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ON THE REGULARITY OF WEAK SUBELLIPTIC
F-HARMONIC MAPS

By

Elisabetta BARLETTA and Sorin DRAGOMIR

Abstract. Building on work by L. Capogna & D. Danielli & N.
Garofalo (cf. [7]-[8]), G. Citti & N. Garofalo & E. Lanconelli
(cf. [10]) and P. Hajlasz & P. Strzelecki (cf. [16]) we study local
properties of weak subelliptic F-harmonic maps (cf. [4]) of a non-
degenerate CR manifold into a sphere S™, where p(t) = F'(t/2),
FeC? F(t)>0, F'(t)y>0, t>0. If Q< R" is a bounded domain
and X is a Hormander system on R”, we show that any weak
solution ¢ e WAI,’D (©,S™) to the nonlinear subelliptic system
—X" - (p(|1X¢|°)X$) = p(|X|*)| X $|? is locally Hélder continuous,
where D is a homogeneous dimension of Q with respect to X,
provided that /K < p(1) < Kt? for some 0 < p < (D —2)/2.

1 Subelliptic Harmonic Maps

Let Q be a domain in R”, n>2, and X := {X),..., X;} a system of vector
fields with smooth real coefficients defined on some open set U = R” with
Qcc U. Let us assume that X is a Hérmander system on U, ie. Xi,...,X;
together with their commutators up to a certain fixed length span the tangent
space T(U), for any x € U. The adjoint of X, = bjo/0x’ is given by X*(f) =
—0(b)f)/0x’ for f e Cl(U) and the Hormander operator is

H —Ek:X*X - § O (ai(x) 2
W= 2 At =2 aa (@ Mag)
a: l’]=

where a¥ =% bib/. Then a¥e C*(U) and a¥ is symmetric and positive
semidefinite, yet a’ might fail to be positive definite, hence H is a degenerate
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elliptic operator (in the sense of J. M. Bony, [6]). Given a Riemannian manifold
(N, h), covered by a single coordinate system (y!,...,»™): N — R™, a smooth
map ¢:Q — N is a subelliptic harmonic map if it is a critical point of the
functional

k
B)=3 |, (0t (Xet )ty 0 9) i, (1
a=1 ’

where ¢’ := y’ o ¢ and h; are the coefficients of & with respect to (y’). The notion
is due to J. Jost & C-J. Xu, [21]. The Euler-Lagrange equations of the variational
principle 6E(¢) =0 are

k
Hy¢' = Hp' +> (T}, 0 4)(Xa#')(Xag') =0, 1<i<m.
a=1

H is a subelliptic operator (in the sense of D. Jerison & A. Sanchez-Calle, [19],
p. 46) hence Hy¢ = 0 is a nonlinear subelliptic system of PDEs, thus motivating
the terminology in [2I]. By a classical result of L. Hormander (cf. [18]) H is
hypoelliptic and it is indeed a natural problem to extend existence and regularity
results known for elliptic PDEs (of a variational origin) to the hypoelliptic case.

The reason for studying subelliptic operators is provided by the function
theory in several complex variables. Indeed, let (M, T o(M)) be a CR sub-
manifold of C™!' and dp f =0 the tangential Cauchy-Riemann equations. In
order to develop a Hodge theory for the dj-complex one needs (cf. e.g. J. J.
Kohn, [22]) to consider the Kohn-Rossi laplacian [y = Om0}, + 04y0p and then
the principal part of —[Jj may be shown to be a subelliptic operator. To see
that J. Jost & C-J. Xu’s subelliptic harmonic maps are tied to the same circle of
ideas, assume M to be strictly pseudoconvex and consider the canonical S!-
bundle n: C(M) — M, cf. e.g. [1I], p. 104. Given a contact form 6 on M, the
total space C(M) carries a Lorentzian metric Fy, the Fefferman metric of (M, 6)
[cf. C. Fefferman, [12), for the case of a real hypersurface in C"*', and J. M. Lee,
[23], for an abstract (i.e. not necessarily embedded) strictly pseudoconvex CR
manifold]. Let {Xj,...,X2,} be a local orthonormal (with respect to the Levi
form G,) frame in the Levi, or maximally complex, distribution H(M) :=
Re{T, o(M) @® To,1(M)}, defined on a local coordinate neighborhood (U,¢) of
M. Then X = {(dp)X,:1 <a <2n} is a Hormander system on ¢(U) < R*"*!.
By a result of H. Urakawa et alt., [5], if ¢ : M — N is a smooth map into a
Riemannian manifold such that its vertical lift gox is an ordinary harmonic
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map (in the sense of B. Fuglede, [14]) of (C(M), Fp) into (N, h), then gop~!is a
subelliptic harmonic map (with respect to X). Moreover, this class of maps
consists (cf. [5]) precisely of the critical points (referred to as pseudoharmonic
maps in [5]) of the functional

E(¢) = %JM traceg,(mtp¢*h)0 A (d6)". (2)

Here we assume (for simplicity) that M is compact. Also ny¢*h denotes the
restriction of the bilinear form ¢*h to H(M)® H(M). See for a brief
introduction to CR and pseudohermitian geometry.

The function spaces suited for the study of solutions to Hy¢ =0 are the
Folland-Stein spaces (cf. G. B. Folland & E. M. Stein, [13])

Wy?(U) = {f e L’(U) : X,f € L?(U),1 < a <k},

where X, f is meant in distributional sense. As N is covered by a single chart the
space WAI,"’ (U,N) is also unambiguously defined (it consists of all ¢: U — N
such that ¢'e WAI,’P (U), 1 <i<m). Although the equations Hy¢ =0 are
nonlinear there is a naturally associated concept of weak solution, that is a map
¢: U — N such that ¢ € WXI’z(U,N), and

| o) ooy ax= | (o)X (X¢)pdx, 1<ism

for any ¢ e C°(U). Here, for two vector fields E = (Ej,...,E;) and F =
(F1,...,F) we set E-F =0"E,F,.

Given f e C°(Q,N)N Wy?(Q,N) such that f(Q) is contained in a regular
ball' B(p,r) = N, J. Jost & C-J. Xu have solved (cf. op. cit) the Dirichlet
problem Hy¢ =0, @|,o = f. It possesses a unique solution ¢ e WXI’Z(Q,N)D
L*(Q,N) such that ¢(Q) = B(p,r). Moreover, if 6Q is smooth and non-
characteristic’ for X and f is smooth then ¢ is continuous up to the boundary.
Z-R. Zhou has redefined (cf. [29]) subelliptic harmonic maps as the smooth
solutions ¢ : U — N to

%X;(mabxa«»'d—-y“”(r;/w)(Xaasf)(M) —0, l<i<m  (3)

YA ball B(p,r) = N is regular if r < min{n/(2x),i(p)}, where x? is an upper bound for the sectional
curvature of N and i(p) is the injectivity radius of pe N.

*The boundary 0Q is noncharacteristic for X if for any x € dQ there is ae{1,...,k} such that
Xa(x) ¢ T, (39).
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where 7y, is a positive definite symmetric matrix of smooth functions on U,
y = det(y,,) and y*y, =J,. Existence and continuity up to the boundary of the
solution to the Dirichlet problem for (3) may be treated as in [21]. Combining
this result with Theorem 1.1 of C-J. Xu & C. Zuily, [28], (dealing with higher
interior regularity for a class of quasilinear subelliptic systems which includes (3))
shows that solutions are actually smooth. Z-R. Zhou proves (cf. op. cit.) that two
solutions ¢,,¢,:Q — B(p,r) = N to (3) with the same boundary values
(#1ls0 = 91la0) actually coincide (¢; = ¢,). A moment’s thought shows that, while
Z-R. Zhou’s concept of a subelliptic harmonic map is more general than that of
J. Jost & C-J. Xu (as y, = Ja in [21]), both are but local manifestations of
the same global notion, that of a pseudoharmonic map. Indeed, given a non-
degenerate CR manifold M and a local frame (not necessarily orthonormal)
{X1,...,Xo,} of H(M) (defined on a coordinate neighborhood of M) the Euler-
Lagrange equations (locally written, with respect to {X,}) associated to the
functional (2) are precisely the equations (3) (with y, := Gg(Xy, X3)).

When X, = 0/0x? 1 < a < n, a critical point of (1) is an ordinary harmonic
map (cf. e.g. J. Jost, [20], p. 389) ¢ : U — N. Then, in analogy with p-harmonic
maps (cf. e.g. P. Baird & S. Gudmundson, [2]), P. Héjlasz & P. Strzelecki’s
notion (cf. [16]) of a subelliptic p-harmonic map ¢ :Q — S™, that is a critical
point of the functional

Ey($) = jg X7 d,

appears as quite natural (here Q < R" is a bounded domain and |X ¢|2 =
Zf:, |X.¢|?, for a given Hérmander system X = {X,} on R"). P. Hajlasz &
P. Strzelecki prove (cf. op. cit.) the local Holder continuity of every subelliptic
D-harmonic map ¢ € W}(’D (Q,S™), where D is a homogeneous dimension of Q
(with respect to X). The subelliptic analog to the exponential harmonic maps (cf.
e.g. M. C. Hong, [17]) has not been studied, so far.

Building on ideas due to M. Ara, [1], and K. Uhlenbeck, [27], the first named
author has considered (cf. [4]) F-pseudoharmonic maps ¢ : M — N of a (compact)
strictly pseudoconvex CR manifold M into a Riemannian manifold N, defined as
critical points of the functional

Er(g) = JMF(% traceg,,(nyqﬁ*h))ﬁ/\ (d0)", (4)

where F:[0,00) — [0,00) is a C? function such that F’(¢) > 0. The Euler-
Lagrange equations of the variational principle dEp(@) = 0 are (cf. [4])
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2n

div(p(QVH4') + Y p(Q)(T, 0 4)(Xat’) (Xap”) = 0, (5)

a=1

p(t) :=F'(¢t/2), Q := traceg,(nud*h),

where {X,} is a local Gy-orthonormal frame of H(M). The divergence operator is
defined with respect to the volume form ¥ := 6 A (d6)", that is Zx¥ = div(X)¥
for any C! vector field X on M, and V¥u := nyVu, for any ue C!(M), where
Vu is the gradient of u with respect to the Webster metric gy (cf. e.g. [11])

go(X,Y) = Go(nyX,ngY)+60(X)0(Y), X,YeT(M),

and ng: T(M)— H(M) is the projection associated to the direct sum de-
composition T (M) = H(M) ® RT. Here T is the characteristic direction of do,
i.e. the unique (globally defined) vector field on M determined by 6(7') = 1 and
T |df =0. When N = S™ the equations (5) become (by also taking into account
the (local) expression of div with respect to {X,})

—ZX* = p(Q)¢|1X g, 1<i<m, (6)
2n m+1
1Xg|? : ZZX = y" o4,
a=1 A=

where (y4) are the Cartesian coordinates on R™*!. The adjoint X ~ 1s with respect
to ¥, ie. [uX;v¥ = —[(Xu)v¥, for any ue C and ve C*. Taking into
account the constraint 37! ¢2 = 1 (where ¢, = ¢4) it follows that ¢, satisfies
(6) as well.

Our purpose in the present paper is to start a study of the regularity of weak
solutions to (6). In the spirit of P. Hajlasz & P. Strzelecki, [16], we first deal with
the problem where ¢ : Q — N, for some bounded domain Q < R”". Then, cor-
responding to (4) and (6) we have

Er(g) = JQF(-;—MP) dx

X" (p(1 X811 X9) = p(|Xo|*)p| X ¢)". (7)

Compare our (7) to (0.1) in K. Uhlenbeck, [27]. Note that when F(z) := (2£)7/%,
t>0, and m=1 the left hand side of (7) becomes %,4, where ZL,u=
—X* - (|Xu|" ") Xu) is the subelliptic p-Laplacian in [T]. L. Capogna & D. Danielli
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& N. Garofalo were (cf. op. cit.) the first to study regularity properties of weak
solutions to (a single equation) ZL,u = 0.

We shall need the Carnot-Carathéodory distance dc(x,y) defined as the
infimum of 7 > 0 for which there is an absolutely continuous curve C: [0, T] —
R" such that C(1) = Zle fo(6)Xa(C(2)), for some functions f;(z) satisfying
Zleﬁ,(t)z <1, and C(0)=x, C(T)=y, x,y e R". Also, for a bounded open
set Q — R" we recall that a number D is a homogeneous dimension with respect to
X if there is a constant C > 0 such that

BeAl o\
[Blxo, r0)] = C(ro) ’ (®)

for any ball By = B(xo,r9) of center xoeQ and radius 0 < ry < diam(Q),
and any ball B = B(x,r) of center xe By and radius 0 <r <ry. Here B=
{yeR":dc(x,y) <r} is a metric ball and diam(Q) is the diameter of Q with
respect to dc. Also |4| denotes the Lebesgue measure of the set 4. Clearly, any
D’ > D is a homogeneous dimension of Q, as well. Our result is

Tueorem 1. Let X = {Xy,..., Xy} be a Hormander system on R" such that
each X, = b0/0x* has components b2 (x) which are globally Lipschitz on R". Let
Q < R" be a bounded domain and D a homogeneous dimension of Q relative to X.
Assume that t?/K < p(t) < Kt?, for some constant K >1 and some 0 < p <
(D—2)/2. Let € WyP(Q,S™) be a weak solution to the nonlinear subelliptic
system (7). Let Ry >0 and Q) =< Q such that B(x,2Ry/t) = Q for any x € Qy,
7:=1/200. There is A€ [1/2,1) and 0 < ry < Ry such that

b= X0 dy< O, i (g 1/ log )
for any xeQy and any 0 <r <ry. Consequently, if 2 < A< tP=2rD then
¢ € SX4Q) with o :=1+ (y — D)/(2p +2), hence ¢ is locally Hélder continuous.

loc

The assumption that X, have globally Lipschitz coefficients guarantees (by Prop.
2.8 in N. Garofalo & D. M. Nhieu, [15]) that a subset in R" is bounded with
respect to dc if and only if it is bounded with respect to the Euclidean metric?.
The Holder like spaces (associated to the given Hérmander system) in
are given by

3If a set 4 is bounded with respect to the Euclidean metric then A4 is dc-bounded, yet the converse
fails, in general.
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x,yeQ dC(x> y)a

S§%*(Q) = {feLoo(Q): sup l~f(x)—_f(—Jﬂ<oo}, O0<a<l.

Folland-Stein spaces may be defined on a (not necessarily compact) strictly
pseudoconvex CR manifold, as well. For instance, let W},’p (M) be the completion
of {ue C*(M)NLP(M):V#ue LP(H(M))} with respect to the norm

lell i = lleall Lo + 11V 70|,

where

il = ([ utro <d0>")l/p, X1 = (| 6utxx7201 <de>")””.

Of course LP(M) (respectively LP(H(M))) is the completion of CP°(M)
(respectively of T'(°(H(M))) with respect to the norm || - ||,,. Also, an analog of
the Carnot-Carathéodory metric is available on any strictly pseudoconvex CR
manifold M. Let us briefly recall its construction (under the conventions of R. S.
Strichartz, [26]). The Levi form

Go(X,Y) := (dO)(X,JY), X,YeH(M),
J:HM)— HM), J(Z+2Z):=vV-UZ~-2Z), ZeT (M),

is a sub-Riemannian metric on H(M) (cf. [26], p. 225) and H(M) satisfies the
strong bracket generating hypothesis (as 0 is a contact form, cf. [26], p. 229) hence
the study of (M, H(M), Gy) lies within sub-Riemannian geometry. A piecewise C!
curve y: I — M, where I = R is an interval, is lengthy if () € H(M),,, for
every t €l where y(¢) is defined. Let g(x) : T}(M) — H(M),, x € M, be the R-
linear map defined by Gy (g(x)a, X) = a(X), for any a € T}(M) and X € H(M)..
Then Ker(g(x)) = H(M)i, xeM. A piecewise C° curve ¢: 1 — T*(M) is a
cotangent lift of (the lengthy curve) y if &(2) e Ty, (M) and g(y(2))<(1) = 3(2),
for every ¢ (where defined). Any such ¢ descends to a (well defined) map I —
T*(M)/H(M)" (the uniqueness of piecewise C° cotangent lifts modulo sections of
H(M)"). The length of a lengthy curve y is

£() = j CE(), g ()W dr,

where {a,v) = a(v), ae T}(M), ve Tx(M). The definition of #(y) does not
depend upon the choice of a cotangent lift of y. The distance dg(x, ») between
two points x, y € M is the infimum of the lengths of all lengthy curves joining x
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and y (that such curves exist is a classical theorem of W. L. Chow, [9]). We refer
to ds as the Strichartz distance on (M,0).

While we deliberately made use of the language of sub-Riemannian geometry
(to emphasize that CR geometry embeds there) we must nevertheless observe that
the Webster metric gg is a contraction of the sub-Riemannian metric Gy (Gy is
an expansion of gg) hence a lengthy curve has the same length in (M, gy).
In particular, if dg is the Riemannian distance (associated to (M,gy)) then
dr(x,y) <ds(x,y), for any x,ye M. The metrics dg and ds define the same
topology on M (cf. [26], p. 230) yet they are not equivalent metrics.

A number D is called a homogeneous dimension of (M,0) if there i1s a
constant C > 0 such that (8) holds for any ds-balls By of radius ryp and B of
center x € By and radius r < ry. The Lebesgue measure of the sets appearing in
(8) is replaced by their Riemannian volume in (M, gg). Let D(M) be the smallest
such D (the homogeneous dimension of (M,#)). If M has finite diameter (with
respect to the Strichartz distance ds) and the Riemannian measure (associated to
gs) has the doubling property then (by Lemma 2.7 in [I6]) a homogeneous
dimension of (M, #) exists. It is unknown whether D(M) is a CR invariant. The
(3-dimensional) Heisenberg group H) = C x R, with the CR structure spanned by
0/0z +iz0/ 0t (the Lewy operator) and the contact form 6 = dt + (i/2)(z dz — Z dz),
has homogeneous dimension D(H;) = 4 (cf. e.g. [16], p. 349). We conjecture that
each weak solution ¢ € Wy ?(M,S™) to the nonlinear subelliptic system (6) with
p(1) = DP~2/2 t > 0 (where D is a homogeneous dimension of M) is smooth.

2 A Caccioppoli Type Estimate

C > 0 denotes a generic constant (which may change even within the current
computation). If C > 0 is a constant then CB(xp,r) is the ball B(xo, Cr). Also,
by r~s we mean r/C <s < Cr, for some C > 1. To start the study of weak
solutions ¢ to (7) with the constraint }:,’ﬁl ¢? =1, we set Vi, :=p(Q)X.d;,
l<a<k, and V;= (Vi1,...,Vik). Then

m+1
Vi=Y_ (Vi 6:V)),
j=1
merely as a consequence of the constraint. Next, we set E; ; := ¢,V; — ¢;V; and
then (7) implies
X*'Ei,j=0, 1<i,j<m+1. (9)

Indeed, for any ¥ € Cp°
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k

@y ax =3 | X Twdx= =3 | 470x ds

a=1 a

- Zj 0) (X)) Xald) — WX dx
- ZJX; (O Xub ) dx + S [wr@ gy et

by (7)) = JP(Q) [“_' 09, + Z(Xa¢i)(Xa¢j):| Y dx

hence X* - (¢,V;) is symmetric in i, j, which yields (9). The identity (9) implies the
following

LeMMA 1 (The duality inequality). Let Q < R" be a bounded domain
and X, = b10/0x* a Hérmander system on R" with bl(x) globally Lipschitz. Let
Ry >0 and Q) == Q such that B(x,400Ry) = Q, for any xe€Q,. Let B=
B(xy,r), x0 € Qi, be a ball such that 0 <r < Ry and ¢ € W;,’D(B) a function of
compact support. Then

JB X* - (¢E; )¢ dx| < CK||IX0|| o) (I XSl 2r2(1008) 7 (10)

for some constant C = C(Qy, D, C4,Ry) > 0, provided that p(t) < Kt?, t > 0, for
some K >0 and 0 < p < (D -2)/2.

Aside from some additional technical difficulties (e.g. one applies twice the
fractional integration theorem), the proof of Lemma 1 is similar to that of
Lemma 3.2 in P. Hajlasz & P. Strzelecki, [16], p. 354. We give a proof of Lemma
1 in Section 3. To prove Theorem 1 we fix Q; c= Q and Ry > 0 as in Lemma 1.
Taking the dot product of V; = Zm“ ¢,E;; with X* we get

m+1

X (p(Q)X¢) = X*-(4Ei)),
j=1

(a consequence of the constraint alone) and integrating over 2B [where
B = B(x,r), xeQy, 0 <r < Ry against ; :=#n(¢; — (¢;),5), where 0 <n < 1lis a
smooth cut-off function such that # =1 on B, # =0 on Q\2B, and |X%n| < C/r

m+1
|2 @xspw =3 [x - @i (11)

J=1



426 Elisabetta BARLETTA and Sorin DRAGOMIR

The left hand side may be also written
|2 @x090,x = - [ @X0) - (X0 ax

=~ [ (@40 (X8, - (B)20) + n(x0))

hence becomes (by summing over 1 <i<m+1)
m+1
J, rer@ e+ 3 [ p(@6i~ o4 - (X ax

—ZJ - (§,Eij)¥; dx.

Consequently
| o ax<| noo@as
B 2B

< 32,106~ @l X6 i+ S 11

where
Ii,j = J X*. (¢JE"])l/,’ dx.
2B

Moreover, by |X¢,| <|X¢|=Q'? and by the Holder inequality (with
/R(p+1Dl+1/g=1)

L Op(Q)dx <} LB Q'?p(Q)| Xl 1¢; — ($:)25 dx + D _ |1 ]
i , i,j

)1/[2(P+1)]

< S+ ([ 18- @0
ij i

@p+1)/2(p+1)]
x(j (Q‘/Zp(Q)IXHI)Z("’“)/(Z”“))
2B\B

At this point, we may apply the Poincaré inequality
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1/s 1/s
(J lu — uppl|’ dx) < Cr(J [ Xul|® dx) , 1 <s<oo,
2B 2B

and Lemma 1 (with ¢ replaced by ;) so that to get

| oo axsey (] warena)
X < ; X
B P i 2B '

2p+1)/2(p+1)]

(
9 J (0V2p(Q)) X P+1/Cr+1) gy +3 14
2B\B i,j ,

1/R2(p+1)] (2p+1)/2(p+1))]
< C(J Qp+1 dx) <J (QP(Q)Z)(PH)/(ZPH) dx)
2B 2B\B

2
+ CZ “X‘/’i“LD(:zB)(||X¢||L2p+2(2003))Zp+ :

By p(f) < Kt? we have

(2p+1)/[2(p+1)]
|, en@ryryre ax
2B\B

(
< K(J | Xg| 2+ dx)
2B\B

Now we may use #’/K < p(f) to estimate [ Qp(Q) dx by below, and the in-
equality

2p+1)/2(p+1)]

Z | X¥ill o) < Cll XYl Lo0p) (12)
to obtain
(1) < ClL (20" (1 (2r) - 1 () e/
+ | Xl o (25)25(200r)], (13)
where

L(r) = J | X |1 dx.

B(x,r)

As to [12), it follows from
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(8)28)lLo2m) + 11X &l Lo (2m))

Z 1X¥illop) < Z(uo{n)((»
=2j:(LB X/l - (¢,->23|Ddx)l/D+Z(J P 1X ) )'/D ix

< £32(, 1 @oal” )"+ S ([, e #) "

r

(by the Poincaré inequality)

1/D
SC(J |X¢|Ddx> dx.
2B

Using we may establish

LEMMA 2. There are ro >0 and A€ [1/2,1) such that
I(r) < AL,(200r), (14)

for any 0 <r <ry.

The proof is by contradiction. Assume that for any ro > 0 and any A€ [1/2,1)
there is 0 < r < ry such that AI,(200r) < I,(r). Then (by [13))

AL, (200r) < I,(r)
< ClL2n) Y #(L,2r) — L) # T ® D 4 (1X |l Lo o515 (200)]
< C[L,(200r) (1 = )P+ X G| 5 55 1,(200r)]

That is

<i<C[(1- l)(2p+l)/(2p+2)._i_ ||X¢||LD(2B)]-

N -

Consequently, for any ro > 0 there is 0 < r < ry such that

1Y < [ 1xa
2C) 7 )
Indeed, let A,e[1/2,1), 4, —» 1 as v— oo, and 0 <r, <ry correspondingly.

By eventually passing to a subsequence, we may assume r, — Fo, as v — 0O
_zv)(2P+1)/(2P+2)+

for some 0 <r, <rp. Let us take v— o0 in 1/2 < C[(1
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( »[B(X,er) 1X¢|” dy)'/P]. Then we may use the Vitali absolute continuity of the
integral to conclude that either r,, > 0 and then we get the desired inequality, or
ro =0 and then 1/2 <0, a contradiction. In particular, for ry = 1/k there is
0 <r<1/k such that

1) J D
=] < Xo|” dy < J
(2C> B(x,2r) I ’ B(x,2/

)

1 X¢|° dy
%)

and (again using absolute continuity) the last integral goes to 0 as kK — oo, a
contradiction. Lemma 2 is proved. ‘

The inequality (14) may be written I,(tr) < AL(r), where 7= 1/200.
Therefore I,(t™r) < A"I,(r), for any integer m > 1. The following argument
(leading to the estimate [15)) is standard. Details are for the sake of com-
pleteness. {(z™, 7™ !]:m > 1} is a cover of (0,1] hence 7 < r/ry < "1, for
some m > 1. Now r < " 1ry yields

L(r) < L,(z"'ro) < A" I(ro).

Let us set y := (log 4)/(log 7) (then 0 < y < 1, because of A > 1/2 > 7). On the
other hand r/ro = 7™ yields

?
(L) o gmy _ f(logi™)/(loge) _ ym.
Yo

Then A™™' < (r/ry)? /4 where from
m—1 1L/rY \
L(r) < A" L(n) << (=) L(ro) = Cr7,
A ro

(where C = I,(ro)/(4r})). We have obtained

[, oo ar < o (15)

which is the (Caccioppoli type) estimate sought after. To end the proof of
Theorem 1 we need to recall (cf. Prop. 2.1 in C-J. Xu & C. Zuily, [28], p. 326)
the following result. Let u e L?(Q). Then the following two conditions are
equivalent i) u e S,(();C“(Q), and ii) there are constants ro > 0 and C > 0 such that

for any 0 <r <ry and any x € Q such that B(x,2r) = Q one has

J 4(3) — upgen|? dy < C|B(x, P)r™.
B(x,r)
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By the Poincaré inequality

oo B0V = GOl s [ X9

(x,7)

by the Holder inequality (with 1/(p+1)+1/g=1)

1/(p+1)
sCrz(JB( )1X¢|2"+2 dy) |B(x, r)|P/ @)
X,r

by and by the definition of homogeneous dimension
< Cr}|B(x, r) P/t Dpr/ o) < C|B(x, ) |1,

where o :=1+ (y — D)/(2p + 2). Now « > 0 provided that p > (D —2)/2 —y/2,
and « < 1 when D > y, which holds as D is tacitly assumed to be large (usually D
is larger than the Euclidean dimension). is proved.

3 The Duality Inequality

It suffices to prove Lemma 1 for ¢ € C5°(B). Since the proof is fairly long, we
organize it in several steps, as follows. For any bounded domain Q < R” and any
ue C°(Q) one has the representation formula

u(x) = JQ(XyG(y,x)) (Xu(y) dy, xeQ, (16)

where G(x, y) is the Green function* of H on Q. By a result of G. Citti & N.
Garofalo & E. Lanconelli, [10], we may construct a smooth cut-off function #,
such that 7, =1 on 2B, 5, =0 on Q\4B and |X7,| < C/diam(B). The diameter
of a set is meant with respect to dc. Then, using (with u = ¢)

JBX* (@;Ei j)p dx = JBX* - (@;Ei j)ong dx

B “( emen s GE)EMDXG(0)) - (X0(y)) dxdy,
x,y)€Bx
hence

j X* - ($,Es ) dx = j A-(Xp) dy,
B B

*The existence of the Green function is well known to follow from the hypoellipticity of H and Bony’s
maximum principle (cf. J. M. Bony, [6).



On the regularity of weak subelliptic F-harmonic maps 431

where

A(y) = jBX* - (4,E1.) (X)10(x) X, G(, %) d.

SteEP 1. A bound on |A.(y)|.

Let ye B and let {6,},., be a smooth partition of unity associated to a
Whitney decomposition of Q, :=Q\{y}. Precisely, for xeQ, we set r,:=
dc(x,R"™\Q,)/1000 and choose, among {B(x, "x)}xeq,» @ maximal family of
mutually disjoint balls {B(xy,7s)},e; (hence Q, =), _; B(xa,3r,) and there is
N =1 such that each x € Q belongs to at most N balls B(x,, 6r,)). Then we may
consider a family of smooth functions {6,},., such that 0 < 6, <1, 3 _, 0, =1
on Qy, supp(0,) < B, := B(x,,6r,) and |X6,| < C/r, (cf. e.g. R. A. Macias & C.
Segovia, [24], for a general approach within the framework of metric spaces
endowed with a Borel measure. To get the bounds on the gradients one also uses
a result of G. Citti & N. Garofalo & E. Lanconelli, [10]). Then

Aa<y>=zj (B0 ) (D0 (X)0a(x) Xy Gl 3, %) dx

(by (9)) =Zj X* (8 = (8) 5,1 Es s (X)10(%)00 (%) Xy G, %) dx,
ael «
where (4;)p = (1/|B|) [5, #;(x) dx. Next

40 == jBa[¢j—<¢j>B] By j(%) - Xe(10(x)0u(x) X, G( 3, %)) d.

ael

By a result of A. Sanchez-Calle, (for n > 2)

dc(x, y) x C
Bx de(x,y))” XX < B G

for any x,y € Q (and it is irrelevant whether differentiation is with respect to x
or y). Using also [X7y(x)| < Cdc(x,y)™" and |X6,(x)| < Cdc(x, y)™}, ael, we
obtain

1 X.G(x,y)| < C

< C
~ |B(y,dc(x, y))]

| X< (10(x)0 (%) X, G (3, X))

hence

40 = @)a Byl
y"<c§f ]IB(y,dc(x o) (17)
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Note that
|B(y,dc(x,))| 2 C|Ba|, x € By (18)

Indeed, dc(x,x,) < 6r,. On the other hand, dc(y,x,) = 1000r,, from y € R"\Q,
and the very definition of r,. Hence 1000ry < dc(y,xy) < dc(x,y) +dc(x,x,) <
dc(x, y) + 6ry, that is r, < dc(x, y)/994 or 6r, < dc(x, y). This yields |B(y, 6r,)|
< |B(y,dc(x, y))|. Moreover |B(y,6ry)|/|B(x4,6ry)| = C, as a consequence of (8).
Corhbining the last two inequalities leads to [18). Let us consider the set of
indices J := {a € I : supp(6,) N4B # F}. By (17)—(18) and the Hélder inequality

(with 1/v*+1/8=1)

4601 5 €| 19,09~ ()] 1Bui

aeJ

<X (gl 190 - @nl” )" (], 12 )

ael

Next, we need to apply the Sobolev inequality, in the form stated for instance
by G. Capogna & D. Danielli & N. Garofalo, [8]. Precisely, given 1 < p < D
there is a constant C > 0 such that for any ball B = B(x,r) with xe Q and
0 < r < diam(Q) one has

1 . 1/p* 1 1/p Dp
_ _ p < _ p * T4
(B,[B |u — up| dx) < Cr(BJB | Xu| dx) , P=g —

(where D is a homogeneous dimension of Q relative to X). Let us choose
v*:= Dv/(D —v) (hence f=v*/(v* —1)=Dv/[D(v—1)+v]) with 1 <v<D.
Then (as X,¢;€ L")

on =gl mo ) (o)

ael

Note that (by the very definition of E; ;) one has |E; ;| < 2p(Q)|X¢|. Therefore,
using also p(Q) < KQ”*

ael

The second integral converges if § < D/(2p + 1). Later on, we shall choose v (and
this will produce a limitation on p). Given o € J, there is k € Z such that x, €
B(y,2F"D\B(»,2%72). Let us observe (together with P. Héjlasz & P. Strzelecki,
[16], p. 356) that B, = B(x,, 6r,) = B(y,2%). Moreover r, ~ 2* hence, by applying
(8) with xp = y, ro = 2% and x = x,, r = 6r,
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| B(x4, 672)] > C % ’
|B(»,25)| 2k

we get |By ~|B(y,2¥). In the end, when 22> diam(8B) the set
{aed :x, € B(y,25")\B(y,2%¥72)} is empty. Therefore

1/v
1
()| < C (b | |X¢|de>
’ 2ks4%a:m(85) |1B(, 2 ) gy,219

. { 1/8
X | —— Xg|P% D gy | 19
(|B<y,zk>|L@,2k)‘ | (19)

STeEP 2. Rewriting the estimate (19) in terms of Riesz potentials.

Let us consider the abstract Riesz potentials

1/q
1
Titem = Y zkh(—J Ig(Z)l”dz>,
N 2k <20 diam(A) |B(x,2%)] J p(x,2%)

for h>0,g>0,0>1 and a bounded open set 4 = R", and recall the fractional
integration theorem (due to P. Hajlasz & P. Koskela, cf. [16], p. 351), that is

h
diam(A) Dys
O,A *
”Jh,q g||Ls*(A) = C( ,Alpl ) lg Ls(v)y S ~ D, —hs’

where V ={yeR" :dc(y,A) < 20 diam(A)}, provided that 1 >0, 0 <g<s<
D;/h and

B>

D,
r -
W) |4], xe€A,0<r<20diam(A4).

Then
[4a()] < CUTSEIXI(2) (7351 X417 (). (20)
Step 3. End of proof of Lemma 1.

By the Holder inequality (with 1/D+1/D'=1)

UEX* (e d| = 3 WXeluoce (JB 4a(0)|” dy)w

(by in Step 2)

) , 1/D’
< CllXpllos (L(Jawo” sl x 2P dy)
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(again by the Holder inequality, with D'/s* +1/r' = 1)

< ClX0llogay (NHIX ) | 1o s - | (Tl X7 H)P

At this point we may apply (twice) the fractional integration theorem (with
A=8B, Di=D, 6=2, h=1/2 and g=v (respectively g = f)). Let us set
Jg = le/’il;, for simplicity. Now, on one hand

1 !
IL”(BB)) /P .

1/2
diam(8B) «_ _2Ds
Xl | Lo 88) < C( 18B|"/P ) X6y, 5" =755

and on the other

151X g%

1/2
diam(8B) 2p+1 . 2Dr
L 8B = C(w) XS My, 7 =55

We wish to have r* = s*D’/(s* — D') = 2Ds/[2s(D — 1) — 2D + 5] hence we must
take r := s/(s — 1) and request that 0 < v < s and 0 < f < s/(s — 1). Summing up
(by g™l Lmm = (llgllL=)")

U X" (§,E.))p dx
B

diam(8 B)

2p+1
W X0l Log) 1 XDl s | XS Nl Lorisn vy

and the integrals in the right hand member are convergent if
D/(D-2p—-1)<s<D. (21)

At this point, we choose s :=2(p + 1) (hence s/(s—1) =2(p+1)/(2p +1)). The
inequalities are satisfied (because 0 < p < (D —2)/2). With this choice of s
we must have = Dv/[D(v—1)+v] <2(p+1)/(2p+ 1) hence

2D(p+1)/[D+2(p+ 1) <v<2(p+1),

(again, such a choice of v is possible because p < (D — 2)/2). Finally, note that
I |X¢|2p+1“Ls/(s—l)(V) = (”X¢”L2(P+1)(V))2p+l and V' < 100B, hence

diam(8B)
WD_ 1 X0l Loy (1 XSl Latr+1 (1008)

To end the proof of Lemma 1, let Ry >0 and consider a relatively compact
subset Q; c< Q such that B(x,400R,) < Q, for any x € Q;. For any 0 < r < Ry,
from the definition of the homogeneous dimension’

HBX* ($;Eij)p dx| < C )2 +D)

5Cf. also Lemma 2.7 in P. Hajlasz & P. Strzelecki, [16], p. 350.
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8r \” D -b €2
B T " G dam(@)”
|8B| > C<4OOR0) |B(x,400R0)| = C(8r) " (400Ry) (2 diam(Q))™

where s;:=1log, C; and C; > 1 is the doubling constant (on Q, relative to
the Lebesgue measure). In the end, diam(8B)/ [8B|1/ P < ¢, for some constant

C =

[1]

[6]
(7]

(8]
[9]
(10]

(1]

12]
(13]
(14]

(15]

[16]
[17]
18]

[19]

C(Q,D,Cy4, Ry) > 0. The inequality is proved.
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