RIEMANNIAN MANIFOLDS STRUCTURED BY A LOCAL CONFORMAL SECTION

By
Filip Defever and Radu Rosca

Abstract

Geometrical and structural properties are proved for manifolds which are structured by the presence of a local conformal section.

1 Introduction

Let (M, g) be an n-dimensional Riemannian manifold and let $\mathcal{O}=$ $\operatorname{vect}\left\{e_{i} \mid i=1, \ldots n\right\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{i} \mid i=1, \ldots n\right\}$ be its associated coframe. Let $\alpha=\sum_{i=1}^{n} t_{i} \omega^{i}$ be a globally defined 1 -form and let $\mathscr{T}=\alpha^{\#}$ be its dual vector field. If the connection forms θ associated with \mathcal{O} satisfy

$$
\left\langle e_{i} \wedge e_{j}, \mathscr{T}\right\rangle=\theta_{j}^{i}
$$

we say that M is structured by a local conformal section \mathscr{T}.
In the present paper, we prove that in this case \mathscr{T} is a concurrent vector field [2] which satisfies

$$
\nabla_{Z} \mathscr{T}=\rho Z, \quad Z \in \Xi(M), \rho \in C^{\infty}(M) .
$$

In consequence of this fact, \mathscr{T} is both a conformal vector field (with ρ as conformal factor) and an exterior concurrent vector field [12]. Moreover, in Section 3 the following properties are also proved:
(i) the dual form, the connection forms, and the curvature forms associated with \mathcal{O} are $d^{-\alpha}$-exact, $d^{-2 \alpha}$-exact, and $d^{-4 \rho \alpha}$-exact, respectively;
(ii) \mathscr{T} commutes with the dual vectors and the connection forms θ;
(iii) the divergences of e_{i} constitute an m-dimensional eigenspace of Δ, corresponding to the eigenvalue $-((n+1) / 2) \rho$;

[^0](iv) the scalar curvature S of M is expressed by
$$
S=-\frac{n^{2}+n-2}{2} \rho
$$
(v) if \mathscr{U} is any parallel vector field, then through Weitzenbock's formula [10] one finds that $g(\mathscr{T}, \mathscr{U})$ is an eigenfunction of Δ.
Next, in Section 4 we study some properties of the Lie algebra of infinitesimal transformations induced by \mathscr{T} and prove:
(i) \mathscr{T} defines an infinitesimal conformal transformation of S and of the function $g(\mathscr{T}, Z)$, for $Z \in \Xi(M)$, which means that
$$
\mathscr{L}_{\mathscr{T}} S=\rho S, \quad \mathscr{L}_{\mathscr{T}} g(\mathscr{T}, Z)=\frac{2 n-3}{n-1} \rho g(\mathscr{T}, Z)
$$
(ii) we denote by V, μ, ψ, and L, the canonical vector field, the Liouville 1form [4], the canonical symplectic form on $T M$, and the operator of Yano and Ishihara, respectively; then ψ is a Finslerian form [4] which is invariant by \mathscr{T};
(iii) the complete lift Ω^{C} of the symplectic form Ω of M is also conformally symplectic on $T M$;
(iv) the complete lift α^{C} of $\alpha=\mathscr{T}^{\text {b }}$ is also an exact form.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor. We assume in the sequel that M is oriented and that the connection ∇ is symmetric.

Let $\Gamma T M=\Xi(M)$ be the set of sections of the tangent bundle $T M$, and

$$
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \#: T M \stackrel{\#}{\leftarrow} T^{*} M
$$

the classical isomorphisms defined by the metric tensor g (i.e. ${ }^{b}$ is the index lowering operator, and ${ }^{\#}$ is the index raising operator).

Following [10], we denote by

$$
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right)
$$

the set of vector valued q-forms $(q<\operatorname{dim} M)$, and we write for the covariant derivative operator with respect to ∇

$$
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M)
$$

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=d \circ d=0$.

Furthermore, we denote by $d p \in A^{1}(M, T M)$ the canonical vector valued 1form of M, which is also called the soldering form of M [3]; since ∇ is assumed to be symmetric, we recall that the identity $d^{\nabla}(d p)=0$ is valid.

The operator

$$
\begin{equation*}
d^{\omega}=d+e(\omega) \tag{1}
\end{equation*}
$$

acting on ΛM is called the cohomology operator [5]. In (1), $e(\omega)$ means the exterior product by the closed 1 -form ω, i.e.

$$
d^{\omega} u=d u+\omega \wedge u
$$

with $u \in \Lambda M$. Clearly one has the identity

$$
\begin{equation*}
d^{\omega} \circ d^{\omega}=0 \tag{2}
\end{equation*}
$$

A form $u \in \Lambda M$ such that

$$
\begin{equation*}
d^{\omega} u=0 \tag{3}
\end{equation*}
$$

is said to be d^{ω}-closed, and ω is called the cohomology form.
A vector field X which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla X)=\nabla^{2} X=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{4}
\end{equation*}
$$

is defined to be an exterior concurrent vector field [12]. The 1 -form π in (2) is called the concurrence form and is defined by

$$
\begin{equation*}
\pi=\lambda X^{b} \tag{5}
\end{equation*}
$$

where $\lambda \in C^{\infty}(M)$ is a nonzero conformal scalar associated with X. If \mathscr{T} is any conformal vector field on M, which means that

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} g=\rho g \Leftrightarrow\left\langle\nabla_{Z} \mathscr{T}, Z^{\prime}\right\rangle+\left\langle\nabla_{Z^{\prime}} \mathscr{T}, Z\right\rangle=\rho\left\langle Z, Z^{\prime}\right\rangle \tag{6}
\end{equation*}
$$

then it follows that

$$
\begin{equation*}
\rho=\frac{2}{n} \operatorname{div} \mathscr{T} . \tag{7}
\end{equation*}
$$

Therefore, in application of Orsted's lemma [1] one can write

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} Z^{b}=\rho Z^{b}+[\mathscr{T}, Z]^{b}, \tag{8}
\end{equation*}
$$

where [,] stands for the Lie bracket. If S is the scalar curvature of M, then Yano's formula [15] reads

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} S=(n-1) \Delta \rho-S \rho . \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left(\operatorname{Hess}_{\nabla} \rho\right)\left(Z, Z^{\prime}\right)=g\left(Z, H_{\rho} Z^{\prime}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\rho} Z^{\prime}=\nabla_{Z^{\prime}} \operatorname{grad} \rho \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
2 \mathscr{L}_{\mathscr{T}} \mathscr{R}\left(Z, Z^{\prime}\right)=(\Delta \rho) g\left(Z, Z^{\prime}\right)-(n-2)\left(\operatorname{Hess}_{\nabla} \rho\right)\left(Z, Z^{\prime}\right) \tag{12}
\end{equation*}
$$

In Section 5 we will rely on the following concepts concerning the tangent bundle manifold $T M$ having as basis manifold M. Denote by $V\left(V^{i}\right)(i=1, \ldots n)$ the Liouville vector field (or the canonical vector field on TM [6]). Accordingly, one may consider the sets

$$
\mathscr{B}=\left\{e_{i}, \left.\frac{\partial}{\partial V^{i}} \right\rvert\, i=1, \ldots n\right\}, \quad \text { and } \quad \mathscr{B}^{*}=\left\{\omega^{i}, d V^{i} \mid i=1, \ldots n\right\}
$$

as an adapted vectorial basis, and an adapted cobasis in $T M$, respectively.
For application in the sequel, we remind that the vertical differential operator d_{V} is an antiderivation of degree 1 on $\Lambda(T M)$, and is defined by [4]

$$
\begin{equation*}
d_{V}(f)=\sum_{i=1}^{n} \frac{\partial f}{\partial V^{i}} \omega^{i}, \quad d_{V}\left(\omega^{i}\right)=0, \quad d_{V}\left(d V^{i}\right)=0 \tag{13}
\end{equation*}
$$

the vertical operator i_{V}, which is a derivation of degree 0 on $\Lambda(T M)$, is defined by [4]

$$
\begin{equation*}
i_{V}(f)=0, \quad i_{V}\left(\omega^{i}\right)=0, \quad i_{V}\left(d V^{i}\right)=\omega^{i} . \tag{14}
\end{equation*}
$$

Moreover, both operators d_{V} and i_{V} satisfy the following relation

$$
\left[d_{V}, i_{V}\right]=d_{V} .
$$

Next, with V denoting the Liouville vector field V, which may be expressed as [6]

$$
V=\sum_{i=1}^{n} V^{i} \frac{\partial}{\partial V^{i}}
$$

then, by definition, any 1 -form u such that

$$
\begin{equation*}
\mathscr{L}_{V} u=\gamma u \tag{15}
\end{equation*}
$$

is said to be homogeneous of degree γ.

The vertical lift Z^{V} [16] of any vector field Z on M with components $Z^{i}(i=1, \ldots n)$ is expressed by

$$
\begin{equation*}
Z^{V}=\sum_{i=1}^{n} Z^{i} \frac{\partial}{\partial V^{i}}=:\binom{0}{Z^{i}} \tag{16}
\end{equation*}
$$

and the complete $\operatorname{lift} Z^{C}$ of $Z\left(Z^{i}\right)(i=1, \ldots n)$ is given by

$$
\begin{equation*}
Z^{C}=\sum_{i=1}^{n}\left(Z^{i} e_{i}+\partial Z^{i} \frac{\partial}{\partial V^{i}}\right)=:\binom{Z^{i}}{\partial Z^{i}} \tag{17}
\end{equation*}
$$

where $\partial Z^{i}=\sum_{\kappa=1}^{n} V^{\kappa} \partial_{\kappa} Z^{i}$, with ∂_{κ} the pfaffian derivative.
Finally, the complete lift β^{C} of a 1 -form $\beta=\sum_{i=1}^{n} \beta_{i} \omega^{i}$ is defined by

$$
\begin{equation*}
\beta^{C}=\sum_{i=1}^{n}\left(\partial \beta^{i} \omega^{i}+\beta^{i} d V^{i}\right)=:\left(\partial \beta^{i}, \beta^{i}\right) \tag{18}
\end{equation*}
$$

3 Manifolds with a Local Conformal Section

Considering an n-dimensional manifold (M, g), then in terms of the local field of adapted vectorial frames $\mathcal{O}=\operatorname{vect}\left\{e_{i} \mid i=1, \ldots n\right\}$ and its associated coframe $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{i} \mid i=1, \ldots n\right\}$, the soldering form $d p$ can be expressed as

$$
\begin{equation*}
d p=\sum_{i=1}^{n} \omega^{i} \otimes e_{i} \tag{19}
\end{equation*}
$$

and we recall that E. Cartan's structure equations can be written as

$$
\begin{align*}
\nabla e_{A} & =\sum_{B=1}^{n} \theta_{A}^{B} \otimes e_{B} \tag{20}\\
d \omega^{A} & =-\sum_{B=1}^{n} \theta_{B}^{A} \wedge \omega^{B} \tag{21}\\
d \theta_{B}^{A} & =-\sum_{C=1}^{n} \theta_{B}^{C} \wedge \theta_{C}^{A}+\Theta_{B}^{A} \tag{22}
\end{align*}
$$

In the above equations θ (respectively Θ) are the local connection forms in the tangent bundle $T M$ (respectively the curvature 2 -forms on M).

Let

$$
\begin{equation*}
\alpha=\sum_{i=1}^{n} t_{i} \omega^{i} \tag{23}
\end{equation*}
$$

be a globally defined 1 -form on M and let $\mathscr{T}=\alpha^{\#}$ be its dual vector field. If the connection forms satisfy

$$
\begin{equation*}
\left\langle e_{i} \wedge e_{j}, \mathscr{T}\right\rangle=\theta_{i}^{j} \tag{24}
\end{equation*}
$$

then one says that M is structured by a local conformal section \mathscr{T}. From (23) and (24) one gets that

$$
\begin{equation*}
\theta_{i}^{j}=t_{i} \omega^{j}-t_{j} \omega^{i} \tag{25}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\theta_{i}^{j}(\mathscr{T})=0, \tag{26}
\end{equation*}
$$

which shows that the forms θ are integral relations of invariance [8]. Now, in consequence of (24), and making use of (23), one finds that

$$
\begin{equation*}
d \omega^{i}=\alpha \wedge \omega^{i} \Rightarrow d \alpha=0 \tag{27}
\end{equation*}
$$

Hence, in terms of d^{ω}-cohomology, and in view of (3), one may write that

$$
\begin{equation*}
d^{-\alpha} \omega^{i}=0 \tag{28}
\end{equation*}
$$

i.e. all covectors of \mathcal{O}^{*} are $d^{-\alpha}$-closed.

Since $\mathscr{T}=\sum_{i=1}^{n} t_{i} e_{i}$, and taking into account (20) and (25), it follows that

$$
\begin{equation*}
\nabla e_{i}=t_{i} d p-\omega^{i} \otimes \mathscr{T} \tag{29}
\end{equation*}
$$

Recalling now that at each point $p \in M$, $\operatorname{div} Z=\operatorname{Tr}(\nabla Z)=\sum_{i=1}^{n} \omega^{i}\left(\nabla_{e_{i}} Z\right)$, one derives from (29) that

$$
\begin{equation*}
\operatorname{div} e_{i}=(n-1) t_{i}, \tag{30}
\end{equation*}
$$

which provides a geometrical interpretation for the components of \mathscr{T}.
On the other hand, on behalf of (27) one gets

$$
\begin{equation*}
d t_{i}=t_{i} \alpha+a \omega^{i}, \quad a \in C^{\infty}(M) \tag{31}
\end{equation*}
$$

and by exterior differentiation is can be seen that the scalar function a must in fact be a constant. Setting $2 t=\|\mathscr{T}\|^{2}$ for notational brevity, one finds by (31) and (32) that

$$
\begin{equation*}
d t=(2 t+a) \alpha \tag{32}
\end{equation*}
$$

which shows that α is an exact form. If we put

$$
\begin{equation*}
\rho=2(2 t+a) \in C^{\infty}(M) \tag{33}
\end{equation*}
$$

one derives that

$$
\begin{equation*}
d \rho=2 \rho \alpha \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}_{\mathscr{F}} \omega^{i}=\frac{\rho}{2} \omega^{i} . \tag{35}
\end{equation*}
$$

The above equation expresses that the vector field \mathscr{T} defines an infinitesimal conformal transformation of all covectors of \mathcal{O}^{*}; according to a well know definition [8], we say that \mathscr{T} defines a local conformal section of the manifold M.

Next, with the help of (29) and (31), we get

$$
\begin{equation*}
\nabla \mathscr{T}=\frac{\rho}{2} d p \tag{36}
\end{equation*}
$$

which shows that \mathscr{T} is a concurrent vector field [2]. In turn, this implies the following two properties for \mathscr{T} :
(a) \mathscr{T} is a conformal vector field on M, i.e.

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} g=\rho g, \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div} \mathscr{T}=\frac{n}{2} \rho ; \tag{38}
\end{equation*}
$$

(b) \mathscr{T} is an exterior concurrent vector field [12], which by (34) satisfies

$$
\begin{equation*}
\nabla^{2} \mathscr{T}=\rho \alpha \wedge d p=\rho \mathscr{T}^{b} \wedge d p \tag{39}
\end{equation*}
$$

Further, invoking (25) and (31) yields

$$
\begin{equation*}
d \theta_{j}^{i}=2 \alpha \wedge \theta_{j}^{i}+2 a \omega^{i} \wedge \omega^{j} \tag{40}
\end{equation*}
$$

and making use of (24), one finds that the curvature forms Θ of M can be expressed by

$$
\begin{equation*}
\Theta_{j}^{i}=\alpha \wedge \theta_{j}^{i}+\left(\frac{\rho}{2}+a\right) \omega^{i} \wedge \omega^{j} \tag{41}
\end{equation*}
$$

In consequence of (41), one finds that the components $\mathscr{R}_{i j}$ of the Ricci tensor \mathscr{R} are

$$
\left\{\begin{array}{l}
\mathscr{R}_{i i}=-(n-2)\left(t_{i}\right)^{2}-n\left(\frac{\rho}{2}-a\right) \tag{42}\\
\mathscr{R}_{i j}=-(n-2) t_{i} t_{j}
\end{array}\right.
$$

Now it can be observed that for (42) to be consistent with (39), the constant a must vanish. Accordingly, (40) yields

$$
\begin{equation*}
d \theta_{j}^{i}=2 \alpha \wedge \theta_{j}^{i}, \tag{43}
\end{equation*}
$$

and also

$$
\begin{equation*}
\Theta_{j}^{i}=\alpha \wedge \theta_{j}^{i}+\frac{\rho}{2} \omega^{i} \wedge \omega^{j} \tag{44}
\end{equation*}
$$

Next, taking the exterior differential of (44), one finds by (34) that

$$
\begin{equation*}
d \Theta_{j}^{i}=4 \rho \alpha \wedge \Theta_{j}^{i} \tag{45}
\end{equation*}
$$

In terms of cohomology, the above formulas can be interpreted as follows: on the considered manifold, the dual forms, the connection forms, and the curvature forms are $d^{-\alpha}$-exact, $d^{-2 \alpha}$-exact, and $d^{-4 \rho \alpha}$-exact, respectively.

If we write now S for the scalar curvature of (M, g), then, in consequence of (45) and $a=0$, one gets that

$$
\begin{equation*}
S=-\frac{n^{2}+n-2}{2} \rho, \tag{46}
\end{equation*}
$$

which since $\rho=2 g(\mathscr{T}, \mathscr{T})$ shows that S is always negative. Next, we define

$$
\begin{equation*}
E_{i j}=t_{i} e_{j}-t_{j} e_{i}, \tag{47}
\end{equation*}
$$

for the dual vectors of θ_{i}^{j}. Taking the covariant differential of $E_{i j}$, one finds by (29)

$$
\begin{equation*}
d E_{i j}=\alpha \otimes E_{i j}-\theta_{i}^{j} \otimes \mathscr{T} \tag{48}
\end{equation*}
$$

and on behalf of (31), one may write

$$
\begin{equation*}
\left[\mathscr{T}, E_{i j}\right]=0 . \tag{49}
\end{equation*}
$$

Hence, the conformal section \mathscr{T} commutes with all the dual vectors of the connection forms on M. Now, by reference to Orsted's lemma [1], it follows in virtue of (49) that

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} \theta_{i}^{j}=\rho \theta_{i}^{j} \tag{50}
\end{equation*}
$$

and by (44) also that

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} \Theta_{i}^{j}=2 \rho \Theta_{i}^{j} . \tag{51}
\end{equation*}
$$

The above equations now express that the vector field \mathscr{T} defines an infinitesimal
conformal transformation [7], not only of the dual forms of \mathcal{O}^{*}, but also of the connection and the curvature forms.

Further, since $\delta \alpha=-\operatorname{div} \mathscr{T}$ (where δ denotes the codifferential operator), then, by (37) and (34), one calculates that

$$
\begin{equation*}
\Delta \alpha=-n \rho \alpha \tag{52}
\end{equation*}
$$

This shows that α is an eigenform of the Laplacian with $-n \rho$ as associated eigenvalue. As ρ is always positive, it follows from the nature of the spectrum of the Laplacian operator that a manifold structured by a local conformal section cannot be compact. With the general formula $\Delta v=-\operatorname{div} \operatorname{grad} v$ and using (34), one gets

$$
\begin{equation*}
\Delta t_{i}=-\frac{n+1}{2} \rho t_{i} \tag{53}
\end{equation*}
$$

which by (30) turns into

$$
\begin{equation*}
\Delta \operatorname{div} e_{i}=-\frac{n+1}{2} \rho \operatorname{div} e_{i} . \tag{54}
\end{equation*}
$$

The above equation expresses that the divergencies of the vector basis \mathcal{O} on M form an n-dimensional space $E^{n}(M)$, which is an eigenspace of Δ corresponding to the eigenvalue $-((n+1) / 2) \rho$. Similarly, one finds by $d t=(2 t+a) \alpha$ (see (32)) and (31) that

$$
\begin{equation*}
\operatorname{tr} \nabla^{2} \mathscr{T}=-\frac{n-2}{4} \rho \mathscr{T}, \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla \mathscr{T}\|^{2}=\frac{n \rho^{2}}{2} . \tag{56}
\end{equation*}
$$

It can be checked that the above equations, in combination with (52), are indeed consistent with Bochner's theorem [10]

$$
2\left\langle\operatorname{tr} \nabla^{2} Z, Z\right\rangle+2\|\nabla Z\|^{2}+\Delta\|Z\|^{2}=0 .
$$

Summarizing, we can formulate the following
Theorem 3.1. Let (M, g) be an n-dimensional Riemannian manifold structured by a local conformal section \mathscr{T} and let $\alpha=\mathscr{T}^{b}$ be the dual form of \mathscr{T}. If \mathcal{O} is a local field of orthonormal frames over M, then the dual forms, the connection
forms, and the curvature forms are $d^{-\alpha}$-exact, $d^{-2 \alpha}$-exact, and $d^{-4 \rho \alpha}$-exact, respectively. Furthermore:
(i) \mathscr{T} commutes with the dual vectors of the connection forms θ on M;
(ii) the divergences of the vector basis on M constitute an eigenspace of Δ which corresponds to the eigenvalue $-((n+1) / 2) \rho$;
(iii) the scalar curvature S of M is negative and is given by $S=$ $-\left(\left(n^{2}+n-2\right) / 2\right) \rho ;$
(iv) α is an eigenform of Δ and the manifold M under consideration can not be compact.

4 The Lie Algebra of Infinitesimal Transformations

In this section, we discuss some properties of the Lie algebra of infinitesimal transformations generated by the conformal field \mathscr{T}. First, by (36), one may write

$$
\begin{equation*}
\operatorname{grad} \rho=2 \rho \mathscr{T} \Rightarrow\|\operatorname{grad} \rho\|^{2}=2 \rho^{3} \tag{57}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{div}(\operatorname{grad} \rho)=(n+2) \rho^{2} \tag{58}
\end{equation*}
$$

The above equations show that $\|\operatorname{grad} \rho\|^{2}$ and $\operatorname{div}(\operatorname{grad} \rho)$ can be expressed as functions of ρ. Thus, on behalf of a well known definition [14], it follows that the conformal scalar ρ is an isoparametric function.

Now, by reference to Yano's formula (9) one gets

$$
\begin{equation*}
\mathscr{L}_{\mathscr{T}} S=-\frac{n^{2}+n-2}{2} \rho^{2}-\rho S \tag{59}
\end{equation*}
$$

i.e. S defines an infinitesimal conformal transformation of the scalar curvature S.

Next, since

$$
\nabla_{\mathscr{T}} \operatorname{grad} \rho=3 \rho^{2} \mathscr{T},
$$

one finds by (11), (12), and (42) that

$$
\mathscr{L}_{\mathscr{T}} g(\mathscr{T} Z)=\frac{2 n-3}{n-1} \rho g(\mathscr{T} Z), \quad Z \in \Xi(M)
$$

Therefore, and on behalf of (57), it follows that

$$
\begin{equation*}
\nabla \operatorname{grad} \rho=\rho^{2} d p+2 \alpha \otimes \operatorname{grad} \rho \tag{60}
\end{equation*}
$$

This shows that grad ρ is a torse forming vector field [15] [13] [9] with 2α as generating form.

We assume from now on that M is of even dimension, say $n=2 m$, and we suppose that the following 2 -form of rank $2 m$ is globally defined on M

$$
\begin{equation*}
\Omega=\sum_{i=1}^{m} \omega^{i} \wedge \omega^{i^{*}}, \quad i^{*}=i+m \tag{61}
\end{equation*}
$$

Exterior differentiation of (61) gives in combination with (29) that

$$
\begin{equation*}
d^{-2 \alpha} \Omega=0, \tag{62}
\end{equation*}
$$

which shows that Ω defines a local conformal symplectic structure with α (resp. $\mathscr{T})$ as covector of Lee (resp. vector of Lee).

Next, by (37) it follows that

$$
\begin{equation*}
\mathscr{L}_{\mathscr{F}} \Omega=\rho \Omega \tag{63}
\end{equation*}
$$

which means that \mathscr{T} defines an infinitesimal conformal transformation of Ω.
Let now \mathscr{E}_{α} be the vector space such that for every $X_{\alpha} \in \mathscr{E}_{\alpha}$

$$
\alpha\left(X_{\alpha}\right)=\text { Cst. }
$$

Denote by

$$
\mu: T M \rightarrow T^{*} M: Z \rightarrow i_{Z} \Omega
$$

the bundle isomorphism defined by Ω. Setting then $\beta=\mu\left(X_{\alpha}\right)$, one gets by (62)

$$
\mathscr{L}_{X_{\alpha}} \Omega=d^{-2 \alpha} \beta+2 c \Omega
$$

and on behalf of (2) one derives

$$
d^{-2 \alpha}\left(\mathscr{L}_{X_{\alpha}} \Omega\right)
$$

Therefore, we conclude that the Lie derivatives $\mathscr{L}_{X_{\alpha}} \Omega$ are also $d^{-2 \alpha}$-exact. Set now

$$
X_{\beta}=\beta^{\#}=\sum_{i=1}^{m}\left(t_{i} e_{i^{*}}-t_{i^{*}} e_{i}\right)
$$

and operate on X_{β} by ∇. By (31) and (33), with $a=0$, one calculates that

$$
\nabla X_{\beta}=X_{\beta} \wedge \mathscr{T}
$$

which shows that X_{β} is a Killing vector field. Moreover, one can also verify that $\left[\mathscr{T}, X_{\beta}\right]$, i.e. X_{β} commutes with \mathscr{T}.

Summarizing, we can formulate the following

Theorem 4.1. Let (M, g) be the manifold defined in Section 3. Then, the conformal scalar ρ associated with \mathscr{T} is an isoparametric function and \mathscr{T} defines an infinitesimal conformal transformation of the scalar curvature S on M and of the functions $g(\mathscr{T}, Z)(Z \in \Xi(M))$; that is

$$
\begin{aligned}
\mathscr{L}_{\mathscr{T}} S & =\rho S, \\
\mathscr{L}_{\mathscr{T}} g(\mathscr{T}, Z) & =\frac{2 n-3}{n-1} \rho g(\mathscr{T}, Z) .
\end{aligned}
$$

Besides, if M is of even dimension, it admits a conformal symplectic structure (Ω, α), having $\alpha=\mathscr{T}^{b}$ as covector of Lee, i.e. $d^{-2 \alpha} \Omega=0$, and \mathscr{T} defines an infinitesimal conformal transformation of Ω, i.e. $\mathscr{L}_{\mathscr{I}} \Omega=\rho \Omega$. If \mathscr{E}_{α} is the vector space such that for $X_{\alpha} \in \mathscr{E}_{\alpha}$, one has $\alpha\left(X_{\alpha}\right)=$ Cst., then the Lie derivative $\mathscr{L}_{X_{\alpha}} \Omega$ is $d^{-2 \alpha}$-exact and X_{β} is a Killing vector field which commutes with \mathscr{T}.

5 Geometry of the Tangent Bundle

Let now $T M$ be the tangent bundle having as basis the manifold M introduced in Section 3, which is now in addition assumed to be of dimension 2 m . In the present section we will study the properties of the lifts to the tangent bundle $T M$ of the tensor fields discussed in the previous sections. Denote by $V\left(V^{i}\right)$ the canonical vector field (or Liouville vector field) [5] and consider $\mathscr{B}^{*}=\left\{\omega^{i}, d V^{i} \mid i=1, \ldots 2 m\right\}$ as a covectorial basis of $T M$. Recalling that the complete lift [16] of the 2 -form $\omega^{i} \wedge \omega^{j}$ is defined by

$$
\begin{equation*}
\left(\omega^{i} \wedge \omega^{j}\right)^{C}=d V^{i} \wedge \omega^{j}+\omega^{i} \wedge d V^{j} \tag{64}
\end{equation*}
$$

one derives by reference to (61) that

$$
\begin{equation*}
\Omega^{C}=\sum_{i=1}^{m}\left(d V^{i} \wedge \omega^{i^{*}}+\omega^{i} \wedge d V^{i^{*}}\right), \quad i^{*}=i+m ; \tag{65}
\end{equation*}
$$

we remind that one knows from [16] that Ω^{C} defines an almost symplectic structure on $T M$. Taking the exterior differential of Ω^{C}, one finds by (29)

$$
\begin{equation*}
d \Omega^{C}=\alpha \wedge \Omega^{C} \tag{66}
\end{equation*}
$$

Hence, we observe that in the case under consideration the conformal character of Ω is conserved bij complete lifting; we emphasize the remarkable aspect of this fact, since in general this property is not conserved. Next, since with respect to the vectorial basis $\mathscr{B}=\left\{e_{i}, \partial / \partial V^{i} \mid i=1, \ldots 2 m\right\}$ the Liouville vector field V is expressed by

$$
\begin{equation*}
V=\sum_{i=1}^{2 m} V^{i} \frac{\partial}{\partial V^{i}}, \tag{67}
\end{equation*}
$$

one may compute from this that

$$
\begin{equation*}
\mathscr{L}_{V} \Omega^{C}=\Omega^{C} ; \tag{68}
\end{equation*}
$$

with reference to [5] this shows that Ω^{C} is homogeneous of degree 1 . Setting now $\rho=c / f^{2}(c=$ const. $)$, and on behalf of (34), we can write that

$$
\begin{equation*}
\alpha=-\frac{d f}{f} \tag{69}
\end{equation*}
$$

In addition, we put

$$
\begin{equation*}
\mathbf{v}=\frac{1}{2} \sum_{i=1}^{2 m}\left(V^{i}\right)^{2}, \tag{70}
\end{equation*}
$$

and consider the function

$$
\begin{equation*}
I=f v . \tag{71}
\end{equation*}
$$

If we operate on I by the vertical differential operator d_{V}, then we find

$$
\begin{equation*}
d_{V}(I)=f \sum_{i=1}^{2 m} V^{i} \omega^{i} . \tag{72}
\end{equation*}
$$

The basic 1-form

$$
\begin{equation*}
\mu=\sum_{i=1}^{2 m} V^{i} \omega^{i} \tag{73}
\end{equation*}
$$

is also known [16] as the Liouville form on $T M$ (Alternatively, one can also write that $\mu=V^{b}$). By (69) one can now derive that

$$
\begin{equation*}
d\left(d_{V} I\right)=f \sum_{i=1}^{2 m} d V^{i} \wedge \omega^{i}=: \psi \tag{74}
\end{equation*}
$$

Since the 2 -form ψ is clearly of maximal rank on $T M$, the above equation shows that ψ is an exact (or potential) symplectic form. Since $i_{V} \psi=f \mu$, then by reference to [16], we call ψ the canonical symplectic form on $T M$. Invoking (69), we can check that the Lie derivative of ψ with respect to V is given by

$$
\begin{equation*}
\mathscr{L}_{V} \psi=\psi . \tag{75}
\end{equation*}
$$

Consequently, ψ is (like Ω^{C}) also homogeneous of degree 1 . Besides, operating on ψ by the vertical derivative operator i_{V} and invoking (15), leads to

$$
\begin{equation*}
i_{V}(\psi)=0 . \tag{76}
\end{equation*}
$$

On basis of (75) and (76) we conclude that ψ is a Finslerian form [4].
Denote by ∂_{i} the Pfaffian derivative with respect to ω^{i} and set according to [16]

$$
\begin{equation*}
\partial=\sum_{i=1}^{2 m} V^{i} \partial_{i} \tag{77}
\end{equation*}
$$

Therefore, by reference to [16], the complete lift α^{C} of α is defined by

$$
\begin{equation*}
\alpha^{C}=\left(\partial t_{i}, t_{i}\right) . \tag{78}
\end{equation*}
$$

Next, setting

$$
\begin{equation*}
\beta=\sum_{i=1}^{2 m} t_{i} d V^{i} \tag{79}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\alpha^{C}=v \alpha+\beta=d v \tag{80}
\end{equation*}
$$

in which we have used the notation $v:=\boldsymbol{L} \alpha$ for the image of the 1 -form α under the operator L of Yano and Ishihara (see [16]). Equation (80) shows that the complete lift α^{C} is, like α, also an exact form. Consider now on TM the following 2-form of rank $4 m$

$$
\begin{equation*}
\phi=v(\alpha \wedge \mu+\psi) \tag{81}
\end{equation*}
$$

By exterior differentiation and taking into account (73) and (74), one obtains

$$
\begin{equation*}
d \phi=\left(\frac{\alpha^{C}}{v}-\frac{\alpha}{f}\right) \wedge \phi \tag{82}
\end{equation*}
$$

From the above it follows that ϕ defines on $T M$ a second conformal symplectic structure having the exact form $\alpha^{C} / v-\alpha / f$ as covector of Lee. One also finds that

$$
\mathscr{L}_{V} \phi=2 \phi,
$$

which shows that ϕ is homogeneous of degree 2. Further, let

$$
\begin{equation*}
\mathscr{T}^{V}=\binom{0}{t^{i}}, \quad \text { and } \quad \mathscr{T}^{C}=\binom{t^{i}}{\partial t^{i}} \tag{83}
\end{equation*}
$$

be the vertical and the complete lift respectively of the conformal section \mathscr{T}. By (83) one may write

$$
\begin{equation*}
\mathscr{T}^{V}=\sum_{i=1}^{2 m} t^{i} \frac{\partial}{\partial V^{i}}, \tag{84}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{T}^{C}=\mathscr{T}+v \mathscr{T}^{V} . \tag{85}
\end{equation*}
$$

By (74) and (83) one finds that

$$
\mathscr{L}_{I} \psi=0, \quad \mathscr{L}_{I^{\nu}} \psi=0, \quad \mathscr{L}_{I^{c}} \psi=0
$$

which shows that the canonical symplectic form ψ is invariant by $\mathscr{T}, \mathscr{T}^{V}$, and \mathscr{T}^{C} 。

Summarizing, we can formulate the following
Theorem 5.1. Let TM be the tangent bundle manifold having as basis the manifold in Section 3 which is now in addition assumed to be of even dimension. Let V, μ, ψ, and L, be the canonical vector field, the Liouville form, the canonical form on TM, and the operator which assigns to 1 -forms on M functions on TM, respectively. Then:
(i) ψ is a Finslerian form which is invariant under the conformal section \mathscr{T} and its vertical and complete lifts \mathscr{T}^{V} and \mathscr{T}^{C}, respectively;
(ii) the complete lift Ω^{C} of the conformal symplectic form Ω on M is a conformal symplectic form on TM, which is $d^{-\alpha}$-exact and homogeneous of degree 1 ;
(iii) the complete lift α^{C} of α is also an exact form and the 2-form

$$
\phi=v(\alpha \wedge \mu+\psi)
$$

defines a second conformal symplectic form on TM, having the exact form

$$
\frac{\alpha^{C}}{v}-\frac{\alpha}{f}
$$

as covector of Lee.

References

[1] T. P. Branson, Conformally covariant equations and differential forms, Comm. in partial differential equations 7(4) (1982), 393-431.
[2] B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York (1973).
[3] J. Dieudonné, Treatise on Analysis Vol. 4, Academic Press, New York (1974).
[4] C. Godbillon, Géometrie différentielle et mécanique analytique, Herman, Paris (1969).
[5] F. Guedira, A. Lichnerowicz, Geometrie des algebres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407-494.
[6] J. Klein, Espaces variationnels et mécanique, Ann. Inst. Fourier 4 (1962), 1-124.
[7] P. Libermann, C. M. Marle, Géométrie Symplectique, Bases Théorétiques de la Mécanique, U.E.R. Math. du C.N.R.S. 7 (1986).
[8] A. Lichnerowicz, Les relations intégrales d'invariance et leurs applications a la dynamique, Bull. Sci. Math. 70 (1946), 82-95.
[9] K. Matsumoto, I. Mihai, R. Rosca, On gradient almost torse forming vector fields, Math. J. Toyama Univ. 19 (1996), 149-157.
[10] W. A. Poor, Differential Geometric Structures, Mc Graw Hill, New York (1981).
[11] R. Rosca, On parallel conformal connections, Kodai Math. J. 2 (1979), 1-9.
[12] R. Rosca, Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6 (1986), 167-174.
[13] C. Udriste, Properties of torse forming vector fields, Tensor NS 42 (1982), 134-144.
[14] K. Yano, On torse forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340-345.
[15] K. Yano, Integral formulas in Riemannian Geometry, M. Dekker, New-York (1970).
[16] K. Yano, S. Ishihara, Differential Geometry of Tangent and Cotangent Bundles, M. Dekker, New York (1973).

Filip Defever, Department Industriële Wetenschappen en Technologie Katholieke Hogeschool Brugge-Oostende Zeedijk 101, 8400 Oostende, BELGIUM

Radu Rosca, 59 Avenue Emile Zola 75015 Paris, FRANCE

[^0]: Received April 7, 2003.

