QUANTIFIER ELIMINATION RESULTS FOR PRODUCTS OF ORDERED ABELIAN GROUPS

By
Nobuya SuZuki

1 Introduction

Komori [1] introduced the notion of semi-discrete ordered Abelian group with divisible infinitesimals. Roughly speaking, such groups are products of a Z-like group and a Q-like group. In [1], he showed that such groups are axiomatized by his set $S C$ of axioms. In fact he showed that $S C$ is complete and admits quantifier elimination (QE) in some language expanding $L_{\mathrm{og}}=$ $\{0,+,-,<\}$. In this paper, we shall evolve his study and prove QE for products of ordered Abelian groups H and K, where H admits QE and K is divisible. However, like him, we need to expand the language slightly. First let us explain Komori's axiom. $S C$ is the following set of sentences:

1. the axioms for ordered Abelian groups;
2. the axioms for a semi-discrete ordering

$$
0<1, \quad \forall x(2 x<1 \vee 1<2 x)
$$

3. the axioms for infinitesimals

$$
\forall x(2 x<1 \rightarrow n x<1) \quad(n=2,3, \ldots) ;
$$

4. the axioms for D_{n} 's

$$
\begin{array}{ll}
\forall x\left(D_{n}(x) \leftrightarrow \exists y \exists z(-1<2 z<1 \wedge x=n y+z)\right. & (n=2,3, \ldots) \\
\forall x\left(D_{n}(x) \vee D_{n}(x+1) \vee \cdots \vee D_{n}(x+n-1)\right) & (n=2,3, \ldots) ;
\end{array}
$$

5. the axioms for divisible infinitesimals

$$
\forall x(-1<2 x<1 \rightarrow \exists y(x=n y) \quad(n=2,3, \ldots)
$$

6. the axiom for existence of infinitesimals

$$
\exists x(0<x<1) ;
$$

[^0]Notice that $S C$ is not formulated in the pure ordered group language. Its language is $L=L_{\mathrm{og}} \cup\left\{D_{n}: n=2,3, \ldots\right\} \cup\{1\}$. A canonical model of $S C$ is the direct product group $\boldsymbol{Z} \times \boldsymbol{Q}$, where

1. the constants 0 and 1 are interpreted to the elements $(0,0)$ and $(1,0)$, respectively
2. the predicate symbol $<$ is interpreted as the lexicographic order of \boldsymbol{Z} and Q,
3. the predicate symbols $D_{n}(x)(n=2,3, \ldots)$ means that x is divisible by n.

Notice that \boldsymbol{Z} admits QE in L and that \boldsymbol{Q} admits QE in L_{og}. So, in a sense, Komori's result can be considered a quantifier elimination result for the product group $H \times K$ where both H and K have QE. The above L-structure $\boldsymbol{Z} \times \boldsymbol{Q}$ seems to have two important properties that are essential in Komori's proof. One is that the infinitesimal set $I=\{0\} \times \boldsymbol{Q}$ is definable (by the quantifier free formula $-1<2 x<1$). The other is that \boldsymbol{Q} is divisible. In this paper, very roughly, we show that if the two properties are satisfied, then we can show QE for the product group $H \times K$ in some expanded language. (See section 3).

For stating our main result more precisely, we need some definition. Let L_{r} and L_{c} respectively be sets of predicate and constant symbols. Let L be the language $L_{\mathrm{og}} \cup L_{\mathrm{r}} \cup L_{\mathrm{c}}$. Let H be an L-structure such that $H \mid L_{\mathrm{og}}$ is an ordered Abelian group. Let K be an L_{og}-structure such that K is an ordered Abelian group. We will consider $G:=H \times K$ as an $L \cup\{I\}$-structure by the following interpretation:

1. $0^{G}:=\left(0^{H}, 0^{K}\right)$.
2. $c^{G}:=\left(c^{G}, 0^{K}\right)\left(c \in L_{\mathfrak{c}}\right)$.
3.,+- are defined coordinatewise.
3. $<$ is the lexicographic order of H and K.
4. Each n-ary predicate symbol R of L_{r} is defined by

$$
R^{G}:=\left\{(\bar{g}) \in G^{n}: \bar{h} \in R^{H}\right\}
$$

where $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i}=\left(h_{i}, k_{i}\right)(i=1, \ldots, n)$ and $\bar{h}=\left(h_{1}, \ldots, h_{n}\right)$.
Main reslut. Let L be the language $L_{\mathrm{og}} \cup L_{\mathrm{r}} \cup L_{\mathrm{c}}$ where L_{og} is the language $\{0,+,-,<\}, L_{\mathrm{r}}$ and L_{c} are sets of predicate symbols and constant symbols respectively. Let H be an L-structure such that $H \mid L_{\mathrm{og}}$ is an ordered Abelian group. Let K be a divisible ordered Abelian group. (We consider K as an L_{og}-structure.) Let $G:=H \times K$ be an L-structure given by the interpretation above. Let $I=$ $\{0\} \times K$ be defined by some quantifier free L-formula in G. If H admits $Q E$ in L,
then G admits $Q E$ in L. Moreover in the result above, if H is recursively axiomatizable, then so is G.

2 Preliminaries

In this paper we require some basic knowledge of model theory. Terminologies we use are rather standard. However, let us explain some of them. L denotes a language and T denotes a consistent set of L-sentences. M denotes an L-structure. Finite tuples of variables are denoted by \bar{x}, \bar{y}, \ldots. Finite tuples of elements in M are denoted by \bar{a}, \bar{b}, \ldots Subsets of M are denoted by A, B, \ldots If $\bar{a}=a_{1}, \ldots, a_{n}$, we simply write $\bar{a} \in M$ instead of writing $a_{1} \in M, \ldots, a_{n} \in M$. An $L(A)$-formula means an L-formula with parameters from A. Similarly an $L(A)$ term means an L-term with parameters form A.

We say that T is an L-theory if there exists a model M of $T . \mathrm{Th}_{L}(M)$ denotes the theory of M, i.e. the set of all L-sentences which hold in M. If L is clear from the context, L will be omitted, and we will simply write $\operatorname{Th}(M)$ instead of writing $\mathrm{Th}_{L}(M)$. We say that a theory T is complete if for any L-sentence ϕ, T proves ϕ or $\neg \phi$.

We say that T admits quantifier elimination in the language L if for any L formula $\phi(\bar{x})$, there exists a quantifier free L-formula $\psi(\bar{x})$ such that T proves $\forall \bar{x}(\phi(\bar{x}) \leftrightarrow \psi(\bar{x}))$. We say that M admits quantifier elimination in L if $T h_{L}(M)$ admits quantifier elimination in L.

Let $A \subset M$. We say that a set $p(\bar{x})$ of $L(A)$-formulas (with free variables \bar{x}) is a type if any finite subset of $p(\bar{x})$ has a solution in M. We define the type of $\bar{a} \in M$ over A to be the set of $L(A)$-formulas $\psi(\bar{x})$ such that \bar{a} is a solution of $\psi(\bar{x})$. The type of $\bar{a} \in M$ over A is denoted by $\operatorname{tp}(\bar{a} / A)$. If $A=\varnothing$, we simply write $\operatorname{tp}(\bar{a})$ instead of $\operatorname{tp}(\bar{a} / A)$. We define the quantifier free type of \bar{a} over A to be the set of quantifier free $L(A)$-formula $\psi(\bar{x})$'s such that \bar{a} is a solution of $\psi(\bar{x})$. The quantifier free type of \bar{a} over A is denoted by $\operatorname{qftp}(\bar{a} / A)$. Similarly if $A=\varnothing$, we write $\operatorname{qftp}(\bar{a})$ instead of $\operatorname{qftp}(\bar{a} / A)$.

We say that a model M of T is κ-saturated if whenever A is a subset of M with $|A|<\kappa$ then any type over A has a solution in M.

In this paper we use the following well-known fact:
Fact 1. Let L be a language. Let T be an L-theory such that T is complete for quantifier free sentences. Then the following are equivalent;

1. T is complete and admits quantifier elimination in L.
2. Let M and N be \aleph_{0}-saturated models of T. Suppose $\bar{a} \in M$ and $\bar{b} \in N$ have
the same quantifier free type, i.e. $\operatorname{qftp}(\bar{a})=\operatorname{qftp}(\bar{b})$. Then for any $a \in M$ there exists $b \in N$ such that $\operatorname{qftp}(\bar{a}, a)=\operatorname{qftp}(\bar{b}, b)$.

3 Product of Ordered Abelian Groups

In this section we introduce the notion of the product interpretation. Let G be a group. We say that a subset A of G is free if whenever $\sum_{i \in N} m_{i} a_{i}=0$ for some finite subsets $\left\{a_{i}\right\}_{i \in N}$ of A and $\left\{m_{i}\right\}_{i \in N}$ of \boldsymbol{Z}, then $m_{i}=0(i \in N)$.

Definition 2. Let G be a group. For any $A \subset G$,

$$
H(A):=\{h \in G: m h \in\langle A\rangle \text { for some } m \in \boldsymbol{Z} \backslash\{0\}\}
$$

where $\langle A\rangle$ is the subgroup of G generated by A.

Lemma 3. Let $G(\neq\{0\})$ be a torsion free Abelian group. Then for any free subset S of G, there exists some free subset A of G with the following conditions;

1. $S \subset A$,
2. $G=H(A)$,
3. If $m g=\sum m_{i} a_{i}$ and $n g=\sum n_{i} a_{i}$ for some element g of G, some finite subset $\left\{a_{i}\right\}_{i \in N}$ of A, some m, n of $\boldsymbol{Z} \backslash\{0\}$ and some $m_{i}, n_{i} \in \boldsymbol{Z}(i \in N)$, then $n m_{i}=m n_{i}(i \in N)$.

Proof. Since G is torsion free, by the Zorn's lemma, there exists a maximal free subset A of G containing S. Then A satisfies the condition of the lemma.

Let L_{og} be the language $\{0,+,-,<\}$ of ordered groups. Let L_{r} and L_{c} be sets of predicate and constant symbols, respectively. Let L be the language $L_{\mathrm{og}} \cup L_{\mathrm{r}} \cup L_{\mathrm{c}}$. Let H be an L-structure such that $H \mid L_{\mathrm{og}}$ is an ordered Abelian group. Let K be an L_{og}-structure such that K is an ordered Abelian group. Let I be a new unary predicate symbol. In what follows, we will consider $G:=H \times K$ as an $L \cup\{I\}$-structure by the following interpretation:

1. $0^{G}:=\left(0^{H}, 0^{K}\right)$.
2. $c^{G}:=\left(c^{H}, 0^{K}\right)\left(c \in L_{\mathrm{c}}\right)$.
3.,+- are defined coordinatewise.
3. $<$ is the lexicographic order of H and K.
4. Each n-ary predicate symbol R of L_{r} is defined by

$$
R^{G}:=\left\{\bar{g} \in G^{n}: \bar{h} \in R^{H}\right\}
$$

where $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i}=\left(h_{i}, k_{i}\right)(i=1, \ldots, n)$ and $\bar{h}=\left(h_{1}, \ldots, h_{n}\right)$. 6. $I^{G}:=\left\{0^{H}\right\} \times K$.

We call this interpretation the product interpretation of H and K.
Let $L=L_{\mathrm{og}} \cup L_{\mathrm{r}} \cup L_{\mathrm{c}}$. Let H be an L-structure such that $H \mid L_{\mathrm{og}}$ is an ordered Abelian group. Let K be an $L_{\text {og }}$-structure such that K is an ordered Abelian group. Let $G:=H \times K$ be an $L \cup\{I\}$-structure given by the product interpretation of H and K.

Let $G^{*} \vDash \operatorname{Th}(G)$. Let $I^{*}:=\left\{g \in G^{*}: g \vDash I(x)\right\}$. An equivalent relation \sim on G^{*} is defined by $a \sim b$ if $a-b \in I^{*}$. Let $[g]$ be the equivalent class of g. Let $H^{*}:=\left\{[g]: g \in G^{*}\right\}$ and $K^{*}:=I^{*}$. We will consider H^{*} as an L-structure by the following interpretation:

1. $0, c\left(c \in L_{c}\right),+$ and - are defined naturally.
2. Let g_{1} and $g_{2} \in G^{*}$. $\left[g_{1}\right]<\left[g_{2}\right]$ is defined by $g_{1}<g_{2}$ and $g_{1}-g_{2} \notin I^{*}$.
3. Each n-ary predicate R of L_{r} is defined by

$$
R^{H^{*}}:=\left\{[\bar{g}] \in\left(H^{*}\right)^{n}: \bar{g} \in R^{G^{*}}\right\}
$$

where $\bar{g}=\left(g_{1}, \ldots, g_{n}\right)$ and $[\bar{g}]=\left(\left[g_{1}\right], \ldots,\left[g_{n}\right]\right)$
and consider K^{*} as an L_{og}-substructure of G^{*}.

Remark 4. $H^{*} \equiv H$ and $K^{*} \equiv K$.

This can be shown as follows: It is trivial that $K^{*} \equiv K$. So we show that $H^{*} \equiv H$. Let g_{1} and $g_{2} \in G^{*}$. Let \bar{g} be an tuple of elements of G^{*}. By the definition of H^{*}, the followings are hold.

1. $\left[g_{1}\right]=\left[g_{2}\right]$ holds in $H^{*} \leftrightarrow g_{1}-g_{2} \in I^{*}$ holds in G^{*}.
2. $\left[g_{1}\right]<\left[g_{2}\right]$ holds in $H^{*} \leftrightarrow$ both $g_{1}<g_{2}$ and $g_{1}-g_{2} \notin I^{*}$ hold in G^{*}.
3. $R([\bar{g}])$ holds in $H^{*} \leftrightarrow R(\bar{g})$ holds in $G^{*}\left(R \in L_{\mathrm{r}}\right)$.

So for any L-sentence ϕ there exists an $L \cup\{I\}$-sentence ψ such that ϕ holds in H^{*} iff ψ holds in G^{*}. Since $G^{*} \equiv G$, we have $H^{*} \equiv H$.

Let $H^{*} \times K^{*}$ be the $L \cup\{I\}$-structure given by the product interpretation of H^{*} and K^{*}.

Lemma 5. Let K be divisible. Then there exists some $L \cup\{I\}$-isomorphism σ from G^{*} to $H^{*} \times K^{*}$.

Proof. Suppose that $H=\{0\}$. Then $H^{*}=\{0\}$ and $G^{*}=K^{*}$. In this case, it is trivial. So we can assume that $H \neq\{0\}$. Then H^{*} is nontrivial torsion free group. Let S be a maximal free subset of $\left\{c^{*}: c \in L_{c}\right\}$ where c^{*} is the interpretation of c in G^{*}. We claim that $[S]:=\left\{\left[c^{*}\right]: c^{*} \in S\right\}$ is free. Suppose that $\sum m_{i}\left[c_{i}^{*}\right]=0$ for some finite subsets $\left\{c_{i}^{*}\right\}_{i \in N}$ of S and $\left\{m_{i}\right\}_{i \in N}$ of \boldsymbol{Z}. Then $\sum m_{i} c_{i}^{*} \in I^{*}$. By the definition of the product interpretation and $G^{*} \equiv G$, $\sum m_{i} c_{i}^{*}=0$. Since S is free, $m_{i}=0(i \in N)$.

So by lemma 3, there exists some subset H_{0} of H^{*} with the following conditions;

1. $[S] \subset H_{0}$.
2. $H^{*}=H\left(H_{0}\right)$.
3. If $m[g]=\sum m_{i}\left[g_{i}\right]$ and $n[g]=\sum n_{i}\left[g_{i}\right]$ for some element $[g]$ of H^{*}, some finite subset $\left\{\left[g_{i}\right]\right\}_{i \in N}$ of H_{0}, some m, n of $\boldsymbol{Z} \backslash\{0\}$ and some $m_{i}, n_{i} \in \boldsymbol{Z}$ $(i \in N)$, then $n m_{i}=m n_{i}(i \in N)$.

We fix a subset G_{0} of G^{*} with the following conditions;

1. $S \subset G_{0}$.
2. $H_{0}=\left\{[g]: g \in G_{0}\right\}$.
3. If $g_{1} \neq g_{2} \in G_{0}$, then $\left[g_{1}\right] \neq\left[g_{2}\right]$.

Let σ be the map from G^{*} to K^{*} defined by

$$
\sigma(g):=1 / m\left(m g-\sum m_{i} g_{i}\right)
$$

where $m[g]=\sum m_{i}\left[g_{i}\right]$ for some subset $\left\{g_{i}\right\}_{i \in N}$ of $G_{0}, m \in \boldsymbol{Z} \backslash\{0\}$ and $m_{i} \in \boldsymbol{Z}$ $(i \in N)$. Note that σ is well-defined by the divisibility of K and the conditions of H_{0} and G_{0}. Let $\sigma^{*}: G^{*} \rightarrow H^{*} \times K^{*}$ be the map defined by

$$
\sigma^{*}(g)=([g], \sigma(g))
$$

Claim. σ^{*} is an $L \cup\{I\}$-isomorphism.
First we claim that σ^{*} is $\{+,-, 0\} \cup L_{\mathrm{c}}$-isomorphic. In the case of + , we show that $\sigma\left(g_{1}\right)+\sigma\left(g_{2}\right)=\sigma\left(g_{1}+g_{2}\right)$ for any $g_{1}, g_{2} \in G^{*}$. Note that $m g_{1}=$ $\sum m_{i} g_{i}+m \sigma\left(g_{1}\right)$ and $n g_{2}=\sum n_{i} g_{i}+n \sigma\left(g_{2}\right)$ for some finite subset $\left\{g_{i}\right\}_{i \in N}$ of G_{0}, some m and $n \in \boldsymbol{Z} \backslash\{0\}$ and some m_{i} and $n_{i} \in \boldsymbol{Z}(i \in N)$. So $m n\left(g_{1}+g_{2}\right)=$ $\sum\left(n m_{i}+m n_{i}\right) g_{i}+m n\left(\sigma\left(g_{1}\right)+\sigma\left(g_{2}\right)\right)$. Then $\sigma\left(g_{1}+g_{2}\right)=\sigma\left(g_{1}\right)+\sigma\left(g_{2}\right)$. In the case of L_{c}, we show that $\sigma\left(c^{*}\right)=0$. Since S is a maximal free subset of $\left\{c^{*}: c \in L_{\mathrm{c}}\right\}$, for any $c \in L_{\mathrm{c}}$ there exist some $m \in \boldsymbol{Z} \backslash\{0\}$, finite subsets $\left\{c_{i}^{*}\right\}_{i \in N}$
of S and $\left\{m_{i}\right\}_{i \in N}$ of \boldsymbol{Z} such that $m c^{*}=\sum m_{i} c_{i}^{*}$. So $m\left[c^{*}\right]=\sum m_{i}\left[c_{i}^{*}\right]$ and $\left\{c_{i}^{*}\right\}_{i \in N} \subset G_{0}$. By the definition of $\sigma, \sigma\left(c^{*}\right)=1 / m\left(m c^{*}-\sum m_{i} c_{i}^{*}\right)=0$. In the case of 0 and - , it is similar.

Second we claim that σ^{*} is injective and surjective. (injective) Suppose that $\sigma^{*}(g)=(0,0)$. Then $[g]=0$ and $1 / m\left(m g-\sum m_{i} g_{i}\right)=0$ for some subset $\left\{g_{i}\right\}_{i \in N}$ of $G_{0}, m \in \boldsymbol{Z} \backslash\{0\}$ and $m_{i} \in \boldsymbol{Z}(i \in N)$. Then $0=m[g]=\sum m_{i}\left[g_{i}\right]$. Since H_{0} is free, $m_{i}=0(i \in N)$. So we have $g=0$. (surjective) For any $([g], k) \in H^{*} \times K^{*}$, we pick a finite subset $\left\{g_{i}\right\}_{i \in N}$ of $G_{0}, m \in \boldsymbol{Z} \backslash\{0\}$ and $m_{i} \in \boldsymbol{Z}(i \in N)$ such that $m[g]=\sum m_{i}\left[g_{i}\right]$. We put $g_{0}:=g-1 / m\left(m g-\sum m_{i} g_{i}\right)+k$. Then we have $\left[g_{0}\right]=$ $[g]$ and $\sigma\left(g_{0}\right)=1 / m\left(m g_{0}-\sum m_{i} g_{i}\right)=k$.

Next we claim that σ^{*} is $\{<\}$-isomorphic. Suppose that $g_{1}<g_{2}$. If $g_{1}-g_{2} \notin I$, by the definition of $<$, it is trivial. If $g_{1}-g_{2} \in I, m\left[g_{1}\right]=m\left[g_{2}\right]=$ $\sum m_{i}\left[g_{i}\right]$ for some finite subset $\left\{g_{i}\right\}_{i \in N}$ of $G_{0}, m \in \boldsymbol{Z} \backslash\{0\}$ and $m_{i} \in \boldsymbol{Z}(i \in N)$. So $\sigma\left(g_{1}\right)=1 / m\left(m g_{1}-\sum m_{i} g_{i}\right)<1 / m\left(m g_{2}-\sum m_{i} g_{i}\right)=\sigma\left(g_{2}\right)$.

Last by the definition, we have that σ^{*} is $L_{\mathrm{r}} \cup\{I\}$-isomorphic.

4 Main Theorem

In this section, $L=L_{\mathrm{og}} \cup L_{\mathrm{r}} \cup L_{\mathrm{c}}$, where L_{og} is the language $\{0,+,-,<\}$, and L_{r} and L_{c} respectively are a set of predicate symbols and a set of constant symbols. I is a fixed unary predicate symbol not contained in L.

Theorem 6. Let H be an L-structure such that $H \mid L_{\text {og }}$ is an ordered Abelian group. Let K be a divisible ordered Abelian group. We consider K as an $L_{\mathrm{og}}{ }^{-}$ structure. Let $G:=H \times K$ be an $L \cup\{I\}$-structure given by the product interpretation of H and K. Then if H admits $Q E$ in L, G admits $Q E$ in $L \cup\{I\}$. Moreover H is recursively axiomatizable, so is G.

Proof. It is clear that $T h_{L \cup\{I\}}(G)$ is complete for quantifier free sentences. By fact 1 , it is sufficient to show that:

Claim. Let G_{1}, G_{2} be \aleph_{0}-saturated models of $T h_{L \cup\{I\}}(G)$. Suppose $\bar{g}^{1} \in G_{1}$ and $\bar{g}^{2} \in G_{2}$ such that $\operatorname{qftp}\left(\bar{g}^{1}\right)=\operatorname{qftp}\left(\bar{g}^{2}\right)$. Then for any $g^{1} \in G_{1}$ there exists $g^{2} \in G_{2}$ such that $\operatorname{qftp}\left(\bar{g}^{1}, g^{1}\right)=\operatorname{qftp}\left(\bar{g}^{2}, g^{2}\right)$.

Before proving the claim above, we need some preparation. By lemma 5, for $j=1,2$ we can assume that $G_{j}=H_{j} \times K_{j}$ where H_{j} is an L-structure, K_{j} is an L_{og}-structure and G_{j} is the $L \cup\{I\}$-structure given by the product interpretation
of H_{j} and K_{j}. Let \bar{g}^{j} be an tuple $\left(g_{1}^{j}, \ldots, g_{n}^{j}\right)$ of G_{j} with $g_{i}^{j}=\left(h_{i}^{j}, k_{i}^{j}\right)$. Let \bar{h}^{j} be the tuple $\left(h_{1}^{j}, \ldots, h_{n}^{j}\right)$ of H_{j}. Let \bar{k}^{j} be the tuple $\left(k_{1}^{j}, \ldots, k_{n}^{j}\right)$ of K_{i}.

Remark 7. Since the language of G_{j} contains I, if \bar{g}^{1} and \bar{g}^{2} have the same quantifier free type, then \bar{h}^{1} and \bar{h}^{2} have the same quantifier free type. (\bar{k}^{1} and \bar{k}^{2} may not have the same quantifier free type.) Moreover since H admits QE, \bar{h}^{1} and \bar{h}^{2} have the same type.

Similarly as in remark 4 , for any quantifier free L-formula $\phi(\bar{y})$, there exists a quantifier free $L \cup\{I\}$-formula $\psi(\bar{x})$ such that for $j=1,2, \bar{g}^{j}$ is a solution of $\psi(\bar{x})$ if and only if \bar{h}^{j} is a solution of $\phi(\bar{y})$. Thus \bar{h}^{1} and \bar{h}^{2} have the same quantifier free type.

We begin our proof of the claim. We fix $g^{1} \in G_{1}$ and choose $\varphi_{1}\left(x, \bar{g}^{1}\right), \ldots$, $\varphi_{n}\left(x, \bar{g}^{1}\right) \in \operatorname{qftp}\left(g^{1} / \bar{g}^{1}\right)$. Let $\Phi\left(x, \bar{g}^{1}\right)$ be the set $\left\{\varphi_{1}\left(x, \bar{g}^{1}\right), \ldots, \varphi_{n}\left(x, \bar{g}^{1}\right)\right\}$. We need to show that $\Phi\left(x, \bar{g}^{2}\right)$ (the set obtained from $\Phi\left(x, \bar{g}^{1}\right)$ replacing \bar{g}^{1} by \bar{g}^{2}.) is satisfied in G_{2}. Let $\Phi(x, \bar{x})$ be the set of formulas obtained from $\Phi\left(x, \bar{g}^{1}\right)$ replacing \bar{g}^{1} by the tuples \bar{x} of variables without x. Note that the formula in the form $t \neq s$ or $\neg(t<s)$ is equivalent a disjunction of formulas in the form $t=s$ or $t<s$. So we can assume that the set $\Phi(x, \bar{x})$ has the following form:

$$
\left\{t_{i}(\bar{x})<n_{i} x\right\}_{i \in I_{1}} \cup\left\{n_{i} x=t_{i}(\bar{x})\right\}_{i \in I_{2}} \cup\left\{n_{i} x<t_{i}(\bar{x})\right\}_{i \in I_{3}} \cup \Phi_{0}(x, \bar{x})
$$

where $t_{i}(\bar{x})$ are terms without x and $n_{i} \in N$ and $\Phi_{0}(x, \bar{x})$ is a finite set of $L \cup\{I\}$-formulas in the form $I(t(x, \bar{x})), R(s(x, \bar{x}))$ or these negations with terms $t(x, \bar{x})$ and $s(x, \bar{x})$. For any $m \in N \backslash\{0\}$, formulas $t<s$ and $t=s$ are equivalent to $m t<m s$ and $m t=m s$, respectively. Then we can assume that $\Phi(x, \bar{x})$ is the following set:

$$
\left\{s_{i}(\bar{x})<N x\right\}_{i \in I_{1}} \cup\left\{N x=s_{i}(\bar{x})\right\}_{i \in I_{2}} \cup\left\{N x<s_{i}(\bar{x})\right\}_{i \in I_{3}} \cup \Phi_{0}(x, \bar{x})
$$

where $s_{i}(\bar{x})$ are new terms without x and $N \in N$.
There are two cases to be considered in the following:
Case 1. First we assume that $I_{2} \neq \varnothing$. We fix a term $s(\bar{x})$ of $\left\{s_{i}(\bar{x})\right\}_{i \in I_{2}}$. We remark that for $j=1$ and 2 , finding $x \in G_{j}$ satisfying that

$$
\left\{s_{i}\left(\bar{g}^{j}\right)<N x\right\}_{i \in I_{1}} \cup\left\{N x=s_{i}\left(\bar{g}^{j}\right)\right\}_{i \in I_{2}} \cup\left\{N x<s_{i}\left(\bar{g}^{j}\right)\right\}_{i \in I_{3}}
$$

is equivalent to finding $x \in G_{j}$ satisfying that

$$
\left\{N x=s\left(\bar{g}^{j}\right)\right\}
$$

Then the condition above is equivalent to finding $h^{j} \in H_{j}$ satisfying that $N y=s\left(\bar{h}^{j}\right)$ and finding $k^{j} \in K_{j}$ satisfying that $N z=s\left(\bar{k}^{j}\right)$. By the definition of
$R\left(R \in L_{\mathrm{r}}\right)$ and I, for $j=1,2$, finding $g^{j} \in G_{j}$ satisfying that $\Phi_{0}\left(x, \bar{g}^{1}\right)$ is equivalent to finding $h^{j} \in H_{j}$ satisfying that $\Psi\left(y, \bar{h}^{j}\right)$ where $\Psi\left(y, \bar{h}^{j}\right)$ is the set of L-formulas obtained from $\Phi_{0}\left(x, \bar{g}^{j}\right)$ replacing $I\left(t\left(x, \bar{g}^{j}\right)\right)$ and $R\left(s\left(x, \bar{g}^{j}\right)\right)$ by $t\left(y, \bar{h}^{j}\right)=0$ and $R\left(s\left(y, \bar{h}^{j}\right)\right)$, respectively. So for $j=1,2$ finding $x \in G_{j}$ satisfying that $\Phi\left(x, \bar{g}^{j}\right)$ is equivalent to finding $y \in H_{j}$ satisfying that

$$
\left\{N y=s\left(\bar{h}^{j}\right)\right\} \cup \Psi\left(y, \bar{h}^{j}\right)
$$

and $z \in K_{j}$ satisfying that

$$
\left\{N z=s\left(\bar{k}^{j}\right)\right\} .
$$

By remark 7, \bar{h}^{1} and \bar{h}^{2} have the same type. By the assumption, there exists some solution $h^{1} \in H_{1}$ of $\left\{N y=s\left(\bar{h}^{1}\right)\right\} \cup \Psi\left(y, \bar{h}^{1}\right)$. So there exists some solution $h^{2} \in H_{2}$ of $\left\{N y=s\left(\bar{h}^{2}\right)\right\} \cup \Psi\left(y, \bar{h}^{2}\right)$. By the divisibility of K_{2}, there exists $k^{2} \in K_{2}$ such that $N k^{2}=s\left(\bar{k}^{2}\right)$. Then $\left(h^{2}, k^{2}\right) \in G_{2}$ is a solution of $\left\{N x=u\left(\bar{g}^{2}\right)\right\} \cup$ $\Phi_{0}\left(x, \bar{g}^{2}\right)$. Thus $\left(h^{2}, k^{2}\right)$ is a solution of $\Phi\left(x, \bar{g}^{2}\right)$.

Case 2. Second we assume that $I_{2}=\varnothing$. We can assume that I_{1} and $I_{3} \neq \varnothing$ since other cases can be treated similarly. Since \bar{g}^{1} and \bar{g}^{2} have the same quantifier free type, there exists $1 \in I_{1}$ such that $s_{l}\left(\bar{g}^{1}\right)$ and $s_{l}\left(\bar{g}^{2}\right)$ are the maximums of $\left\{s_{i}\left(\bar{g}^{1}\right)\right\}_{i \in I_{1}}$ and $\left\{s_{i}\left(\bar{g}^{2}\right)\right\}_{i \in I_{1}}$ respectively, and there exists $u \in I_{3}$ such that $s_{u}\left(\bar{g}^{1}\right)$ and $s_{u}\left(\bar{g}^{2}\right)$ are the minimums of $\left\{s_{i}\left(\bar{g}^{1}\right)\right\}_{i \in I_{3}}$ and $\left\{s_{i}\left(\bar{g}^{2}\right)\right\}_{i \in I_{3}}$ respectively. Similarly as in the case 1 , for $j=1$ and 2 , finding $x \in G^{j}$ satisfying that

$$
\left\{s_{i}\left(\bar{g}^{j}\right)<N x\right\}_{i \in I_{1}} \cup\left\{N x<s_{i}\left(\bar{g}^{j}\right)\right\}_{i \in I_{3}}
$$

is equivalent to finding $x \in G^{j}$ satisfying that

$$
\left\{s_{l}\left(\bar{g}^{j}\right)<N x<s_{u}\left(\bar{g}^{j}\right)\right\} .
$$

By the definition of $<$, for $j=1,2$, finding $x \in G_{j}$ satisfying $\Phi\left(x, \bar{g}^{j}\right)$ is equivalent to either (a), (b), (c) or (d) in the following:
(a) finding $y \in H_{j}$ satisfying $\left\{s_{l}\left(\bar{h}^{j}\right)<N y<s_{u}\left(\bar{h}^{j}\right)\right\} \cup \Psi\left(y, \bar{h}^{j}\right)$
(b) finding $y \in H_{j}$ satisfying $\left\{s_{l}\left(\bar{h}^{j}\right)=N y<s_{u}\left(\bar{h}^{j}\right)\right\} \cup \Psi\left(y, \bar{h}^{j}\right)$ and $z \in K_{j}$ satisfying $\left\{s_{l}\left(\bar{k}^{j}\right)<N z\right\}$
(c) finding $y \in H_{j}$ satisfying $\left\{s_{l}\left(\bar{h}^{j}\right)<N y=s_{u}\left(\bar{h}^{j}\right)\right\} \cup \Psi\left(y, \bar{h}^{j}\right)$ and $z \in K_{j}$ satisfying $\left\{N z<s_{u}\left(\bar{k}^{j}\right)\right\}$
(d) finding $y \in H_{j}$ satisfying $\left\{s_{l}\left(\bar{h}^{j}\right)=N y=s_{u}\left(\bar{h}^{j}\right)\right\} \cup \Psi\left(y, \bar{h}^{j}\right)$ and $z \in K_{j}$ satisfying $\left\{s_{l}\left(\bar{k}^{j}\right)<N z<s_{u}\left(\bar{k}^{j}\right)\right\}$.

In the case (a). Since \bar{h}^{1} and \bar{h}^{2} have the same type, there exists some solution $h^{2} \in H_{2}$ of $\left\{s_{l}\left(\bar{h}^{2}\right)<N y<s_{u}\left(\bar{h}^{2}\right)\right\} \cup \Psi\left(y, \bar{h}^{2}\right)$. Thus for any $k^{2} \in K_{2},\left(h^{2}, k^{2}\right) \in G_{2}$ is a solution of $\Phi\left(x, \bar{g}^{2}\right)$.

In the case (b). For a similar reason as in the case (a), there exists some solution $h^{2} \in H_{2}$ of $\left\{s_{l}\left(\bar{h}^{2}\right)=N y<s_{u}\left(\bar{h}^{2}\right)\right\} \cup \Psi\left(y, \bar{h}^{2}\right)$. Since there exists $k^{1} \in K_{1}$ such that $s_{l}\left(\bar{k}^{1}\right)<N k^{1}, K_{1} \neq\{0\}$. Since $K_{1} \equiv K_{2}, K_{2} \neq\{0\}$. So there exists $k^{2} \in K_{2}$ such that $s_{l}\left(\bar{k}^{2}\right)<N k^{2}$. Then $\left(h^{2}, k^{2}\right) \in G_{2}$ is a solution of $\Phi\left(x, \bar{g}^{2}\right)$.

In the case (c). Similarly above, $\Phi\left(x, \bar{g}^{2}\right)$ has a solution of G_{2}.
In the case (d). Similarly there exists some solution $h^{2} \in H_{2}$ of $\left\{s_{l}\left(\bar{h}^{2}\right)=\right.$ $\left.N y=s_{u}\left(\bar{h}^{2}\right)\right\} \cup \Psi\left(y, \bar{h}^{2}\right)$. By the definition of the product interpretation, for $j=1$ and 2, both $s_{l}\left(\bar{h}^{j}\right)=s_{u}\left(\bar{h}^{j}\right)$ and $s_{l}\left(\bar{k}^{j}\right)<s_{u}\left(\bar{k}^{j}\right)$ hold in H_{j} and K_{j} respectively if and only if both $s_{l}\left(\bar{g}^{j}\right)<s_{u}\left(\bar{g}^{j}\right)$ and $s_{l}\left(\bar{g}^{j}\right)-s_{u}\left(\bar{g}^{j}\right) \in I$ hold in G_{j}. Since \bar{g}^{1} and \bar{g}^{2} have the same quantifier free type, $s_{l}\left(\bar{k}^{2}\right)<s_{u}\left(\bar{k}^{2}\right)$ holds in K_{2}. By the divisibility of K_{2}, there exists $k^{2} \in K_{2}$ such that $s_{l}\left(\bar{k}^{2}\right)<N k^{2}<s_{u}\left(\bar{k}^{2}\right)$. Then $\left(h^{2}, k^{2}\right) \in G_{2}$ is a solution of $\Phi\left(x, \bar{g}^{2}\right)$.

Let $q(x):=\left\{\varphi\left(x, \bar{g}^{2}\right): \varphi\left(x, \bar{g}^{1}\right) \in \operatorname{qftp}\left(g^{1} / \bar{g}^{1}\right)\right\}$. We have shown that each finite subset of $q(x)$ has a solution in G_{2}. By the \aleph_{0}-saturation of G_{2}, there exists a solution g^{2} of $q(x)$. Thus we have $\operatorname{qftp}\left(\bar{g}^{1}, g^{1}\right)=\operatorname{qftp}\left(\bar{g}^{2}, g^{2}\right)$.

Last we show that in the theorem, if H is recursively axiomatizable, then so is G. In proof of the theorem, we only use the four sets T_{1}, \ldots, T_{4} of axioms as follows;

1. T_{1} says that I is a divisible ordered abelian group.
2. T_{2} says that for any model G^{*} of T_{2}, H^{*} is well defined as an L-structure.
3. T_{3} says that for any model G^{*} of T_{3}, H^{*} is equivalent to H.
4. T_{4} says that any model G^{*} of T_{4} is equivalent to G for quantifier free sentences.
The sets T_{1}, T_{2} and T_{3} need to satisfy that $H^{*} \equiv H, K^{*} \equiv K, G^{*} \cong H^{*} \times K^{*}$. The set T_{4} needs to satisfy the assumption of fact 1 used in the proof of the theorem. It is easy that T_{1} and T_{2} are recursively axiomatizable. So we will show in the case of T_{3} and T_{4}.

In the case of T_{3}, as in remark 4 , for any L-sentence ϕ, there exists some $L \cup\{I\}$-sentence ψ_{ϕ} such that $H \models \phi \leftrightarrow G \models \psi_{\phi}$. Then $T_{3}=\left\{\psi_{\phi} \mid H \models \phi\right\}$. Since H is recursively axiomatizable, so is T_{3}.

In the case of $T_{4}, T_{4}=\{\phi \mid \phi$ is quantifier free $L \cup\{I\}$-sentence such that $G \models \phi\}$. By the interpretation of constant symbols, for any closed term t, any formula $I(t)$ is equivalent to the formula $t=0$ in G. Then any quantifier free $L \cup\{I\}$-sentence is defined by some quantifier free L-sentence in G. By the definition of the product interpretation, G is equivalent to H for quantifier free L sentences. Since H is recursively axiomatizable, so is T_{4}.

By the previous theorem, the following is trivial.

Quantifier elimination results for products of ordered Abelian groups

Corollary 8. In previous theorem, we suppose that $I=\{0\} \times K$ is defined by some quantifier free L-formula in G. If H admits $Q E$ in L, then G admits $Q E$ in L. Moreover H is recursively axiomatizable, so is G.

References

[1] Y. Komori, Completeness of two theories on ordered Abelian group and embedding relations. Nagoya Math. J., 77 (1980), 33-39.
[2] C. C. Chang and H. J. Keisler, Model theory. North-Holland Pub. Co., 1973.
[3] Wilfird Hodges, Model theory. Cambridge University Press, 1993.

Nagatsuda-ryou 203, 2456-1 Nagatsuda-cho, Midori-ku, Yokohama-shi Kanagawa, 226-0026, Japan

[^0]: Received December 18, 2002.

