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QUANTIFIER ELIMINATI0N RESULTS FOR PRODUCTS
OF ORDERED ABELIAN GROUPS
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1 Introduction

Komori [1] introduced the notion of semi-discrete ordered Abelian group
with divisible infinitesimals. Roughly speaking, such groups are products of a
Z-like group and a Q-like group. In [1], he showed that such groups are
axiomatized by his set $SC$ of axioms. In fact he showed that $SC$ is complete
and admits quantifier elimination (QE) in some language expanding $L_{og}=$

$\{0, +, -, <\}$ . In this paper, we shall evolve his study and prove QE for products
of ordered Abelian groups $H$ and $K$ , where $H$ admits QE and $K$ is divisible.
However, like him, we need to expand the language slightly. First let us explain
Komori’s axiom. $SC$ is the following set of sentences:

1. the axioms for ordered Abelian groups;
2. the axioms for a semi-discrete ordering

$0<1$ , $\forall x(2x<1\vee 1<2x)$ ;

3. the axioms for infinitesimals

$\forall x(2x<1\rightarrow nx<1)$ $(n=2,3, \ldots)$ ;

4. the axioms for $D_{n}\prime s$

$\forall x(D_{n}(x)\leftrightarrow\exists y\exists z(-1<2z<1\wedge x=ny+z)$ $(n=2,3, \ldots)$

$\forall x(D_{n}(x)\vee D_{n}(x+1)\vee\cdots\vee D_{n}(x+n-1))$ $(n=2,3, \ldots)$ ;

5. the axioms for divisible infinitesimals

$\forall x(-1<2x<1\rightarrow\exists y(x=ny)$ $(n=2,3, \ldots)$ ;

6. the axiom for existence of infinitesimals

$\exists x(0<x<1)$ ;
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Notice that $SC$ is not formulated in the pure ordered group language. Its
language is $L=L_{og}\cup\{D_{n} : n=2,3, \ldots\}U\{1\}$ . A canonical model of $SC$ is the
direct product group $Z\times Q$ , where

1. the constants $0$ and 1 are interpreted to the elements $(0,0)$ and $(1,0)$ ,

respectively
2. the predicate symbol $<$ is interpreted as the lexicographic order of $Z$ and

$Q$ ,

3. the predicate symbols $D_{n}(x)(n=2,3, \ldots)$ means that $x$ is divisible by $n$ .

Notice that $Z$ admits QE in $L$ and that $Q$ admits QE in $L_{og}$ . So, in a sense,
Komori’s result can be considered a quantifier elimination result for the product
group $H\times K$ where both $H$ and $K$ have QE. The above L-structure $Z\times Q$ seems
to have two important properties that are essential in Komori’s proof. One is that
the infinitesimal set $I=\{O\}\times Q$ is definable (by the quantifier free formula
$-1<2x<1)$ . The other is that $Q$ is divisible. In this paper, very roughly, we
show that if the two properties are satisfied, then we can show QE for the
product group $H\times K$ in some expanded language. (See section 3).

For stating our main result more precisely, we need some definition. Let $L_{r}$

and $L_{c}$ respectively be sets of predicate and constant symbols. Let $L$ be the
language $L_{og}\cup L_{r}\cup L_{C}$ . Let $H$ be an L-stmcture such that $H|L_{og}$ is an ordered
Abelian group. Let $K$ be an $L_{og}$ -structure such that $K$ is an ordered Abelian
group. We will consider $G:=H\times K$ as an $L\cup\{I\}$ -structure by the following
interpretation:

1. $0^{G}$ $:=(0^{H}, 0^{K})$ .
2. $c^{G}$ $:=(c^{G}, 0^{K})(c\in L_{c})$ .
3. $+$ , -are defined coordinatewise.
4. $<$ is the lexicographic order of $H$ and $K$ .
5. Each n-ary predicate symbol $R$ of $L_{r}$ is defined by

$R^{G}$ $:=\{(\overline{g})\in G^{n} : \overline{h}\in R^{H}\}$

where $\overline{g}=(g1, \ldots, g_{n})$ with $g_{i}=(h_{j}, k_{j})(i=1, \ldots, n)$ and $\overline{h}=(h_{1}, \ldots, h_{n})$ .

MAIN RESLUT. Let $L$ be the language $L_{og}\cup L_{r}\cup L_{c}$ where $L_{og}$ is the language
$\{0, +, -, <\},$ $L_{r}$ and $L_{c}$ are sets of predicate symbols and constant symbols re-
spectively. Let $H$ be an L-structure such that $H|L_{og}$ is an ordered Abelian group.
Let $K$ be a divisible ordered Abelian group. (We consider $K$ as an $L_{og}$ -structure.)
Let $G:=H\times K$ be an L-structure given by the interpretation above. Let $I=$

$\{0\}\times K$ be defined by some quantifier free L-formula in G. If $H$ admits $QE$ in $L$ ,
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then $G$ admits $QE$ in L. Moreover in the result above, $\iota fH$ is recursively axi-
omatizable, then so is $G$ .

2 Preliminaries

In this paper we require some basic knowledge of model theory. Termi-
nologies we use are rather standard. However, let us explain some of them. $L$

denotes a language and $T$ denotes a consistent set of L-sentences. $M$ denotes an
L-structure. Finite tuples of variables are denoted by $\overline{x},\overline{y},$

$\ldots$ . Finite tuples of
elements in $M$ are denoted by $\overline{a},\overline{b},$

$\ldots$ Subsets of $M$ are denoted by $A,$ $B,$
$\ldots$ If

$\overline{a}=a_{1},$
$\ldots,$

$a_{n}$ , we simply write $\overline{a}\in M$ instead of writing $a_{1}\in M,$
$\ldots,$

$a_{n}\in M$ . An
$L(A)$ -formula means an L-formula with parameters from $A$ . Similarly an $L(A)-$

term means an L-term with parameters form $A$ .
We say that $T$ is an L-theory if there exists a model $M$ of T. $Th_{L}(M)$

denotes the theory of $M$ , i.e. the set of all L-sentences which hold in $M$ . If $L$ is
clear from the context, $L$ will be omitted, and we will simply write Th $(M)$ instead
of writing $Th_{L}(M)$ . We say that a theory $T$ is complete if for any L-sentence $\phi$ ,
$T$ proves $\phi$ or $\neg\emptyset$ .

We say that $T$ admits quantifier elimination in the language $L$ if for any L-
formula $\phi(\overline{x})$ , there exists a quantifier free L-formula $\psi(\overline{x})$ such that $T$ proves
$\forall\overline{x}(\phi(\overline{x})\leftrightarrow\psi(\overline{x}))$ . We say that $M$ admits quantifier elimination in $L$ if $Th_{L}(M)$

admits quantifier elimination in $L$ .
Let $A\subset M$ . We say that a set $p(\overline{x})$ of $L(A)$ -formulas (with free variables x)

is a type if any finite subset of $p(\overline{x})$ has a solution in $M$ . We define the type of
$\overline{a}\in M$ over $A$ to be the set of $L(A)$ -formulas $\psi(\overline{x})$ such that $\overline{a}$ is a solution of
$\psi(\overline{x})$ . The type of $\overline{a}\in M$ over $A$ is denoted by $tp(\overline{a}/A)$ . If $ A=\emptyset$ , we simply
write $tp(\overline{a})$ instead of $tp(\overline{a}/A)$ . We define the quantifier free type of $\overline{a}$ over $A$ to
be the set of quantifier free $L(A)$ -formula $\psi(\overline{x})s$ such that $\overline{a}$ is a solution of $\psi(\overline{x})$ .
The quantifier free type of $\overline{a}$ over $A$ is denoted by qftp $(\overline{a}/A)$ . Similarly if $ A=\emptyset$ ,
we write qftp $(\overline{a})$ instead of qftp $(\overline{a}/A)$ .

We say that a model $M$ of $T$ is $\kappa$-saturated if whenever $A$ is a subset of $M$

with $|A|<\kappa$ then any type over $A$ has a solution in $M$ .
In this paper we use the following well-known fact:

FACT 1. Let $L$ be a language. Let $T$ be an L-theory such that $T$ is complete
for quantifier free sentences. Then the following are equivalent;

1. $T$ is complete and admits quantifier elimination in $L$ .
2. Let $M$ and $N$ be $\aleph_{0}$ -saturated models of T. Suppose $\overline{a}\in M$ and $\overline{b}\in N$ have
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the same $quant_{l}fier$ free type, i.e. qftp $(\overline{a})=qftp(\overline{b})$ . Then for any $a\in M$

there exists $b\in N$ such that qftp $(\overline{a}, a)=qftp(\overline{b}, b)$ .

3 Product of Ordered Abelian Groups

In this section we introduce the notion of the product interpretation. Let $G$

be a group. We say that a subset $A$ of $G$ is free if whenever $\sum_{i\in N}m_{i}a_{j}=0$ for
some finite subsets $\{a_{j}\}_{i\in N}$ of $A$ and $\{m_{j}\}_{i\in N}$ of $Z$ , then $m_{j}=0(i\in N)$ .

DEFINITION 2. Let $G$ be a group. For any $A\subset G$ ,

$H(A)$ $:=$ { $ h\in G:mh\in\langle A\rangle$ for some $m\in Z\backslash \{0\}$ },

where $\langle A\rangle$ is the subgroup of $G$ generated by $A$ .

LEMMA 3. Let $G(\neq\{0\})$ be a torsion free Abelian group. Then for any free
subset $S$ of $G$, there exists some free subset $A$ of $G$ with the following conditions;

1. $S\subset A$ ,

2. $G=H(A)$ ,
3. If $mg=\sum m_{j}a_{j}$ and $ng=\sum n_{i}a_{j}$ for some element $g$ of $G$, some finite

subset $\{a_{i}\}_{i\in N}$ of $A$ , some $m,$ $n$ of $Z\backslash \{0\}$ and some $m_{l},$ $n_{j}\in Z(i\in N)$ , then
$nm_{j}=mn_{j}(i\in N)$ .

PROOF. Since $G$ is torsion free, by the Zom’s lemma, there exists a maximal
free subset $A$ of $G$ containing $S$ . Then $A$ satisfies the condition of the lemma.

$\blacksquare$

Let $L_{og}$ be the language $\{0, +, -, <\}$ of ordered groups. Let $L_{r}$ and $L_{c}$ be
sets of predicate and constant symbols, respectively. Let $L$ be the language
$L_{og}\cup L_{r}\cup L_{c}$ . Let $H$ be an L-structure such that $H|L_{og}$ is an ordered Abelian
group. Let $K$ be an $L_{og}$ -structure such that $K$ is an ordered Abelian group. Let $I$

be a new unary predicate symbol. In what follows, we will consider $G:=H\times K$

as an $L\cup\{I\}$ -structure by the following interpretation:

1. $0^{G}$ $:=(0^{H}, 0^{K})$ .
2. $c^{G}$ $:=(c^{H}, 0^{K})(c\in L_{c})$ .
3. $+$ , –are defined coordinatewise.
$4$ . $<$ is the lexicographic order of $H$ and $K$ .
5. Each n-ary predicate symbol $R$ of $L_{r}$ is defined by
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$R^{G}$ $:=\{\overline{g}\in G^{n} : \overline{h}\in R^{H}\}$

where $\overline{g}=(g1, \ldots, g_{n})$ with $g_{j}=(h_{j}, k_{j})(i=1, \ldots, n)$ and $\overline{h}=(h_{1}, \ldots, h_{n})$ .
6. $IG$ $:=\{0^{H}\}\times K$ .

We call this interpretation the product interpretation of $H$ and $K$ .
Let $L=L_{og}\cup L_{r}\cup L_{c}$ . Let $H$ be an L-structure such that $H|L_{og}$ is an ordered

Abelian group. Let $K$ be an $L_{og}$ -structure such that $K$ is an ordered Abelian
group. Let $G:=H\times K$ be an $L\cup\{I\}$ -structure given by the product interpre-
tation of $H$ and $K$ .

Let $G^{*}\models Th(G)$ . Let $I^{*}:=\{g\in G^{*} : g\models I(x)\}$ . An equivalent relation $\sim$ on
$G^{*}$ is defined by $a\sim b$ if $a-b\in I^{*}$ . Let $[g]$ be the equivalent class of $g$ . Let
$H^{*}$ $:=\{[g]:g\in G^{*}\}$ and $K^{*}$ $:=I^{*}$ . We will consider $H^{*}$ as an L-structure by the
following interpretation:

1. $0,$ $c(c\in L_{C}),$ $+and$ –are defined naturally.
2. Let $g_{1}$ and $g_{2}\in G^{*}$ . $[g_{1}]<[g_{2}]$ is defined by $g_{1}<g_{2}$ and $g_{1}-g_{2}\not\in I^{*}$ .
3. Each n-ary predicate $R$ of $L_{r}$ is defined by

$R^{H^{*}}$ $:=\{[\overline{g}]\in(H^{*})^{n} : \overline{g}\in R^{G^{*}}\}$

where $\overline{g}=(g_{1}, \ldots, g_{n})$ and $[\overline{g}]=([g1], \ldots, [g_{n}])$

and consider $K^{*}$ as an $L_{og}$ -substructure of $G^{*}$ .

REMARK 4. $H^{*}\equiv H$ and $K^{*}\equiv K$ .

This can be shown as follows: It is trivial that $K^{*}\equiv K$ . So we show that
$H^{*}\equiv H$ . Let $g1$ and $g2\in G^{*}$ . Let $\overline{g}$ be an tuple of elements of $G^{*}$ . By the
definition of $H^{*}$ , the followings are hold.

1. $[g]]=[g_{2}]$ holds in $H^{*}\leftrightarrow g_{1}-g_{2}\in I^{*}$ holds in $G^{*}$ .
2. $[g]]<[g2]$ holds in $H^{*}\leftrightarrow bothg1<g2$ and $g1-g2\not\in I^{*}$ hold in $G^{*}$ .
3. $R([\overline{g}])$ holds in $H^{*}\leftrightarrow R(\overline{g})$ holds in $G^{*}(R\in L_{r})$ .

So for any L-sentence $\emptyset$ there exists an $L\cup\{I\}$ -sentence $\psi$ such that $\phi$ holds
in $H^{*}$ iff $\psi$ holds in $G^{*}$ . Since $G^{*}\equiv G$ , we have $H^{*}\equiv H$ .

Let $H^{*}\times K^{*}$ be the $L\cup\{I\}$ -structure given by the product interpretation of
$H^{*}$ and $K^{*}$ .

LEMMA 5. Let $K$ be divisible. Then there exists some $L\cup\{I\}$ -isomorphism $\sigma$

from $G^{*}$ to $H^{*}\times K^{*}$ .
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PROOF. Suppose that $H=\{0\}$ . Then $H^{*}=\{0\}$ and $G^{*}=K^{*}$ . In this case,
it is trivial. So we can assume that $H\neq\{0\}$ . Then $H^{*}$ is nontrivial torsion
free group. Let $S$ be a maximal free subset of $\{c^{*} : c\in L_{C}\}$ where $c^{*}$ is the
interpretation of $c$ in $G^{*}$ . We claim that [S]: $=\{[c^{*}]:c^{*}\in S\}$ is free. Suppose
that $\sum m_{l}[c_{j^{*}}]=0$ for some finite subsets $\{c_{j^{*}}\}_{l\in N}$ of $S$ and $\{m_{i}\}_{i\in N}$ of $Z$ . Then
$\sum m_{i}c_{i}^{*}\in I^{*}$ . By the definition of the product interpretation and $G^{*}\equiv G$ ,
$\sum m_{l}c_{j^{*}}=0$ . Since $S$ is free, $m_{j}=0(i\in N)$ .

So by lemma 3, there exists some subset $H_{0}$ of $H^{*}$ with the following
conditions;

1. $[S]\subset H_{0}$ .
2. $H^{*}=H(H_{0})$ .
3. If $m[g]=\sum m_{i}[g_{j}]$ and $n[g]=\sum n_{i}[g_{j}]$ for some element $[g]$ of $H^{*}$ , some

finite subset $\{[g_{j}]\}_{l\in N}$ of $H_{0}$ , some $m,$ $n$ of $Z\backslash \{0\}$ and some $m_{j},$ $n_{j}\in Z$

$(i\in N)$ , then $nm_{j}=mn_{i}(i\in N)$ .

We fix a subset $G_{0}$ of $G^{*}$ with the following conditions;

1. $S\subset G_{0}$ .
2. $H_{0}=\{[g] : g\in G_{0}\}$ .
3. If $g_{1}\neq g2\in G_{0}$ , then $[g_{1}]\neq[g2]$ .

Let $\sigma$ be the map from $G^{*}$ to $K^{*}$ defined by

$\sigma(g)$ $:=1/m(mg-\sum m_{j}g_{j})$

where $m[g]=\sum m_{l}[g_{j}]$ for some subset $\{g_{i}\}_{i\in N}$ of $G_{0},$ $m\in Z\backslash \{0\}$ and $m_{i}\in Z$

$(i\in N)$ . Note that $\sigma$ is well-defined by the divisibility of $K$ and the conditions of
$H_{0}$ and $G_{0}$ . Let $\sigma^{*}$ : $G^{*}\rightarrow H^{*}\times K^{*}$ be the map defined by

$\sigma^{*}(g)=([g], \sigma(g))$ .

CLAIM. $\sigma^{*}$ is an $L\cup\{l\}$ -isomorphism.

First we claim that $\sigma^{*}$ is $\{+, -, 0\}\cup L_{c}$ -isomorphic. In the case of $+$ ,
we show that $\sigma(g1)+\sigma(g2)=\sigma(g\mathfrak{l}+g2)$ for any $g1,$ $g2\in G^{*}$ . Note that $mg1=$
$\sum m_{i}g_{i}+m\sigma(g1)$ and $ng_{2}=\sum n_{j}g_{j}+n\sigma(g_{2})$ for some finite subset $\{g_{i}\}_{i\in N}$ of
$G_{0}$ , some $m$ and $n\in Z\backslash \{0\}$ and some $m_{i}$ and $n_{j}\in Z(i\in N)$ . So $mn(gt+g2)=$
$\sum(nm_{i}+mn_{j})g_{j}+mn(\sigma(g_{1})+\sigma(g2))$ . Then $\sigma(g_{1}+g_{2})=\sigma(g1)+\sigma(g2)$ . In the
case of $L_{C}$ , we show that $\sigma(c^{*})=0$ . Since $S$ is a maximal free subset of
$\{c^{*} : c\in L_{C}\}$ , for any $c\in L_{c}$ there exist some $m\in Z\backslash \{0\}$ , finite subsets $\{c_{j}^{*}\}_{i\in N}$
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of $S$ and $\{m_{j}\}_{i\in N}$ of $Z$ such that $mc^{*}=\sum m_{j}c_{i^{*}}$ . So $m[c^{*}]=\sum m_{j}[c_{i^{*}}]$ and
$\{c_{j}^{*}\}_{i\in N}\subset G_{0}$ . By the definition of $\sigma,$ $\sigma(c^{*})=1/m(mc^{*}-\sum m_{i}c_{j}^{*})=0$ . In the
case of $0$ and -, it is similar.

Second we claim that $\sigma^{*}$ is injective and surjective. (injective) Suppose that
$\sigma^{*}(g)=(0,0)$ . Then $[g]=0$ and $1/m(mg-\sum m_{j}g_{j})=0$ for some subset $\{g_{j}\}_{i\in N}$

of $G_{0},$ $m\in Z\backslash \{0\}$ and $m_{i}\in Z(i\in N)$ . Then $0=m[g]=\sum m_{i}[g_{j}]$ . Since $H_{0}$ is free,
$m_{l}=0(i\in N)$ . So we have $g=0$ . (surjective) For any $([g], k)\in H^{*}\times K^{*}$ , we
pick a finite subset $\{g_{j}\}_{i\in N}$ of $G_{0},$ $m\in Z\backslash \{0\}$ and $m_{j}\in Z(i\in N)$ such that
$m[g]=\sum m_{j}[g_{i}]$ . We put $g_{0}:=g-1/m(mg-\sum m_{i}g_{j})+k$ . Then we have $[g_{0}]=$

$[g]$ and $\sigma(g_{0})=1/m(mg0-\sum m_{j}g_{i})=k$ .
Next we claim that $\sigma^{*}$ is $\{<\}$ -isomorphic. Suppose that $gl<g2$ . If

$g1-g_{2}\not\in I$ , by the definition of $<$ , it is trivial. If $g1-g2\in I,$ $m[g1]=m[g_{2}]=$

$\sum m_{j}[g_{j}]$ for some finite subset $\{g_{i}\}_{i\in N}$ of $G_{0},$ $m\in Z\backslash \{0\}$ and $m_{j}\in Z(i\in N)$ . So
$\sigma(g_{1})=1/m(mg_{1}-\sum m_{j}g_{j})<1/m(mg_{2}-\sum m_{j}g_{j})=\sigma(g2)$ .

Last by the definition, we have that $\sigma^{*}$ is $L_{r}\cup\{I\}$ -isomorphic. $\blacksquare$

4 Main Theorem

In this section, $L=L_{og}\cup L_{r}\cup L_{c}$ , where $L_{og}$ is the language $\{0, +, -, <\}$ , and
$L_{r}$ and $L_{C}$ respectively are a set of predicate symbols and a set of constant
symbols. $I$ is a fixed unary predicate symbol not contained in $L$ .

THEOREM 6. Let $H$ be an L-structure such that $H|L_{og}$ is an ordered Abelian
group. Let $K$ be a divisible ordered Abelian group. We consider $K$ as an $L_{og^{-}}$

structure. Let $G:=H\times K$ be an $L\cup\{I\}$ -structure given by the product inter-
pretation of $H$ and K. Then if $H$ admits $QE$ in $L,$ $G$ admits $QE$ in $L\cup\{I\}$ .
Moreover $H$ is recursively axiomatizable, so is $G$ .

PROOF. It is clear that $Th_{L\cup\{I\}}(G)$ is complete for quantifier free sentences.
By fact 1, it is sufficient to show that:

CLAIM. Let $G_{1},$ $G_{2}$ be $\aleph_{0}$ -saturafed models of $Th_{L\cup\{I\}}(G)$ . Suppose $\overline{g}^{1}\in G_{1}$

and $\overline{g}^{2}\in G_{2}$ such that qftp $(\overline{g}^{1})=qftp(\overline{g}^{2})$ . Then for any $g^{1}\in G_{1}$ there exists
$g^{2}\in G_{2}$ such that qftp $(\overline{g}^{1}, g^{1})=qftp(\overline{g}^{2}, g^{2})$ .

Before proving the claim above, we need some preparation. By lemma 5, for
$j=1,2$ we can assume that $G_{j}=H_{j}\times K_{j}$ where $H_{j}$ is an L-structure, $K_{j}$ is an
$L_{og}$ -stmcture and $G_{j}$ is the $L\cup\{I\}$ -structure given by the product interpretation
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of $H_{j}$ and $K_{j}$ . Let $\overline{g}^{j}$ be an tuple $(g_{1}^{j}, \ldots, g_{n}^{j})$ of $G_{j}$ with $g_{i}^{j}=(h_{i}^{j}, k_{i^{j}})$ . Let $\overline{h}^{j}$ be
the tuple $(h_{1}^{j}, \ldots, h_{n}^{j})$ of $H_{j}$ . Let $\overline{k}^{j}$ be the tuple $(k_{1}^{j}, \ldots, k_{n}^{j})$ of $K_{i}$ .

REMARK 7. Since the language of $G_{j}$ contains $I$ , if $\overline{g}^{1}$ and $\overline{g}^{2}$ have the same
quantifier free type, then $\overline{h}^{1}$ and $\overline{h}^{2}$ have the same quantifier free type. ( $\overline{k}^{1}$ and $\overline{k}^{2}$

may not have the same quantifier free type.) Moreover since $H$ admits QE, $\overline{h}^{1}$

and $\overline{h}^{2}$ have the same type.

Similarly as in remark 4, for any quantifier free L-formula $\phi(\overline{y})$ , there exists a
quantifier free $L\cup\{I\}$ -formula $\psi(\overline{x})$ such that for $j=1,2,\overline{g}^{j}$ is a solution of
$\psi(\overline{x})$ if and only if $\overline{h}^{j}$ is a solution of $\phi(\overline{y})$ . Thus $\overline{h}^{1}$ and $\overline{h}^{2}$ have the same
quantifier free type.

We begin our proof of the claim. We fix $g^{1}\in G_{1}$ and choose $\varphi_{1}(x,\overline{g}^{1}),$
$\ldots$ ,

$\varphi_{n}(x,\overline{g}^{1})\in qftp(g^{1}/\overline{g}^{1})$ . Let $\Phi(x,\overline{g}^{1})$ be the set $\{\varphi_{1}(x,\overline{g}^{1}), \ldots, \varphi_{n}(x,\overline{g}^{1})\}$ . We need
to show that $\Phi(x,\overline{g}^{2})$ (the set obtained from $\Phi(x,\overline{g}^{1})$ replacing $\overline{g}^{1}$ by $\overline{g}^{2}.$ )
is satisfied in $G_{2}$ . Let $\Phi(x,\overline{x})$ be the set of formulas obtained from $\Phi(x,\overline{g}^{1})$

replacing $\overline{g}^{1}$ by the tuples $\overline{x}$ of variables without $x$ . Note that the formula in the
form $t\neq s$ or $\neg(t<s)$ is equivalent a disjunction of formulas in the form $t=s$ or
$t<s$ . So we can assume that the set $\Phi(x,\overline{x})$ has the following form:

$\{t_{l}(\overline{x})<n_{i}x\}_{i\in I_{1}}\cup\{n_{j}x=r_{i}(\overline{x})\}_{i\in I_{2}}\cup\{n_{j}x<t_{j}(\overline{x})\}_{i\in I_{3}}\cup\Phi_{0}(x,\overline{x})$

where $t_{i}(\overline{x})$ are terms without $x$ and $n_{i}\in N$ and $\Phi_{0}(x,\overline{x})$ is a finite set of
$L\cup\{I\}$ -formulas in the form $I(t(x,\overline{x})),$ $R(s(x,\overline{x}))$ or these negations with terms
$t(x,\overline{x})$ and $s(x,\overline{x})$ . For any $m\in N\backslash \{0\}$ , formulas $t<s$ and $t=s$ are equivalent to
$mt<ms$ and $mt=ms$ , respectively. Then we can assume that $\Phi(x,\overline{x})$ is the
following set:

$\{s_{i}(\overline{x})<Nx\}_{i\in I_{1}}\cup\{Nx=s_{i}(\overline{x})\}_{i\in I_{2}}\cup\{Nx<s_{j}(\overline{x})\}_{i\in I_{3}}\cup\Phi_{0}(x,\overline{x})$

where $s_{j}(\overline{x})$ are new terms without $x$ and $N\in N$ .
There are two cases to be considered in the following:
Case 1. First we assume that $ I_{2}\neq\emptyset$ . We fix a term $s(\overline{x})$ of $\{s_{j}(\overline{x})\}_{i\in J_{2}}$ . We

remark that for $j=1$ and 2, finding $x\in G_{j}$ satisfying that

$\{s_{j}(\overline{g}^{j})<Nx\}_{i\in I_{1}}\cup\{Nx=s_{j}(\overline{g}^{j})\}_{i\in I_{2}}\cup\{Nx<s_{j}(\overline{g}^{j})\}_{i\in I_{3}}$

is equivalent to finding $x\in G_{j}$ satisfying that

$\{Nx=s(\overline{g}^{j})\}$ .

Then the condition above is equivalent to finding $h^{j}\in H_{j}$ satisfying that
$Ny=s(\overline{h}^{j})$ and finding $k^{j}\in K_{j}$ satisfying that $Nz=s(\overline{k}^{j})$ . By the definition of
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$R(R\in L_{r})$ and $I$ , for $j=1,2$ , finding $g^{j}\in G_{j}$ satisfying that $\Phi_{0}(x,\overline{g}^{1})$ is
equivalent to finding $h^{j}\in H_{j}$ satisfying that $\Psi(y,\overline{h}^{j})$ where $\Psi(y,\overline{h}^{j})$ is the set
of L-formulas obtained from $\Phi_{0}(x,\overline{g}^{j})$ replacing $I(t(x,\overline{g}^{j}))$ and $R(s(x,\overline{g}^{j}))$ by
$t(y,\overline{h}^{j})=0$ and $R(s(y,\overline{h}^{j}))$ , respectively. So for $j=1,2$ finding $x\in G_{j}$ satisfying
that $\Phi(x,\overline{g}^{j})$ is equivalent to finding $y\in H_{j}$ satisfying that

$\{Ny=s(\overline{h}^{j})\}\cup\Psi(y,\overline{h}^{j})$

and $z\in K_{j}$ satisfying that
$\{Nz=s(\overline{k}^{j})\}$ .

By remark 7, $\overline{h}^{1}$ and $\overline{h}^{2}$ have the same type. By the assumption, there exists
some solution $h^{1}\in H_{1}$ of $\{Ny=s(\overline{h}^{1})\}\cup\Psi(y,\overline{h}^{1})$ . So there exists some solution
$h^{2}\in H_{2}$ of $\{Ny=s(\overline{h}^{2})\}\cup\Psi(y,\overline{h}^{2})$ . By the divisibility of $K_{2}$ , there exists $k^{2}\in K_{2}$

such that $Nk^{2}=s(\overline{k}^{2})$ . Then $(h^{2}, k^{2})\in G_{2}$ is a solution of $\{Nx=u(\overline{g}^{2})\}\cup$

$\Phi_{0}(x,\overline{g}^{2})$ . Thus $(h^{2}, k^{2})$ is a solution of $\Phi(x,\overline{g}^{2})$ .
Case 2. Second we assume that $ I_{2}=\emptyset$ . We can assume that $I_{1}$ and $ I_{3}\neq\emptyset$

since other cases can be treated similarly. Since $\overline{g}^{1}$ and $\overline{g}^{2}$ have the same quantifier
free type, there exists $1\in I_{1}$ such that $s_{l}(\overline{g}^{1})$ and $s_{l}(\overline{g}^{2})$ are the maximums of
$\{s_{j}(\overline{g}^{1})\}_{i\in I_{1}}$ and $\{s_{i}(\overline{g}^{2})\}_{i\in I_{1}}$ respectively, and there exists $u\in I_{3}$ such that $s_{u}(\overline{g}^{1})$

and $s_{u}(\overline{g}^{2})$ are the minimums of $\{s_{i}(\overline{g}^{1})\}_{i\in I_{3}}$ and $\{s_{j}(\overline{g}^{2})\}_{i\in I_{3}}$ respectively. Sim-
ilarly as in the case 1, for $j=1$ and 2, finding $x\in G^{j}$ satisfying that

$\{s_{j}(\overline{g}^{j})<Nx\}_{i\in I_{1}}\cup\{Nx<s_{i}(\overline{g}^{j})\}_{i\in I_{3}}$

is equivalent to finding $x\in G^{j}$ satisfying that

$\{s_{l}(\overline{g}^{j})<Nx<s_{u}(\overline{g}^{j})\}$ .

By the definition of $<$ , for $j=1,2$ , finding $x\in G_{j}$ satisfying $\Phi(x,\overline{g}^{j})$ is
equivalent to either (a), (b), (c) or (d) in the following:

(a) finding $y\in H_{j}$ satisfying $\{s_{l}(\overline{h}^{j})<Ny<s_{u}(\overline{h}^{j})\}\cup\Psi(y,\overline{h}^{j})$

(b) finding $y\in H_{j}$ satisfying $\{s_{l}(\overline{h}^{j})=Ny<s_{u}(\overline{h}^{j})\}\cup\Psi(y,\overline{h}^{j})$ and $z\in K_{j}$

satisfying $\{s_{l}(\overline{k}^{j})<Nz\}$

(c) finding $y\in H_{j}$ satisfying $\{s_{l}(\overline{h}^{j})<Ny=s_{u}(\overline{h}^{j})\}\cup\Psi(y,\overline{h}^{j})$ and $z\in K_{j}$

satisfying $\{Nz<s_{u}(\overline{k}^{j})\}$

(d) finding $y\in H_{\dot{j}}$ satisfying $\{s_{l}(\overline{h}^{j})=Ny=s_{u}(\overline{h}^{j})\}\cup\Psi(y,\overline{h}^{j})$ and $z\in K_{j}$

satisfying $\{s_{l}(\overline{k}^{j})<Nz<s_{u}(\overline{k}^{j})\}$ .

In the case (a). Since $\overline{h}^{1}$ and $\overline{h}^{2}$ have the same type, there exists some solution
$h^{2}\in H_{2}$ of $\{s_{l}(\overline{h}^{2})<Ny<s_{u}(\overline{h}^{2})\}\cup\Psi(y,\overline{h}^{2})$ . Thus for any $k^{2}\in K_{2},$ $(h^{2}, k^{2})\in G_{2}$

is a solution of $\Phi(x,\overline{g}^{2})$ .
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In the case (b). For a similar reason as in the case (a), there exists some
solution $h^{2}\in H_{2}$ of $\{s_{l}(\overline{h}^{2})=Ny<s_{\mathcal{U}}(\overline{h}^{2})\}\cup\Psi(y,\overline{h}^{2})$ . Since there exists $k^{1}\in K_{1}$

such that $s_{l}(\overline{k}^{1})<Nk^{1},$ $K_{1}\neq\{0\}$ . Since $K_{1}\equiv K_{2},$ $K_{2}\neq\{0\}$ . So there exists
$k^{2}\in K_{2}$ such that $s_{l}(\overline{k}^{2})<Nk^{2}$ . Then $(h^{2}, k^{2})\in G_{2}$ is a solution of $\Phi(x,\overline{g}^{2})$ .

In the case (c). Similarly above, $\Phi(x,\overline{g}^{2})$ has a solution of $G_{2}$ .
In the case (d). Similarly there exists some solution $h^{2}\in H_{2}$ of $\{s_{l}(\overline{h}^{2})=$

$Ny=s_{u}(\overline{h}^{2})\}\cup\Psi(y,\overline{h}^{2})$ . By the definition of the product interpretation, for $j=1$

and 2, both $s_{l}(\overline{h}^{j})=s_{u}(\overline{h}^{j})$ and $s_{l}(\overline{k}^{j})<s_{u}(\overline{k}^{j})$ hold in $H_{j}$ and $K_{j}$ respectively if
and only if both $s_{T}(\overline{g}^{j})<s_{u}(\overline{g}^{j})$ and $s_{l}(\overline{g}^{j})-s_{u}(\overline{g}^{j})\in I$ hold in $G_{j}$ . Since $\overline{g}^{1}$ and $\overline{g}^{2}$

have the same quantifier free type, $s_{l}(\overline{k}^{2})<s_{u}(\overline{k}^{2})$ holds in $K_{2}$ . By the divisibility
of $K_{2}$ , there exists $k^{2}\in K_{2}$ such that $s_{l}(\overline{k}^{2})<Nk^{2}<s_{u}(\overline{k}^{2})$ . Then $(h^{2}, k^{2})\in G_{2}$ is
a solution of $\Phi(x,\overline{g}^{2})$ .

Let $q(x):=\{\varphi(x,\overline{g}^{2}) : \varphi(x,\overline{g}^{1})\in qftp(g^{1}/\overline{g}^{1})\}$ . We have shown that each finite
subset of $q(x)$ has a solution in $G_{2}$ . By the $\aleph_{0}$ -saturation of $G_{2}$ , there exists a
solution $g^{2}$ of $q(x)$ . Thus we have qftp $(\overline{g}^{1}, g^{1})=qftp(\overline{g}^{2}, g^{2})$ .

Last we show that in the theorem, if $H$ is recursively axiomatizable, then so
is $G$ . In proof of the theorem, we only use the four sets $T_{1},$

$\ldots,$
$T_{4}$ of axioms as

follows;

1. $T_{1}$ says that $I$ is a divisible ordered abelian group.
2. $T_{2}$ says that for any model $G^{*}$ of $T_{2},$ $H^{*}$ is well defined as an L-structure.
3. $T_{3}$ says that for any model $G^{*}$ of $T_{3},$ $H^{*}$ is equivalent to $H$ .
4. $T_{4}$ says that any model $G^{*}$ of $T_{4}$ is equivalent to $G$ for quantifier free

sentences.

The sets $T_{1},$ $T_{2}$ and $T_{3}$ need to satisfy that $H^{*}\equiv H,$ $K^{*}\equiv K,$ $G^{*}\cong H^{*}\times K^{*}$ .
The set $T_{4}$ needs to satisfy the assumption of fact 1 used in the proof of the
theorem. It is easy that $T_{1}$ and $T_{2}$ are recursively axiomatizable. So we will show
in the case of $T_{3}$ and $T_{4}$ .

In the case of $T_{3}$ , as in remark 4, for any L-sentence $\phi$ , there exists some
$L\cup\{I\}$ -sentence $\psi_{\phi}$ such that $H\models\phi\leftrightarrow G\models\psi_{\phi}$ . Then $T_{3}=\{\psi_{\phi}|H\models\phi\}$ . Since
$H$ is recursively axiomatizable, so is $T_{3}$ .

In the case of $T_{4},$ $ T_{4}=\{\phi|\phi$ is quantifier free $L\cup\{I\}$ -sentence such that
$G\models\phi\}$ . By the interpretation of constant symbols, for any closed term $t$ , any
formula $I(t)$ is equivalent to the formula $t=0$ in $G$ . Then any quantifier free
$L\cup\{I\}$ -sentence is defined by some quantifier free L-sentence in $G$ . By the
definition of the product interpretation, $G$ is equivalent to $H$ for quantifier free L-

sentences. Since $H$ is recursively axiomatizable, so is $T_{4}$ . $\blacksquare$

By the previous theorem, the following is trivial.
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COROLLARY 8. In previous theorem, we suppose that $I=\{0\}\times K$ is defined
by some quantlfier free L-formula in G. If $H$ admits $QE$ in $L$ , then $G$ admits $QE$ in
L. Moreover $H$ is recursively axiomatizable, so is $G$ .
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