QUANTIFIER ELIMINATION RESULTS FOR PRODUCTS OF ORDERED ABELIAN GROUPS

By

Nobuya Suzuki

1 Introduction

Komori [1] introduced the notion of semi-discrete ordered Abelian group with divisible infinitesimals. Roughly speaking, such groups are products of a Z-like group and a Q-like group. In [1], he showed that such groups are axiomatized by his set SC of axioms. In fact he showed that SC is complete and admits quantifier elimination (QE) in some language expanding $L_{og} =$ $\{0, +, -, <\}$. In this paper, we shall evolve his study and prove QE for products of ordered Abelian groups H and K, where H admits QE and K is divisible. However, like him, we need to expand the language slightly. First let us explain Komori's axiom. SC is the following set of sentences:

- 1. the axioms for ordered Abelian groups;
- 2. the axioms for a semi-discrete ordering

$$0 < 1, \quad \forall x(2x < 1 \lor 1 < 2x);$$

3. the axioms for infinitesimals

$$\forall x(2x < 1 \rightarrow nx < 1) \quad (n = 2, 3, \ldots);$$

4. the axioms for D_n 's

$$\forall x (D_n(x) \leftrightarrow \exists y \exists z (-1 < 2z < 1 \land x = ny + z) \quad (n = 2, 3, \ldots)$$

$$\forall x (D_n(x) \lor D_n(x+1) \lor \cdots \lor D_n(x+n-1)) \quad (n = 2, 3, \ldots);$$

5. the axioms for divisible infinitesimals

$$\forall x(-1 < 2x < 1 \rightarrow \exists y(x = ny) \quad (n = 2, 3, \ldots);$$

6. the axiom for existence of infinitesimals

$$\exists x (0 < x < 1);$$

Received December 18, 2002.

Notice that SC is not formulated in the pure ordered group language. Its language is $L = L_{og} \cup \{D_n : n = 2, 3, ...\} \cup \{1\}$. A canonical model of SC is the direct product group $Z \times Q$, where

- 1. the constants 0 and 1 are interpreted to the elements (0,0) and (1,0), respectively
- 2. the predicate symbol < is interpreted as the lexicographic order of Z and Q,
- 3. the predicate symbols $D_n(x)$ (n = 2, 3, ...) means that x is divisible by n.

Notice that Z admits QE in L and that Q admits QE in L_{og} . So, in a sense, Komori's result can be considered a quantifier elimination result for the product group $H \times K$ where both H and K have QE. The above L-structure $Z \times Q$ seems to have two important properties that are essential in Komori's proof. One is that the infinitesimal set $I = \{0\} \times Q$ is definable (by the quantifier free formula -1 < 2x < 1). The other is that Q is divisible. In this paper, very roughly, we show that if the two properties are satisfied, then we can show QE for the product group $H \times K$ in some expanded language. (See section 3).

For stating our main result more precisely, we need some definition. Let L_r and L_c respectively be sets of predicate and constant symbols. Let L be the language $L_{og} \cup L_r \cup L_c$. Let H be an L-structure such that $H|L_{og}$ is an ordered Abelian group. Let K be an L_{og} -structure such that K is an ordered Abelian group. We will consider $G := H \times K$ as an $L \cup \{I\}$ -structure by the following interpretation:

1. $0^G := (0^H, 0^K)$.

2.
$$c^G := (c^G, 0^K) \ (c \in L_c)$$

- 3. +, are defined coordinatewise.
- 4. < is the lexicographic order of H and K.
- 5. Each n-ary predicate symbol R of L_r is defined by

$$R^G := \{ (\bar{g}) \in G^n : \bar{h} \in R^H \}$$

where $\bar{g} = (g_1, ..., g_n)$ with $g_i = (h_i, k_i)$ (i = 1, ..., n) and $\bar{h} = (h_1, ..., h_n)$.

MAIN RESLUT. Let L be the language $L_{og} \cup L_r \cup L_c$ where L_{og} is the language $\{0, +, -, <\}$, L_r and L_c are sets of predicate symbols and constant symbols respectively. Let H be an L-structure such that $H|L_{og}$ is an ordered Abelian group. Let K be a divisible ordered Abelian group. (We consider K as an L_{og} -structure.) Let $G := H \times K$ be an L-structure given by the interpretation above. Let $I = \{0\} \times K$ be defined by some quantifier free L-formula in G. If H admits QE in L,

then G admits QE in L. Moreover in the result above, if H is recursively axiomatizable, then so is G.

2 Preliminaries

In this paper we require some basic knowledge of model theory. Terminologies we use are rather standard. However, let us explain some of them. Ldenotes a language and T denotes a consistent set of L-sentences. M denotes an L-structure. Finite tuples of variables are denoted by \bar{x}, \bar{y}, \ldots Finite tuples of elements in M are denoted by \bar{a}, \bar{b}, \ldots Subsets of M are denoted by A, B, \ldots If $\bar{a} = a_1, \ldots, a_n$, we simply write $\bar{a} \in M$ instead of writing $a_1 \in M, \ldots, a_n \in M$. An L(A)-formula means an L-formula with parameters from A. Similarly an L(A)term means an L-term with parameters form A.

We say that T is an L-theory if there exists a model M of T. $\operatorname{Th}_L(M)$ denotes the theory of M, i.e. the set of all L-sentences which hold in M. If L is clear from the context, L will be omitted, and we will simply write $\operatorname{Th}(M)$ instead of writing $\operatorname{Th}_L(M)$. We say that a theory T is complete if for any L-sentence ϕ , T proves ϕ or $\neg \phi$.

We say that T admits quantifier elimination in the language L if for any Lformula $\phi(\bar{x})$, there exists a quantifier free L-formula $\psi(\bar{x})$ such that T proves $\forall \bar{x}(\phi(\bar{x}) \leftrightarrow \psi(\bar{x}))$. We say that M admits quantifier elimination in L if $Th_L(M)$ admits quantifier elimination in L.

Let $A \subset M$. We say that a set $p(\bar{x})$ of L(A)-formulas (with free variables \bar{x}) is a type if any finite subset of $p(\bar{x})$ has a solution in M. We define the type of $\bar{a} \in M$ over A to be the set of L(A)-formulas $\psi(\bar{x})$ such that \bar{a} is a solution of $\psi(\bar{x})$. The type of $\bar{a} \in M$ over A is denoted by $tp(\bar{a}/A)$. If $A = \emptyset$, we simply write $tp(\bar{a})$ instead of $tp(\bar{a}/A)$. We define the quantifier free type of \bar{a} over A to be the set of quantifier free L(A)-formula $\psi(\bar{x})$'s such that \bar{a} is a solution of $\psi(\bar{x})$. The quantifier free type of \bar{a} over A is denoted by $qftp(\bar{a}/A)$. Similarly if $A = \emptyset$, we write $qftp(\bar{a})$ instead of $qftp(\bar{a}/A)$.

We say that a model M of T is κ -saturated if whenever A is a subset of M with $|A| < \kappa$ then any type over A has a solution in M.

In this paper we use the following well-known fact:

FACT 1. Let L be a language. Let T be an L-theory such that T is complete for quantifier free sentences. Then the following are equivalent;

- 1. T is complete and admits quantifier elimination in L.
- 2. Let M and N be \aleph_0 -saturated models of T. Suppose $\bar{a} \in M$ and $\bar{b} \in N$ have

the same quantifier free type, i.e. $qftp(\bar{a}) = qftp(\bar{b})$. Then for any $a \in M$ there exists $b \in N$ such that $qftp(\bar{a}, a) = qftp(\bar{b}, b)$.

3 Product of Ordered Abelian Groups

In this section we introduce the notion of the product interpretation. Let G be a group. We say that a subset A of G is free if whenever $\sum_{i \in N} m_i a_i = 0$ for some finite subsets $\{a_i\}_{i \in N}$ of A and $\{m_i\}_{i \in N}$ of Z, then $m_i = 0$ $(i \in N)$.

DEFINITION 2. Let G be a group. For any $A \subset G$,

$$H(A) := \{ h \in G : mh \in \langle A \rangle \text{ for some } m \in \mathbb{Z} \setminus \{0\} \},\$$

where $\langle A \rangle$ is the subgroup of G generated by A.

LEMMA 3. Let $G(\neq \{0\})$ be a torsion free Abelian group. Then for any free subset S of G, there exists some free subset A of G with the following conditions;

- 1. $S \subset A$,
- $2. \ G = H(A),$
- 3. If $mg = \sum m_i a_i$ and $ng = \sum n_i a_i$ for some element g of G, some finite subset $\{a_i\}_{i \in N}$ of A, some m, n of $\mathbb{Z} \setminus \{0\}$ and some $m_i, n_i \in \mathbb{Z}$ $(i \in N)$, then $nm_i = mn_i$ $(i \in N)$.

PROOF. Since G is torsion free, by the Zorn's lemma, there exists a maximal free subset A of G containing S. Then A satisfies the condition of the lemma.

Let L_{og} be the language $\{0, +, -, <\}$ of ordered groups. Let L_r and L_c be sets of predicate and constant symbols, respectively. Let L be the language $L_{og} \cup L_r \cup L_c$. Let H be an L-structure such that $H|L_{og}$ is an ordered Abelian group. Let K be an L_{og} -structure such that K is an ordered Abelian group. Let Ibe a new unary predicate symbol. In what follows, we will consider $G := H \times K$ as an $L \cup \{I\}$ -structure by the following interpretation:

- 1. $0^G := (0^H, 0^K)$.
- 2. $c^G := (c^H, 0^K) \ (c \in L_c).$
- 3. +, are defined coordinatewise.
- 4. < is the lexicographic order of H and K.
- 5. Each n-ary predicate symbol R of L_r is defined by

$$R^G := \{ \bar{g} \in G^n : \bar{h} \in R^H \}$$

where $\bar{g} = (g_1, \ldots, g_n)$ with $g_i = (h_i, k_i)$ $(i = 1, \ldots, n)$ and $\bar{h} = (h_1, \ldots, h_n)$. 6. $I^G := \{0^H\} \times K$.

We call this interpretation the product interpretation of H and K.

Let $L = L_{og} \cup L_r \cup L_c$. Let H be an L-structure such that $H|L_{og}$ is an ordered Abelian group. Let K be an L_{og} -structure such that K is an ordered Abelian group. Let $G := H \times K$ be an $L \cup \{I\}$ -structure given by the product interpretation of H and K.

Let $G^* \models Th(G)$. Let $I^* := \{g \in G^* : g \models I(x)\}$. An equivalent relation \sim on G^* is defined by $a \sim b$ if $a - b \in I^*$. Let [g] be the equivalent class of g. Let $H^* := \{[g] : g \in G^*\}$ and $K^* := I^*$. We will consider H^* as an L-structure by the following interpretation:

- 1. $0, c \ (c \in L_c), + \text{ and } \text{ are defined naturally.}$
- 2. Let g_1 and $g_2 \in G^*$. $[g_1] < [g_2]$ is defined by $g_1 < g_2$ and $g_1 g_2 \notin I^*$.
- 3. Each n-ary predicate R of L_r is defined by

$$R^{H^*} := \{ [\bar{g}] \in (H^*)^n : \bar{g} \in R^{G^*} \}$$

where $\bar{g} = (g_1, ..., g_n)$ and $[\bar{g}] = ([g_1], ..., [g_n])$

and consider K^* as an L_{og} -substructure of G^* .

REMARK 4. $H^* \equiv H$ and $K^* \equiv K$.

This can be shown as follows: It is trivial that $K^* \equiv K$. So we show that $H^* \equiv H$. Let g_1 and $g_2 \in G^*$. Let \overline{g} be an tuple of elements of G^* . By the definition of H^* , the followings are hold.

1. $[g_1] = [g_2]$ holds in $H^* \leftrightarrow g_1 - g_2 \in I^*$ holds in G^* .

2. $[g_1] < [g_2]$ holds in $H^* \leftrightarrow$ both $g_1 < g_2$ and $g_1 - g_2 \notin I^*$ hold in G^* .

3. $R([\bar{g}])$ holds in $H^* \leftrightarrow R(\bar{g})$ holds in G^* $(R \in L_r)$.

So for any L-sentence ϕ there exists an $L \cup \{I\}$ -sentence ψ such that ϕ holds in H^* iff ψ holds in G^* . Since $G^* \equiv G$, we have $H^* \equiv H$.

Let $H^* \times K^*$ be the $L \cup \{I\}$ -structure given by the product interpretation of H^* and K^* .

LEMMA 5. Let K be divisible. Then there exists some $L \cup \{I\}$ -isomorphism σ from G^* to $H^* \times K^*$.

PROOF. Suppose that $H = \{0\}$. Then $H^* = \{0\}$ and $G^* = K^*$. In this case, it is trivial. So we can assume that $H \neq \{0\}$. Then H^* is nontrivial torsion free group. Let S be a maximal free subset of $\{c^* : c \in L_c\}$ where c^* is the interpretation of c in G^* . We claim that $[S] := \{[c^*] : c^* \in S\}$ is free. Suppose that $\sum m_i [c_i^*] = 0$ for some finite subsets $\{c_i^*\}_{i \in N}$ of S and $\{m_i\}_{i \in N}$ of Z. Then $\sum m_i c_i^* \in I^*$. By the definition of the product interpretation and $G^* \equiv G$, $\sum m_i c_i^* = 0$. Since S is free, $m_i = 0$ $(i \in N)$.

So by lemma 3, there exists some subset H_0 of H^* with the following conditions;

- 1. $[S] \subset H_0$.
- 2. $H^* = H(H_0)$.
- 3. If $m[g] = \sum m_i[g_i]$ and $n[g] = \sum n_i[g_i]$ for some element [g] of H^* , some finite subset $\{[g_i]\}_{i \in N}$ of H_0 , some m, n of $\mathbb{Z} \setminus \{0\}$ and some $m_i, n_i \in \mathbb{Z}$ $(i \in N)$, then $nm_i = mn_i$ $(i \in N)$.

We fix a subset G_0 of G^* with the following conditions;

S ⊂ G₀.
H₀ = {[g] : g ∈ G₀}.
If g₁ ≠ g₂ ∈ G₀, then [g₁] ≠ [g₂].

Let σ be the map from G^* to K^* defined by

$$\sigma(g) := 1/m \Big(mg - \sum m_i g_i \Big)$$

where $m[g] = \sum m_i[g_i]$ for some subset $\{g_i\}_{i \in N}$ of G_0 , $m \in \mathbb{Z} \setminus \{0\}$ and $m_i \in \mathbb{Z}$ $(i \in N)$. Note that σ is well-defined by the divisibility of K and the conditions of H_0 and G_0 . Let $\sigma^* : G^* \to H^* \times K^*$ be the map defined by

$$\sigma^*(g) = ([g], \sigma(g)).$$

CLAIM. σ^* is an $L \cup \{I\}$ -isomorphism.

First we claim that σ^* is $\{+, -, 0\} \cup L_c$ -isomorphic. In the case of +, we show that $\sigma(g_1) + \sigma(g_2) = \sigma(g_1 + g_2)$ for any $g_1, g_2 \in G^*$. Note that $mg_1 = \sum m_i g_i + m\sigma(g_1)$ and $ng_2 = \sum n_i g_i + n\sigma(g_2)$ for some finite subset $\{g_i\}_{i \in N}$ of G_0 , some m and $n \in \mathbb{Z} \setminus \{0\}$ and some m_i and $n_i \in \mathbb{Z}$ $(i \in N)$. So $mn(g_1 + g_2) = \sum (nm_i + mn_i)g_i + mn(\sigma(g_1) + \sigma(g_2))$. Then $\sigma(g_1 + g_2) = \sigma(g_1) + \sigma(g_2)$. In the case of L_c , we show that $\sigma(c^*) = 0$. Since S is a maximal free subset of $\{c^* : c \in L_c\}$, for any $c \in L_c$ there exist some $m \in \mathbb{Z} \setminus \{0\}$, finite subsets $\{c^*_i\}_{i \in N}$ of S and $\{m_i\}_{i \in N}$ of Z such that $mc^* = \sum m_i c_i^*$. So $m[c^*] = \sum m_i [c_i^*]$ and $\{c_i^*\}_{i \in N} \subset G_0$. By the definition of σ , $\sigma(c^*) = 1/m(mc^* - \sum m_i c_i^*) = 0$. In the case of 0 and -, it is similar.

Second we claim that σ^* is injective and surjective. (injective) Suppose that $\sigma^*(g) = (0,0)$. Then [g] = 0 and $1/m(mg - \sum m_i g_i) = 0$ for some subset $\{g_i\}_{i \in N}$ of $G_0, m \in \mathbb{Z} \setminus \{0\}$ and $m_i \in \mathbb{Z}$ $(i \in N)$. Then $0 = m[g] = \sum m_i[g_i]$. Since H_0 is free, $m_i = 0$ $(i \in N)$. So we have g = 0. (surjective) For any $([g], k) \in H^* \times K^*$, we pick a finite subset $\{g_i\}_{i \in N}$ of $G_0, m \in \mathbb{Z} \setminus \{0\}$ and $m_i \in \mathbb{Z}$ $(i \in N)$ such that $m[g] = \sum m_i[g_i]$. We put $g_0 := g - 1/m(mg - \sum m_i g_i) + k$. Then we have $[g_0] = [g]$ and $\sigma(g_0) = 1/m(mg_0 - \sum m_i g_i) = k$.

Next we claim that σ^* is $\{<\}$ -isomorphic. Suppose that $g_1 < g_2$. If $g_1 - g_2 \notin I$, by the definition of <, it is trivial. If $g_1 - g_2 \in I$, $m[g_1] = m[g_2] = \sum m_i[g_i]$ for some finite subset $\{g_i\}_{i\in N}$ of G_0 , $m \in \mathbb{Z} \setminus \{0\}$ and $m_i \in \mathbb{Z}$ $(i \in N)$. So $\sigma(g_1) = 1/m(mg_1 - \sum m_ig_i) < 1/m(mg_2 - \sum m_ig_i) = \sigma(g_2)$.

Last by the definition, we have that σ^* is $L_r \cup \{I\}$ -isomorphic.

4 Main Theorem

In this section, $L = L_{og} \cup L_r \cup L_c$, where L_{og} is the language $\{0, +, -, <\}$, and L_r and L_c respectively are a set of predicate symbols and a set of constant symbols. *I* is a fixed unary predicate symbol not contained in *L*.

THEOREM 6. Let H be an L-structure such that $H|L_{og}$ is an ordered Abelian group. Let K be a divisible ordered Abelian group. We consider K as an L_{og} structure. Let $G := H \times K$ be an $L \cup \{I\}$ -structure given by the product interpretation of H and K. Then if H admits QE in L, G admits QE in $L \cup \{I\}$. Moreover H is recursively axiomatizable, so is G.

PROOF. It is clear that $Th_{L\cup\{I\}}(G)$ is complete for quantifier free sentences. By fact 1, it is sufficient to show that:

CLAIM. Let G_1, G_2 be \aleph_0 -saturated models of $Th_{L \cup \{I\}}(G)$. Suppose $\bar{g}^1 \in G_1$ and $\bar{g}^2 \in G_2$ such that $qftp(\bar{g}^1) = qftp(\bar{g}^2)$. Then for any $g^1 \in G_1$ there exists $g^2 \in G_2$ such that $qftp(\bar{g}^1, g^1) = qftp(\bar{g}^2, g^2)$.

Before proving the claim above, we need some preparation. By lemma 5, for j = 1, 2 we can assume that $G_j = H_j \times K_j$ where H_j is an L-structure, K_j is an L_{og} -structure and G_j is the $L \cup \{I\}$ -structure given by the product interpretation

of H_j and K_j . Let \bar{g}^j be an tuple (g_1^j, \ldots, g_n^j) of G_j with $g_i^j = (h_i^j, k_i^j)$. Let \bar{h}^j be the tuple (h_1^j, \ldots, h_n^j) of H_j . Let \bar{k}^j be the tuple (k_1^j, \ldots, k_n^j) of K_i .

REMARK 7. Since the language of G_j contains I, if \bar{g}^1 and \bar{g}^2 have the same quantifier free type, then \bar{h}^1 and \bar{h}^2 have the same quantifier free type. (\bar{k}^1 and \bar{k}^2 may not have the same quantifier free type.) Moreover since H admits QE, \bar{h}^1 and \bar{h}^2 have the same type.

Similarly as in remark 4, for any quantifier free *L*-formula $\phi(\bar{y})$, there exists a quantifier free $L \cup \{I\}$ -formula $\psi(\bar{x})$ such that for $j = 1, 2, \bar{g}^j$ is a solution of $\psi(\bar{x})$ if and only if \bar{h}^j is a solution of $\phi(\bar{y})$. Thus \bar{h}^1 and \bar{h}^2 have the same quantifier free type.

We begin our proof of the claim. We fix $g^1 \in G_1$ and choose $\varphi_1(x, \bar{g}^1), \ldots, \varphi_n(x, \bar{g}^1) \in qftp(g^1/\bar{g}^1)$. Let $\Phi(x, \bar{g}^1)$ be the set $\{\varphi_1(x, \bar{g}^1), \ldots, \varphi_n(x, \bar{g}^1)\}$. We need to show that $\Phi(x, \bar{g}^2)$ (the set obtained from $\Phi(x, \bar{g}^1)$ replacing \bar{g}^1 by \bar{g}^2 .) is satisfied in G_2 . Let $\Phi(x, \bar{x})$ be the set of formulas obtained from $\Phi(x, \bar{g}^1)$ replacing \bar{g}^1 by the tuples \bar{x} of variables without x. Note that the formula in the form $t \neq s$ or $\neg(t < s)$ is equivalent a disjunction of formulas in the form t = s or t < s. So we can assume that the set $\Phi(x, \bar{x})$ has the following form:

$$\{t_i(\bar{x}) < n_i x\}_{i \in I_1} \cup \{n_i x = t_i(\bar{x})\}_{i \in I_2} \cup \{n_i x < t_i(\bar{x})\}_{i \in I_3} \cup \Phi_0(x, \bar{x})$$

where $t_i(\bar{x})$ are terms without x and $n_i \in N$ and $\Phi_0(x, \bar{x})$ is a finite set of $L \cup \{I\}$ -formulas in the form $I(t(x, \bar{x})), R(s(x, \bar{x}))$ or these negations with terms $t(x, \bar{x})$ and $s(x, \bar{x})$. For any $m \in N \setminus \{0\}$, formulas t < s and t = s are equivalent to mt < ms and mt = ms, respectively. Then we can assume that $\Phi(x, \bar{x})$ is the following set:

$$\{s_i(\bar{x}) < Nx\}_{i \in I_1} \cup \{Nx = s_i(\bar{x})\}_{i \in I_2} \cup \{Nx < s_i(\bar{x})\}_{i \in I_3} \cup \Phi_0(x, \bar{x})$$

where $s_i(\bar{x})$ are new terms without x and $N \in N$.

There are two cases to be considered in the following:

Case 1. First we assume that $I_2 \neq \emptyset$. We fix a term $s(\bar{x})$ of $\{s_i(\bar{x})\}_{i \in I_2}$. We remark that for j = 1 and 2, finding $x \in G_j$ satisfying that

$$\{s_i(\bar{g}^j) < Nx\}_{i \in I_1} \cup \{Nx = s_i(\bar{g}^j)\}_{i \in I_2} \cup \{Nx < s_i(\bar{g}^j)\}_{i \in I_3}$$

is equivalent to finding $x \in G_i$ satisfying that

$$\{Nx = s(\bar{g}^j)\}.$$

Then the condition above is equivalent to finding $h^j \in H_j$ satisfying that $Ny = s(\bar{h}^j)$ and finding $k^j \in K_j$ satisfying that $Nz = s(\bar{k}^j)$. By the definition of

 $R (R \in L_r)$ and I, for j = 1, 2, finding $g^j \in G_j$ satisfying that $\Phi_0(x, \bar{g}^1)$ is equivalent to finding $h^j \in H_j$ satisfying that $\Psi(y, \bar{h}^j)$ where $\Psi(y, \bar{h}^j)$ is the set of *L*-formulas obtained from $\Phi_0(x, \bar{g}^j)$ replacing $I(t(x, \bar{g}^j))$ and $R(s(x, \bar{g}^j))$ by $t(y, \bar{h}^j) = 0$ and $R(s(y, \bar{h}^j))$, respectively. So for j = 1, 2 finding $x \in G_j$ satisfying that $\Phi(x, \bar{g}^j)$ is equivalent to finding $y \in H_j$ satisfying that

$$\{Ny = s(\bar{h}^j)\} \cup \Psi(y, \bar{h}^j)$$

and $z \in K_j$ satisfying that

$$\{Nz = s(\bar{k}^j)\}.$$

By remark 7, \bar{h}^1 and \bar{h}^2 have the same type. By the assumption, there exists some solution $h^1 \in H_1$ of $\{Ny = s(\bar{h}^1)\} \cup \Psi(y, \bar{h}^1)$. So there exists some solution $h^2 \in H_2$ of $\{Ny = s(\bar{h}^2)\} \cup \Psi(y, \bar{h}^2)$. By the divisibility of K_2 , there exists $k^2 \in K_2$ such that $Nk^2 = s(\bar{k}^2)$. Then $(h^2, k^2) \in G_2$ is a solution of $\{Nx = u(\bar{g}^2)\} \cup \Phi_0(x, \bar{g}^2)$. Thus (h^2, k^2) is a solution of $\Phi(x, \bar{g}^2)$.

Case 2. Second we assume that $I_2 = \emptyset$. We can assume that I_1 and $I_3 \neq \emptyset$ since other cases can be treated similarly. Since \bar{g}^1 and \bar{g}^2 have the same quantifier free type, there exists $1 \in I_1$ such that $s_l(\bar{g}^1)$ and $s_l(\bar{g}^2)$ are the maximums of $\{s_i(\bar{g}^1)\}_{i \in I_1}$ and $\{s_i(\bar{g}^2)\}_{i \in I_1}$ respectively, and there exists $u \in I_3$ such that $s_u(\bar{g}^1)$ and $s_u(\bar{g}^2)$ are the minimums of $\{s_i(\bar{g}^1)\}_{i \in I_3}$ and $\{s_i(\bar{g}^2)\}_{i \in I_3}$ respectively. Similarly as in the case 1, for j = 1 and 2, finding $x \in G^j$ satisfying that

$$\{s_i(\bar{g}^j) < Nx\}_{i \in I_1} \cup \{Nx < s_i(\bar{g}^j)\}_{i \in I_2}$$

is equivalent to finding $x \in G^j$ satisfying that

$$\{s_l(\bar{g}^j) < Nx < s_u(\bar{g}^j)\}.$$

By the definition of <, for j = 1, 2, finding $x \in G_j$ satisfying $\Phi(x, \bar{g}^j)$ is equivalent to either (a), (b), (c) or (d) in the following:

- (a) finding $y \in H_j$ satisfying $\{s_l(\bar{h}^j) < Ny < s_u(\bar{h}^j)\} \cup \Psi(y, \bar{h}^j)$
- (b) finding $y \in H_j$ satisfying $\{s_l(\bar{h}^j) = Ny < s_u(\bar{h}^j)\} \cup \Psi(y, \bar{h}^j)$ and $z \in K_j$ satisfying $\{s_l(\bar{k}^j) < Nz\}$
- (c) finding $y \in H_j$ satisfying $\{s_l(\bar{h}^j) < Ny = s_u(\bar{h}^j)\} \cup \Psi(y, \bar{h}^j)$ and $z \in K_j$ satisfying $\{Nz < s_u(\bar{k}^j)\}$
- (d) finding $y \in H_j$ satisfying $\{s_l(\bar{h}^j) = Ny = s_u(\bar{h}^j)\} \cup \Psi(y, \bar{h}^j)$ and $z \in K_j$ satisfying $\{s_l(\bar{k}^j) < Nz < s_u(\bar{k}^j)\}$.

In the case (a). Since \bar{h}^1 and \bar{h}^2 have the same type, there exists some solution $h^2 \in H_2$ of $\{s_l(\bar{h}^2) < Ny < s_u(\bar{h}^2)\} \cup \Psi(y, \bar{h}^2)$. Thus for any $k^2 \in K_2$, $(h^2, k^2) \in G_2$ is a solution of $\Phi(x, \bar{g}^2)$.

Nobuya Suzuki

In the case (b). For a similar reason as in the case (a), there exists some solution $h^2 \in H_2$ of $\{s_l(\bar{h}^2) = Ny < s_u(\bar{h}^2)\} \cup \Psi(y, \bar{h}^2)$. Since there exists $k^1 \in K_1$ such that $s_l(\bar{k}^1) < Nk^1$, $K_1 \neq \{0\}$. Since $K_1 \equiv K_2$, $K_2 \neq \{0\}$. So there exists $k^2 \in K_2$ such that $s_l(\bar{k}^2) < Nk^2$. Then $(h^2, k^2) \in G_2$ is a solution of $\Phi(x, \bar{g}^2)$.

In the case (c). Similarly above, $\Phi(x, \bar{g}^2)$ has a solution of G_2 .

In the case (d). Similarly there exists some solution $h^2 \in H_2$ of $\{s_l(\bar{h}^2) = Ny = s_u(\bar{h}^2)\} \cup \Psi(y, \bar{h}^2)$. By the definition of the product interpretation, for j = 1 and 2, both $s_l(\bar{h}^j) = s_u(\bar{h}^j)$ and $s_l(\bar{k}^j) < s_u(\bar{k}^j)$ hold in H_j and K_j respectively if and only if both $s_l(\bar{g}^j) < s_u(\bar{g}^j)$ and $s_l(\bar{g}^j) - s_u(\bar{g}^j) \in I$ hold in G_j . Since \bar{g}^1 and \bar{g}^2 have the same quantifier free type, $s_l(\bar{k}^2) < s_u(\bar{k}^2)$ holds in K_2 . By the divisibility of K_2 , there exists $k^2 \in K_2$ such that $s_l(\bar{k}^2) < Nk^2 < s_u(\bar{k}^2)$. Then $(h^2, k^2) \in G_2$ is a solution of $\Phi(x, \bar{g}^2)$.

Let $q(x) := \{\varphi(x, \bar{g}^2) : \varphi(x, \bar{g}^1) \in qftp(g^1/\bar{g}^1)\}$. We have shown that each finite subset of q(x) has a solution in G_2 . By the \aleph_0 -saturation of G_2 , there exists a solution g^2 of q(x). Thus we have $qftp(\bar{g}^1, g^1) = qftp(\bar{g}^2, g^2)$.

Last we show that in the theorem, if H is recursively axiomatizable, then so is G. In proof of the theorem, we only use the four sets T_1, \ldots, T_4 of axioms as follows;

- 1. T_1 says that I is a divisible ordered abelian group.
- 2. T_2 says that for any model G^* of T_2 , H^* is well defined as an L-structure.
- 3. T_3 says that for any model G^* of T_3 , H^* is equivalent to H.
- 4. T_4 says that any model G^* of T_4 is equivalent to G for quantifier free sentences.

The sets T_1, T_2 and T_3 need to satisfy that $H^* \equiv H$, $K^* \equiv K$, $G^* \cong H^* \times K^*$. The set T_4 needs to satisfy the assumption of fact 1 used in the proof of the theorem. It is easy that T_1 and T_2 are recursively axiomatizable. So we will show in the case of T_3 and T_4 .

In the case of T_3 , as in remark 4, for any *L*-sentence ϕ , there exists some $L \cup \{I\}$ -sentence ψ_{ϕ} such that $H \models \phi \leftrightarrow G \models \psi_{\phi}$. Then $T_3 = \{\psi_{\phi} \mid H \models \phi\}$. Since *H* is recursively axiomatizable, so is T_3 .

In the case of T_4 , $T_4 = \{\phi | \phi \text{ is quantifier free } L \cup \{I\}\text{-sentence such that } G \models \phi\}$. By the interpretation of constant symbols, for any closed term t, any formula I(t) is equivalent to the formula t = 0 in G. Then any quantifier free $L \cup \{I\}$ -sentence is defined by some quantifier free L-sentence in G. By the definition of the product interpretation, G is equivalent to H for quantifier free L-sentences. Since H is recursively axiomatizable, so is T_4 .

By the previous theorem, the following is trivial.

300

COROLLARY 8. In previous theorem, we suppose that $I = \{0\} \times K$ is defined by some quantifier free L-formula in G. If H admits QE in L, then G admits QE in L. Moreover H is recursively axiomatizable, so is G.

References

- Y. Komori, Completeness of two theories on ordered Abelian group and embedding relations. Nagoya Math. J., 77 (1980), 33-39.
- [2] C. C. Chang and H. J. Keisler, Model theory. North-Holland Pub. Co., 1973.

[3] Wilfird Hodges, Model theory. Cambridge University Press, 1993.

Nagatsuda-ryou 203, 2456-1 Nagatsuda-cho, Midori-ku, Yokohama-shi Kanagawa, 226-0026, Japan