x^*(M)$ and $X \in H(M)_x$. Then $Ker(g(x)) = H(M)_x^{\perp}$, $x \in M$. A piecewise C^0 curve $\xi: I \to T^*(M)$ is a cotangent lift of (the lengthy curve) γ if $\xi(t) \in T_{\gamma(t)}^*(M)$ and $g(\gamma(t))\xi(t) = \dot{\gamma}(t)$, for every t (where defined). Any such ξ descends to a (well defined) map $I \to T^*(M)/H(M)^{\perp}$ (the uniqueness of piecewise C^0 cotangent lifts modulo sections of $H(M)^{\perp}$). The length of a lengthy curve γ is

$$\ell(\gamma) = \int_{I} \langle \xi(t), g(\gamma(t)) \xi(t) \rangle^{1/2} dt,$$

where $\langle \alpha, v \rangle = \alpha(v)$, $\alpha \in T_x^*(M)$, $v \in T_x(M)$. The definition of $\ell(\gamma)$ does not depend upon the choice of a cotangent lift of γ . The distance $d_S(x, y)$ between two points $x, y \in M$ is the infimum of the lengths of all lengthy curves joining x

and y (that such curves exist is a classical theorem of W. L. Chow, [9]). We refer to d_S as the *Strichartz distance* on (M, θ) .

While we deliberately made use of the language of sub-Riemannian geometry (to emphasize that CR geometry embeds there) we must nevertheless observe that the Webster metric g_{θ} is a contraction of the sub-Riemannian metric G_{θ} (G_{θ} is an expansion of g_{θ}) hence a lengthy curve has the same length in (M, g_{θ}) . In particular, if d_R is the Riemannian distance (associated to (M, g_{θ})) then $d_R(x, y) \leq d_S(x, y)$, for any $x, y \in M$. The metrics d_R and d_S define the same topology on M (cf. [26], p. 230) yet they are not equivalent metrics.

A number D is called a homogeneous dimension of (M,θ) if there is a constant C>0 such that (8) holds for any d_S -balls B_0 of radius r_0 and B of center $x \in B_0$ and radius $r \le r_0$. The Lebesgue measure of the sets appearing in (8) is replaced by their Riemannian volume in (M,g_θ) . Let D(M) be the smallest such D (the homogeneous dimension of (M,θ)). If M has finite diameter (with respect to the Strichartz distance d_S) and the Riemannian measure (associated to g_θ) has the doubling property then (by Lemma 2.7 in [16]) a homogeneous dimension of (M,θ) exists. It is unknown whether D(M) is a CR invariant. The (3-dimensional) Heisenberg group $H_1 = C \times R$, with the CR structure spanned by $\partial/\partial z + i\bar{z}\partial/\partial t$ (the Lewy operator) and the contact form $\theta = dt + (i/2)(z d\bar{z} - \bar{z} dz)$, has homogeneous dimension $D(H_1) = 4$ (cf. e.g. [16], p. 349). We conjecture that each weak solution $\phi \in W_H^{1,D}(M,S^m)$ to the nonlinear subelliptic system (6) with $\rho(t) = Dt^{(D-2)/2}$, $t \ge 0$ (where D is a homogeneous dimension of M) is smooth.

2 A Caccioppoli Type Estimate

C>0 denotes a generic constant (which may change even within the current computation). If C>0 is a constant then $CB(x_0,r)$ is the ball $B(x_0,Cr)$. Also, by $r\approx s$ we mean $r/C\leq s\leq Cr$, for some $C\geq 1$. To start the study of weak solutions ϕ to (7) with the constraint $\sum_{i=1}^{m+1}\phi_i^2=1$, we set $V_{i,a}:=\rho(Q)X_a\phi_i$, $1\leq a\leq k$, and $V_i=(V_{i,1},\ldots,V_{i,k})$. Then

$$V_i = \sum_{j=1}^{m+1} \phi_j (\phi_j V_i - \phi_i V_j),$$

merely as a consequence of the constraint. Next, we set $E_{i,j} := \phi_j V_i - \phi_i V_j$ and then (7) implies

$$X^* \cdot E_{i,j} = 0, \quad 1 \le i, j \le m+1.$$
 (9)

Indeed, for any $\psi \in C_0^{\infty}$

$$\int_{\Omega} (X^* \cdot (\phi_i V_j)) \psi \, dx = \sum_{a=1}^k \int_{\Omega} X_a^* (\phi_i V_{j,a}) \psi \, dx = -\sum_a \int_{\Omega} \phi_i V_{j,a} X_a \psi \, dx$$

$$= -\sum_a \int \rho(Q) (X_a \phi_j) [X_a (\phi_i \psi) - \psi X_a \phi_i] \, dx$$

$$= \sum_a \int X_a^* (\rho(Q) X_a \phi_j) \phi_i \psi \, dx + \sum_a \int \psi \rho(Q) (X_a \phi_i) (X_a \phi_j) \, dx$$

$$(by (7)) = \int \rho(Q) \left[-Q \phi_i \phi_j + \sum_a (X_a \phi_i) (X_a \phi_j) \right] \psi \, dx$$

hence $X^* \cdot (\phi_i V_j)$ is symmetric in i, j, which yields (9). The identity (9) implies the following

LEMMA 1 (The duality inequality). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $X_a = b_a^A \partial/\partial x^A$ a Hörmander system on \mathbb{R}^n with $b_a^A(x)$ globally Lipschitz. Let $R_0 > 0$ and $\Omega_1 \subset \subset \Omega$ such that $B(x, 400R_0) \subset \Omega$, for any $x \in \Omega_1$. Let $B = B(x_0, r)$, $x_0 \in \Omega_1$, be a ball such that $0 < r \le R_0$ and $\varphi \in W_X^{1,D}(B)$ a function of compact support. Then

$$\left| \int_{B} X^* \cdot (\phi_j E_{i,j}) \varphi \, dx \right| \le CK \|X\varphi\|_{L^{D}(B)} (\|X\phi\|_{L^{2p+2}(100B)})^{2p+2}, \tag{10}$$

for some constant $C = C(\Omega_1, D, C_d, R_0) > 0$, provided that $\rho(t) \le Kt^p$, $t \ge 0$, for some K > 0 and 0 .

Aside from some additional technical difficulties (e.g. one applies twice the fractional integration theorem), the proof of Lemma 1 is similar to that of Lemma 3.2 in P. Hájlasz & P. Strzelecki, [16], p. 354. We give a proof of Lemma 1 in Section 3. To prove Theorem 1 we fix $\Omega_1 \subset\subset \Omega$ and $R_0 > 0$ as in Lemma 1. Taking the dot product of $V_i = \sum_{j=1}^{m+1} \phi_j E_{i,j}$ with X^* we get

$$X^*\cdot (
ho(Q)X\phi_i)=\sum_{j=1}^{m+1}X^*\cdot (\phi_jE_{i,j}),$$

(a consequence of the constraint alone) and integrating over 2B [where $B = B(x,r), x \in \Omega_1, 0 < r < R_0$] against $\psi_i := \eta(\phi_i - (\phi_i)_{2B})$, where $0 \le \eta \le 1$ is a smooth cut-off function such that $\eta = 1$ on B, $\eta = 0$ on $\Omega \setminus 2B$, and $|X\eta| \le C/r$

$$\int X^* \cdot (\rho(Q)X\phi_i)\psi_i \, dx = \sum_{j=1}^{m+1} \int X^* \cdot (\phi_j E_{i,j})\psi_i \, dx. \tag{11}$$

The left hand side may be also written

$$\int X^* \cdot (\rho(Q)X\phi_i)\psi_i \, dx = -\int \rho(Q)(X\phi_i) \cdot (X\psi_i) \, dx$$
$$= -\int \rho(Q)(X\phi_i) \cdot [(X\eta)(\phi_i - (\phi_i)_{2B}) + \eta(X\phi_i)] \, dx$$

hence (11) becomes (by summing over $1 \le i \le m+1$)

$$\int_{2B} \eta Q \rho(Q) \ dx + \sum_{i=1}^{m+1} \int_{2B} \rho(Q) (\phi_i - (\phi_i)_{2B}) (X\phi_i) \cdot (X\eta) \ dx$$
$$= -\sum_{i,j} \int_{2B} X^* \cdot (\phi_j E_{i,j}) \psi_i \ dx.$$

Consequently

$$\begin{split} \int_{B} Q \rho(Q) \ dx & \leq \int_{2B} \eta Q \rho(Q) \ dx \\ & \leq \sum_{i} \int_{2B} \rho(Q) |\phi_{i} - (\phi_{i})_{2B}| \ |X\phi_{i}| \ |X\eta| \ dx + \sum_{i,j} |I_{i,j}|, \end{split}$$

where

$$I_{i,j} := \int_{2B} X^* \cdot (\phi_j E_{i,j}) \psi_i \ dx.$$

Moreover, by $|X\phi_i| \le |X\phi| = Q^{1/2}$ and by the Hölder inequality (with 1/[2(p+1)] + 1/q = 1)

$$\begin{split} \int_{B} Q \rho(Q) \ dx & \leq \sum_{i} \int_{2B} Q^{1/2} \rho(Q) |X\eta| \ |\phi_{i} - (\phi_{i})_{2B}| \ dx + \sum_{i,j} |I_{i,j}| \\ & \leq \sum_{i,j} |I_{i,j}| + \sum_{i} \left(\int_{2B} |\phi_{i} - (\phi_{i})_{2B}|^{2(p+1)} \right)^{1/[2(p+1)]} \\ & \times \left(\int_{2B \backslash B} (Q^{1/2} \rho(Q) |X\eta|)^{2(p+1)/(2p+1)} \right)^{(2p+1)/[2(p+1)]}. \end{split}$$

At this point, we may apply the Poincaré inequality

$$\left(\int_{2B} |u - u_{2B}|^{s} dx\right)^{1/s} \le Cr\left(\int_{2B} |Xu|^{s} dx\right)^{1/s}, \quad 1 \le s < \infty,$$

and Lemma 1 (with φ replaced by ψ_i) so that to get

$$\begin{split} \int_{B} Q\rho(Q) \ dx &\leq C \sum_{i} \left(\int_{2B} |X\phi_{i}|^{2(p+1)} \ dx \right)^{1/[2(p+1)]} \\ &\times \left(\int_{2B \setminus B} (Q^{1/2}\rho(Q))^{2(p+1)/(2p+1)} \ dx \right)^{(2p+1)/[2(p+1)]} + \sum_{i,j} |I_{i,j}| \\ &\leq C \left(\int_{2B} Q^{p+1} \ dx \right)^{1/[2(p+1)]} \left(\int_{2B \setminus B} (Q\rho(Q)^{2})^{(p+1)/(2p+1)} \ dx \right)^{(2p+1)/[2(p+1)]} \\ &+ C \sum_{i} \|X\psi_{i}\|_{L^{p}(2B)} (\|X\phi\|_{L^{2p+2}(200B)})^{2p+2}. \end{split}$$

By $\rho(t) \leq Kt^p$ we have

$$\left(\int_{2B\setminus B} (Q\rho(Q)^2)^{(p+1)/(2p+1)} dx\right)^{(2p+1)/[2(p+1)]}$$

$$\leq K \left(\int_{2B\setminus B} |X\phi|^{2(p+1)} dx\right)^{(2p+1)/[2(p+1)]}.$$

Now we may use $t^p/K \le \rho(t)$ to estimate $\int Q\rho(Q) dx$ by below, and the inequality

$$\sum_{i} \|X\psi_{i}\|_{L^{D}(2B)} \le C\|X\phi\|_{L^{D}(2B)} \tag{12}$$

to obtain

$$I_p(r) \le C[I_p(2r)^{1/(2p+2)}(I_p(2r) - I_p(r))^{(2p+1)/(2p+2)} + ||X\phi||_{L^p(2B)}I_p(200r)], \tag{13}$$

where

$$I_p(r) := \int_{B(x,r)} |X\phi|^{2p+2} dx.$$

As to (12), it follows from

$$\begin{split} & \sum_{i} \|X\psi_{i}\|_{L^{D}(2B)} \leq \sum_{i} (\|(X\eta)(\phi_{i} - (\phi_{i})_{2B})\|_{L^{D}(2B)} + \|\eta X\phi_{i}\|_{L^{D}(2B)}) \\ & = \sum_{i} \left(\int_{2B} |X\eta|^{D} |\phi_{i} - (\phi_{i})_{2B}|^{D} dx \right)^{1/D} + \sum_{i} \left(\int_{2B} |\eta|^{D} |X\phi_{i}|^{D} dx \right)^{1/D} dx \\ & \leq \frac{C}{r} \sum_{i} \left(\int_{2B} |\phi_{i} - (\phi_{i})_{2B}|^{D} dx \right)^{1/D} + \sum_{i} \left(\int_{2B} |X\phi_{i}|^{D} dx \right)^{1/D} dx \\ & (by \ the \ Poincar\'e \ inequality) \\ & \leq C \left(\int_{2B} |X\phi|^{D} dx \right)^{1/D} dx. \end{split}$$

Using (13) we may establish

LEMMA 2. There are $r_0 > 0$ and $\lambda \in [1/2, 1)$ such that

$$I_p(r) \le \lambda I_p(200r),\tag{14}$$

for any $0 < r \le r_0$.

The proof is by contradiction. Assume that for any $r_0 > 0$ and any $\lambda \in [1/2, 1)$ there is $0 < r \le r_0$ such that $\lambda I_p(200r) < I_p(r)$. Then (by (13))

$$\begin{split} \lambda I_p(200r) &< I_p(r) \\ &\leq C[I_p(2r)^{1/(2p+2)}(I_p(2r) - I_p(r))^{(2p+1)/(2p+2)} + \|X\phi\|_{L^D(2B)}I_p(200r)] \\ &\leq C[I_p(200r)(1-\lambda)^{(2p+1)/(2p+2)} + \|X\phi\|_{L^D(2B)}I_p(200r)] \end{split}$$

That is

$$\frac{1}{2} \leq \lambda < C[(1-\lambda)^{(2p+1)/(2p+2)} + \|X\phi\|_{L^{D}(2B)}].$$

Consequently, for any $r_0 > 0$ there is $0 < r \le r_0$ such that

$$\left(\frac{1}{2C}\right)^D \le \int_{2B} |X\phi|^D dx.$$

Indeed, let $\lambda_{\nu} \in [1/2, 1)$, $\lambda_{\nu} \to 1$ as $\nu \to \infty$, and $0 < r_{\nu} \le r_0$ correspondingly. By eventually passing to a subsequence, we may assume $r_{\nu} \to r_{\infty}$ as $\nu \to \infty$, for some $0 \le r_{\infty} \le r_0$. Let us take $\nu \to \infty$ in $1/2 < C[(1 - \lambda_{\nu})^{(2p+1)/(2p+2)} +$

 $(\int_{B(x,2r_v)} |X\phi|^D dy)^{1/D}$]. Then we may use the Vitali absolute continuity of the integral to conclude that either $r_\infty > 0$ and then we get the desired inequality, or $r_\infty = 0$ and then $1/2 \le 0$, a contradiction. In particular, for $r_0 = 1/k$ there is $0 < r \le 1/k$ such that

$$\left(\frac{1}{2C}\right)^{D} \le \int_{B(x,2r)} \left| X\phi \right|^{D} dy \le \int_{B(x,2/k)} \left| X\phi \right|^{D} dy$$

and (again using absolute continuity) the last integral goes to 0 as $k \to \infty$, a contradiction. Lemma 2 is proved.

The inequality (14) may be written $I_p(\tau r) \leq \lambda I_p(r)$, where $\tau = 1/200$. Therefore $I_p(\tau^m r) \leq \lambda^m I_p(r)$, for any integer $m \geq 1$. The following argument (leading to the estimate (15)) is standard. Details are for the sake of completeness. $\{(\tau^m, \tau^{m-1}] : m \geq 1\}$ is a cover of (0,1] hence $\tau^m < r/r_0 \leq \tau^{m-1}$, for some $m \geq 1$. Now $r \leq \tau^{m-1} r_0$ yields

$$I_p(r) \leq I_p(\tau^{m-1}r_0) \leq \lambda^{m-1}I_p(r_0).$$

Let us set $\gamma := (\log \lambda)/(\log \tau)$ (then $0 < \gamma < 1$, because of $\lambda \ge 1/2 > \tau$). On the other hand $r/r_0 \ge \tau^m$ yields

$$\left(\frac{r}{r_0}\right)^{\gamma} > \tau^{m\gamma} = \tau^{(\log \lambda^m)/(\log \tau)} = \lambda^m.$$

Then $\lambda^{m-1} < (r/r_0)^{\gamma}/\lambda$ where from

$$I_p(r) \leq \lambda^{m-1} I_p(r_0) < \frac{1}{\lambda} \left(\frac{r}{r_0}\right)^{\gamma} I_p(r_0) = Cr^{\gamma},$$

(where $C = I_p(r_0)/(\lambda r_0^{\gamma})$). We have obtained

$$\int_{B(x,r)} |X\phi|^{2(p+1)}(y) \, dy \le Cr^{\gamma},\tag{15}$$

which is the (Caccioppoli type) estimate sought after. To end the proof of Theorem 1 we need to recall (cf. Prop. 2.1 in C-J. Xu & C. Zuily, [28], p. 326) the following result. Let $u \in L^2(\Omega)$. Then the following two conditions are equivalent i) $u \in S_{loc}^{0,\alpha}(\Omega)$, and ii) there are constants $r_0 > 0$ and C > 0 such that for any $0 < r \le r_0$ and any $x \in \Omega$ such that $B(x, 2r) \subset \Omega$ one has

$$\int_{B(x,r)} |u(y) - u_{B(x,r)}|^2 dy \le C|B(x,r)|r^{2\alpha}.$$

By the Poincaré inequality

$$\int_{B(x,r)} |\phi_i(y) - (\phi_i)_{B(x,r)}|^2 dy \le Cr^2 \int_{B(x,r)} |X\phi|^2 dy$$

by the Hölder inequality (with 1/(p+1) + 1/q = 1)

$$\leq Cr^2 \left(\int_{B(x,r)} |X\phi|^{2p+2} dy \right)^{1/(p+1)} |B(x,r)|^{p/(p+1)}$$

by (15) and by the definition of homogeneous dimension

$$\leq Cr^{2}|B(x,r)|^{p/(p+1)}r^{\gamma/(p+1)}\leq C|B(x,r)|r^{2\alpha},$$

where $\alpha := 1 + (\gamma - D)/(2p + 2)$. Now $\alpha > 0$ provided that $p > (D - 2)/2 - \gamma/2$, and $\alpha \le 1$ when $D > \gamma$, which holds as D is tacitly assumed to be large (usually D is larger than the Euclidean dimension). Theorem 1 is proved.

3 The Duality Inequality

It suffices to prove Lemma 1 for $\varphi \in C_0^{\infty}(B)$. Since the proof is fairly long, we organize it in several steps, as follows. For any bounded domain $\Omega \subset \mathbb{R}^n$ and any $u \in C_0^{\infty}(\Omega)$ one has the representation formula

$$u(x) = \int_{\Omega} (X_y G(y, x)) \cdot (X_y u(y)) \, dy, \quad x \in \Omega, \tag{16}$$

where G(x, y) is the Green function⁴ of H on Ω . By a result of G. Citti & N. Garofalo & E. Lanconelli, [10], we may construct a smooth cut-off function η_0 such that $\eta_0 = 1$ on 2B, $\eta_0 = 0$ on $\Omega \setminus 4B$ and $|X\eta_0| \leq C/diam(B)$. The diameter of a set is meant with respect to d_C . Then, using (16) (with $u = \varphi$)

$$\int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \, dx = \int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \eta_{0} \, dx$$

$$= \iint_{(x,y) \in B \times B} X^{*} \cdot (\phi_{j} E_{i,j})(x) \eta_{0}(x) (X_{y} G(y,x)) \cdot (X_{y} \varphi(y)) \, dx dy,$$

hence

$$\int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \ dx = \int_{B} A \cdot (X \varphi) \ dy,$$

⁴The existence of the Green function is well known to follow from the hypoellipticity of H and Bony's maximum principle (cf. J. M. Bony, [6]).

where

$$A(y) := \int_B X^* \cdot (\phi_j E_{i,j})(x) \eta_0(x) X_y G(y,x) \ dx.$$

Step 1. A bound on $|A_a(y)|$.

Let $y \in B$ and let $\{\theta_{\alpha}\}_{\alpha \in I}$ be a smooth partition of unity associated to a Whitney decomposition of $\Omega_y := \Omega \setminus \{y\}$. Precisely, for $x \in \Omega_y$ we set $r_x := d_C(x, \mathbf{R}^n \setminus \Omega_y)/1000$ and choose, among $\{B(x, r_x)\}_{x \in \Omega_y}$, a maximal family of mutually disjoint balls $\{B(x_\alpha, r_\alpha)\}_{\alpha \in I}$ (hence $\Omega_y = \bigcup_{\alpha \in I} B(x_\alpha, 3r_\alpha)$ and there is $N \ge 1$ such that each $x \in \Omega$ belongs to at most N balls $B(x_\alpha, 6r_\alpha)$). Then we may consider a family of smooth functions $\{\theta_\alpha\}_{\alpha \in I}$ such that $0 \le \theta_\alpha \le 1$, $\sum_{\alpha \in I} \theta_\alpha = 1$ on Ω_y , $supp(\theta_\alpha) \subset B_\alpha := B(x_\alpha, 6r_\alpha)$ and $|X\theta_\alpha| \le C/r_\alpha$ (cf. e.g. R. A. Macías & C. Segovia, [24], for a general approach within the framework of metric spaces endowed with a Borel measure. To get the bounds on the gradients one also uses a result of G. Citti & N. Garofalo & E. Lanconelli, [10]). Then

$$A_{a}(y) = \sum_{\alpha \in I} \int_{B_{\alpha}} X^{*} \cdot (\phi_{j} E_{i,j})(x) \eta_{0}(x) \theta_{\alpha}(x) X_{a,y} G(y,x) dx$$

$$(by (9)) = \sum_{\alpha \in I} \int_{B_{\alpha}} X^{*} \cdot [\phi_{j} - (\phi_{j})_{B_{\alpha}}] E_{i,j}(x) \eta_{0}(x) \theta_{\alpha}(x) X_{a,y} G(y,x) dx,$$

where $(\phi_j)_{B_\alpha} := (1/|B_\alpha|) \int_{B_\alpha} \phi_j(x) dx$. Next

$$A_a(y) = -\sum_{\alpha \in I} \int_{B_\alpha} [\phi_j - (\phi_j)_{B_\alpha}] E_{i,j}(x) \cdot X_x(\eta_0(x)\theta_\alpha(x) X_{a,y} G(y,x)) \ dx.$$

By a result of A. Sánchez-Calle, [25] (for $n \ge 2$)

$$|X_a G(x, y)| \le C \frac{d_C(x, y)}{|B(x, d_C(x, y))|}, \quad |X_a X_b G(x, y)| \le \frac{C}{|B(x, d_C(x, y))|},$$

for any $x, y \in \Omega$ (and it is irrelevant whether differentiation is with respect to x or y). Using also $|X\eta_0(x)| \leq Cd_C(x,y)^{-1}$ and $|X\theta_\alpha(x)| \leq Cd_C(x,y)^{-1}$, $\alpha \in I$, we obtain

$$|X_{b,x}(\eta_0(x)\theta_{\alpha}(x)X_{a,y}G(y,x))| \le \frac{C}{|B(y,d_C(x,y))|}$$

hence

$$|A_a(y)| \le C \sum_{\alpha \in I} \int_{B_\alpha} \frac{|\phi_j(x) - (\phi_j)_{B_\alpha}| |E_{i,j}|}{|B(y, d_C(x, y))|} dx.$$
 (17)

Note that

$$|B(y, d_C(x, y))| \ge C|B_\alpha|, \quad x \in B_\alpha. \tag{18}$$

Indeed, $d_C(x, x_\alpha) < 6r_\alpha$. On the other hand, $d_C(y, x_\alpha) \ge 1000r_\alpha$, from $y \in \mathbb{R}^n \setminus \Omega_y$ and the very definition of r_α . Hence $1000r_\alpha \le d_C(y, x_\alpha) \le d_C(x, y) + d_C(x, x_\alpha) \le d_C(x, y) + 6r_\alpha$, that is $r_\alpha \le d_C(x, y)/994$ or $6r_\alpha \le d_C(x, y)$. This yields $|B(y, 6r_\alpha)| \le |B(y, d_C(x, y))|$. Moreover $|B(y, 6r_\alpha)|/|B(x_\alpha, 6r_\alpha)| \ge C$, as a consequence of (8). Combining the last two inequalities leads to (18). Let us consider the set of indices $J := \{\alpha \in I : supp(\theta_\alpha) \cap 4B \ne \emptyset\}$. By (17)–(18) and the Hölder inequality (with $1/v^* + 1/\beta = 1$)

$$\begin{aligned} |A_{a}(y)| &\leq C \sum_{\alpha \in J} \frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |\phi_{j}(x) - (\phi_{j})_{B_{\alpha}}| \, |E_{i,j}| \, dx \\ &\leq C \sum_{\alpha \in J} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |\phi_{j}(x) - (\phi_{j})_{B_{\alpha}}|^{\nu^{*}} \, dx \right)^{1/\nu^{*}} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |E_{i,j}|^{\beta} \, dx \right)^{1/\beta}. \end{aligned}$$

Next, we need to apply the *Sobolev inequality*, in the form stated for instance by G. Capogna & D. Danielli & N. Garofalo, [8]. Precisely, given $1 \le p < D$ there is a constant C > 0 such that for any ball B = B(x, r) with $x \in \Omega$ and $0 < r \le diam(\Omega)$ one has

$$\left(\frac{1}{B}\int_{B}\left|u-u_{B}\right|^{p^{*}}dx\right)^{1/p^{*}}\leq Cr\left(\frac{1}{B}\int_{B}\left|Xu\right|^{p}dx\right)^{1/p},\quad p^{*}=\frac{Dp}{D-p},$$

(where D is a homogeneous dimension of Ω relative to X). Let us choose $v^* := Dv/(D-v)$ (hence $\beta = v^*/(v^*-1) = Dv/[D(v-1)+v]$) with $1 \le v < D$. Then (as $X_a\phi_i \in L^v$)

$$|A_a(y)| \leq C \sum_{\alpha \in J} r_{\alpha} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |X\phi_j|^{\nu} dx \right)^{1/\nu} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |E_{i,j}|^{\beta} dx \right)^{1/\beta}.$$

Note that (by the very definition of $E_{i,j}$) one has $|E_{i,j}| \le 2\rho(Q)|X\phi|$. Therefore, using also $\rho(Q) \le KQ^p$

$$|A_a(y)| \leq CK \sum_{\alpha \in J} r_{\alpha} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |X\phi|^{\nu} dx \right)^{1/\nu} \left(\frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} |X\phi|^{\beta(2p+1)} dx \right)^{1/\beta}.$$

The second integral converges if $\beta \leq D/(2p+1)$. Later on, we shall choose ν (and this will produce a limitation on p). Given $\alpha \in J$, there is $k \in \mathbb{Z}$ such that $x_{\alpha} \in B(y, 2^{k-1}) \setminus B(y, 2^{k-2})$. Let us observe (together with P. Hájlasz & P. Strzelecki, [16], p. 356) that $B_{\alpha} = B(x_{\alpha}, 6r_{\alpha}) \subset B(y, 2^{k})$. Moreover $r_{\alpha} \approx 2^{k}$ hence, by applying (8) with $x_{0} = y$, $r_{0} = 2^{k}$ and $x = x_{\alpha}$, $r = 6r_{\alpha}$

$$\frac{|B(x_{\alpha}, 6r_{\alpha})|}{|B(y, 2^{k})|} \ge C \left(\frac{6r_{\alpha}}{2^{k}}\right)^{D}$$

we get $|B_{\alpha}| \approx |B(y, 2^k)|$. In the end, when $2^{k-2} \ge diam(8B)$ the set $\{\alpha \in J : x_{\alpha} \in B(y, 2^{k-1}) \setminus B(y, 2^{k-2})\}$ is empty. Therefore

$$|A_{a}(y)| \leq C \sum_{2^{k} \leq 4 \operatorname{diam}(8B)} 2^{k} \left(\frac{1}{|B(y, 2^{k})|} \int_{B(y, 2^{k})} |X\phi|^{\nu} dx \right)^{1/\nu}$$

$$\times \left(\frac{1}{|B(y, 2^{k})|} \int_{B(y, 2^{k})} |X\phi|^{\beta(2p+1)} dx \right)^{1/\beta}.$$
(19)

Step 2. Rewriting the estimate (19) in terms of Riesz potentials.

Let us consider the abstract Riesz potentials

$$J_{h,q}^{\sigma,A}g(x) = \sum_{2^k \le 2\sigma \, diam(A)} 2^{kh} \left(\frac{1}{|B(x,2^k)|} \int_{B(x,2^k)} |g(z)|^q \, dz \right)^{1/q},$$

for h > 0, q > 0, $\sigma \ge 1$ and a bounded open set $A \subset \mathbb{R}^n$, and recall the *fractional* integration theorem (due to P. Hájlasz & P. Koskela, cf. [16], p. 351), that is

$$||J_{h,q}^{\sigma,A}g||_{L^{s^*}(A)} \leq C \left(\frac{diam(A)}{|A|^{D_1}}\right)^h ||g||_{L^s(V)}, \quad s^* = \frac{D_1s}{D_1 - hs},$$

where $V = \{ y \in \mathbb{R}^n : d_C(y, A) < 2\sigma \ diam(A) \}$, provided that h > 0, $0 < q < s < D_1/h$ and

$$|B(x,r)| \ge C \left(\frac{r}{diam(A)}\right)^{D_1} |A|, \quad x \in A, \ 0 < r \le 2\sigma \ diam(A).$$

Then

$$|A_a(y)| \le C(J_{1/2,\nu}^{2,8B}|X\phi|(y))(J_{1/2,\beta}^{2,8B}|X\phi|^{2p+1}(y)). \tag{20}$$

STEP 3. End of proof of Lemma 1.

By the Hölder inequality (with 1/D + 1/D' = 1)

$$\left| \int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \ dx \right| \leq \sum_{a} \|X \varphi\|_{L^{D}(B)} \left(\int_{B} |A_{a}(y)|^{D'} \ dy \right)^{1/D'}$$

(by (20) in Step 2)

$$\leq C \|X\varphi\|_{L^{D}(B)} \left(\int_{B} (J_{\alpha}|X\phi|)^{D'} (J_{\beta}|X\phi|^{2p+1})^{D'} dy \right)^{1/D'}$$

(again by the Hölder inequality, with $D'/s^* + 1/r' = 1$)

$$\leq C \|X\phi\|_{L^{D}(B)} (\|(J_{\nu}|X\phi|)^{D'}\|_{L^{s^{*}/D'}(8B)} \cdot \|(J_{\beta}|X\phi|^{2p+1})^{D'}\|_{L^{r'}(8B)})^{1/D'}.$$

At this point we may apply (twice) the fractional integration theorem (with A=8B, $D_1=D$, $\sigma=2$, h=1/2 and $q=\nu$ (respectively $q=\beta$)). Let us set $J_q:=J_{1/2,q}^{2,8B}$, for simplicity. Now, on one hand

$$||J_{\nu}|X\phi||_{L^{s^*}(8B)} \leq C \left(\frac{diam(8B)}{|8B|^{1/D}}\right)^{1/2} ||X\phi||_{L^{s}(V)}, \quad s^* = \frac{2Ds}{2D-s},$$

and on the other

$$||J_{\beta}|X\phi|^{2p+1}||_{L^{r^{*}}(8B)} \leq C\left(\frac{diam(8B)}{|8B|^{1/D}}\right)^{1/2}|||X\phi|^{2p+1}||_{L^{r}(V)}, \quad r^{*} = \frac{2Dr}{2D-r}.$$

We wish to have $r^* = s^*D'/(s^* - D') = 2Ds/[2s(D-1) - 2D + s]$ hence we must take r := s/(s-1) and request that 0 < v < s and $0 < \beta < s/(s-1)$. Summing up (by $||g^n||_{L^{m/n}} = (||g||_{L^m})^n$)

$$\left| \int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \, dx \right|$$

$$\leq C \frac{diam(8B)}{|8B|^{1/D}} ||X\varphi||_{L^{D}(B)} ||X\phi||_{L^{s}(V)} ||X\phi|^{2p+1} ||_{L^{s/(s-1)}(V)},$$

and the integrals in the right hand member are convergent if

$$D/(D-2p-1) \le s \le D. \tag{21}$$

At this point, we choose s := 2(p+1) (hence s/(s-1) = 2(p+1)/(2p+1)). The inequalities (21) are satisfied (because $0). With this choice of s we must have <math>\beta = Dv/[D(v-1) + v] < 2(p+1)/(2p+1)$ hence

$$2D(p+1)/[D+2(p+1)] < v < 2(p+1),$$

(again, such a choice of v is possible because p < (D-2)/2). Finally, note that $\||X\phi|^{2p+1}\|_{L^{s/(s-1)}(V)} = (\|X\phi\|_{L^{2(p+1)}(V)})^{2p+1}$ and $V \subset 100B$, hence

$$\left| \int_{B} X^{*} \cdot (\phi_{j} E_{i,j}) \varphi \ dx \right| \leq C \frac{diam(8B)}{\left| 8B \right|^{1/D}} \left\| X \varphi \right\|_{L^{D}(B)} (\left\| X \phi \right\|_{L^{2(p+1)}(100B)})^{2(p+1)}.$$

To end the proof of Lemma 1, let $R_0 > 0$ and consider a relatively compact subset $\Omega_1 \subset\subset \Omega$ such that $B(x, 400R_0) \subset \Omega$, for any $x \in \Omega_1$. For any $0 < r \le R_0$, from the definition of the homogeneous dimension⁵

⁵Cf. also Lemma 2.7 in P. Hájlasz & P. Strzelecki, [16], p. 350.

$$|8B| \ge C \left(\frac{8r}{400R_0}\right)^D |B(x, 400R_0)| \ge C(8r)^D (400R_0)^{s_d - D} \frac{|\Omega|}{(2 \operatorname{diam}(\Omega))^{s_d}}$$

where $s_d := \log_2 C_d$ and $C_d \ge 1$ is the doubling constant (on Ω , relative to the Lebesgue measure). In the end, $diam(8B)/|8B|^{1/D} \le C$, for some constant $C = C(\Omega_1, D, C_d, R_0) > 0$. The inequality (10) is proved.

References

- [1] M. Ara, Geometry of F-harmonic maps, Kodai Math. J., (2) 22 (1999), 243-263.
- [2] P. Baird & S. Gudmundson, p-Harmonic maps and minimal submanifolds, Math. Ann., 294 (1992), 611-624.
- [3] E. Barletta, Hörmander systems and harmonic morphisms, Ann. Sc. Norm. Sup. Pisa, (5) 2 (2003), 379-394.
- [4] E. Barletta, Subelliptic F-harmonic maps, Riv. Mat. Univ. Parma, (7) 2 (2003), 33-50.
- [5] E. Barletta & S. Dragomir & H. Urakawa, Pseudoharmonic maps from a nondegenerate CR manifold into a Riemannian manifold, Indiana University Mathematics Journal, (2) 50 (2001), 719-746.
- [6] J. M. Bony, Principe du maximum, inégalité de Harnak et unicité du probleme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19 (1969), 227-304.
- [7] L. Capogna & D. Danielli & N. Garofalo, An embedding theorem and the Härnak inequality for nonlinear subelliptic equations, Commun. in Partial Differential Equations, (9&10) 18 (1993), 1765-1794.
- [8] L. Capogna & D. Danielli & N. Garofalo, Subelliptic mollifiers and basic pointwise estimates of Poincaré type, Math. Z., 226 (1997), 147-154.
- [9] W. L. Chow, Über Systeme Von Linearen Partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105.
- [10] G. Citti & N. Garofalo & E. Lanconelli, Harnak's inequality for sum of squares plus potential, Amer. J. Math., 115 (1993), 699-734.
- [11] S. Dragomir, A survey of pseudohermitian geometry, The Proceedings of the Workshop on Differential Geometry and Topology, Palermo (Italy), June 3-9, 1996, in Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 49 (1997), 101-112.
- [12] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math., (2) 103 (1976), 395-416, 104 (1976), 393-394.
- [13] G. B. Folland & E. M. Stein, Estimates for the $\bar{\partial}_b$ -complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429–522.
- [14] B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Ann. Acad. Sci. Fennicae, 21 (1996), 31-50.
- [15] N. Garofalo & D. M. Nhieu, Lipschitz continuity, global smooth approximation and extension theorems for Sobolev functions in Carnot-Charathéodory spaces, Anal. Math., **74** (1998), 67–97.
- [16] P. Hájlasz & P. Strzelecki, Subelliptic *p*-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann., **312** (1998), 341–362.
- [17] M. C. Hong, On the conformal equivalence of harmonic maps and exponentially harmonic maps, Bull. London Math. Soc., 24 (1992), 488-492.
- [18] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 141-171.
- [19] D. Jerison & A. Sánchez-Calle, Subelliptic second order differential operators, in Complex Analysis III, Proceedings, Ed. by C. A. Berenstein, University of Maryland 1985–86, Lecture Notes in Math., Vol. 1277, Springer-Verlag, Berlin-New York, 1987.

- [20] J. Jost, Riemannian geometry and geometric analysis, Springer, Berlin-New York, 2002 (third edition).
- [21] J. Jost & C-J. Xu, Subelliptic harmonic maps, Trans. of A.M.S., (11) 350 (1998), 4633-4649.
- [22] J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. on Complex Analysis, Minneapolis, 1964, Springer-Verlag, New York, 1965, pp. 81–94.
- [23] J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. A.M.S., (1) **296** (1986), 411–429.
- [24] R. A. Macías & C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math., 33 (1979), 271-309.
- [25] A. Sánchez-Calle, Fundamental solutions and geometry of sums of squares of vector fields, Invent. Math., 78 (1984), 143-160.
- [26] R. S. Strichartz, Sub-Riemannian geometry, J. Diff. Geometry, 24 (1986), 221-263.
- [27] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math., 138 (1977), 219-240.
- [28] C-J. Xu & C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var., 5 (1997), 323-343.
- [29] Z-R. Zhou, Uniqueness of subelliptic harmonic maps, Annals of Global Analysis and Geomery, 17 (1999), 581-594.

Authors' address:
Università degli Studi della Basilicata
Dipartimento di Matematica
Contrada Macchia Romana
85100 Potenza, Italy

e-mail: barletta@unibas.it, dragomir@unibas.it