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SIMPLE COMPONENTS OF Q[Sp4(F,)]

By

Joujuu (Zyozyu) OHMORI

Abstract. The character table of G = Sp4(F,), ¢ odd, was calculated
by B. Srinivasan in 1968 [22]. The rational and the real Schur indices
of each complex irreducible character of G were calculated by A.
Przygocki in 1982 [21]. We calculate the Hasse invariants of each
simple component of the group algebra Q[G] of G over Q.

Introduction

Let F, be a finite field with ¢ elements of characteristic p. In this paper we
shall calculate the Hasse invariants of each simple component of the group
algebra Q[Sp4(Fy)], ¢ odd. Our main interest is to seek the distribution of the
invariants. We will see that the results are similar to those obtained by G. J.
Janusz for SLy(F,;) ([9]). In this connection, we should mention that A. Przy-
gocki has already determined the rational and the real Schur indices of each
complex irreducible character of Sp4(F,), ¢ odd, (21]) and R. Gow has shown
that each complex irreducible character of Sp4(F,/) has the rational Schur index
Q)

It may be needed to explain why we treat such a special finite group Sp4 (Fy).
In the following discussion, if y is a complex irreducible character of a finite
group, then mg(y) denotes the Schur index of y with respect to Q and, for a
rational prime r,mg (x) denotes the r-local Schur index of y.

Let G be a connected, reductive linear algebraic group, defined over F,, and
let G be the group of F,-rational points of G. Let Z be the centre of G. Let x be
a complex irreducible character of G. Then the following theorems hold:

THEOREM 1 ([14, 15, 18]). Assume (for the sake of simplicity) that p is good
for G, and that (A%, %) ¢ = 1 for some linear character J. of a Sylow p-subgroup of
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G or the degree of y is coprime to p. Then mg(x) < 2. If Z is connected or if q is
an even power of p # 2, then we have mg,(y) = 1 for each prime number r # p. If
Z is connected and G is split over F,, then we have mg(y) = 1.

THEOREM 2 (1, 4, 6, 16, 17, 18, 28]). If G = GL,(F,), SOs(F,), CSps(F,),
G:2(F,) (Z is connected and G is split over F,) or 3D4(F,) (Z is trivial), then
mo(x) =1. If G= U,(F,) (Z is connected but G is not split over F,), then
mo(x) <2 and, for each prime number r # p, we have mg, () = 1.

THEOREM 3 ([10, 12, 19]). If x is a unipotent character of G, then, for each
prime number r # p, we have mg,(x) = 1.

We should remark that M. Geck has shown that the cuspidal unipotent
characters of E7(F,;) have the p-local Schur indices 2 provided that g is an even
power of p such that p=1 (mod4) and that p is sufficiently large so the
G. Lusztig’s results in can be used ([5]) (the condition that p > 0 can be
removed [20]); thus Eg(F, z) also has unipotent characters having the same ra-
tionality when ¢ is an even power of p such that p =1 (mod 4).

We note that the characters y which satisfy the condition in
occupy “‘almost all” the complex irreducible characters of G, so that Theorems
1, 2, 3 suggest that when Z is connected or g is an even power of p # 2, the
distribution of the invariants will be comparatively simple. On the other hand,
when Z is not connected (e.g. G is a non-adjoint semi-simple algebraic group)
and ¢ is an odd power of p # 2 the known results are considerable complicated.

Let, for example, G = SL,(F;) (see [6, 7, 9, 13, 23, 28]). Then we have
mo(x) =2, and, if p=2, or n is odd, or ord; n> ord,(p—1), we have
mo(x) =1; if 1 £ ord; n < ordy(p — 1) and q is an even power of p, we have
mo,(x) = 1 for each prime number r # p; if 1 < ord, n < ord>(p — 1) and ¢ is an
odd power of p, it often happens that mg (x) = 2 for some prime numbers r 5 p.
Thus it would be natural to wish to know the distribution of the invariants for
other groups, such as Sps4(F,), as an example when Z is not connected.

Let G = Sps(F,), g odd. Then, as is well known, the character table of G
was first calculated by B. Srinivasan in [22]. Later Hiromichi Yamada recon-
structed the character table of G in (unpublished) along the same line as in the
paper of H. Enomoto. Gow has obtained some results about the rationality-
properties of characters of Sp,,(F,) ([6, 7, 8]). In some cases of our arguments
below, we can follow Przygocki’s arguments in [21].
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Our first task was to calculate the value fields Q(y) Q(x(9),9 € G). But,
in Srinivasan’s character table in [22], some character-values are omitted. I
asked Professor Ken-ichi Shinoda about these omitted values. Then Professor H.
Yamada sent me his preprint and permitted me to use it; in all character-
values are typed; he also taught me that the omitted values in can be
obtained from informations in [22]. I wish to thank these two professors for
their kindness. Professor Toshihiko Yamada has published many works on the
rationality-properties of characters of finite groups; in particular, I employed in
several places of my proofs his index formulas [27, Chap. 4] which have been very
useful. Finally, I wish to thank the referee for his (her) kind advice.

Notation

Fy is a finite field with g elements of characteristic p %2 and F, is an
algebraic closure of F,. G is the group of all non-singular matrices X of degree 4
with entries in F, such that XJ'X =J where

01 00
-1 0 0 0
J*oo 0 1
0 0 -1 0

(‘X is the transpose of X), and G is the subgroup of G consisting of the matrices
in G with entries in F,. The Frobenius endomorphism of the algebraic group
G will be given by a — a9 (if a = [a;], then a@ = [af]). The centre Z of G is
{1,—1}, which is also the centre of G.

If K is a field, then K* denotes the multiplicative group of K.

As in [22], let x be a fixed element of order ¢g* — 1 in FX, and let 6 = k9’1,
(=T n=09" y=07" and v = y@D/(>-1)_ Fixing an isomorphism ® of the
cyclic group <x) into C*, we put é:@(@), = 0), 1=0(), 7=0(y) and
V= O(v). For an integer k, let o = 7* + 7% and B, = 7#* + #*. For a positived
integer n, {, is a certain primitive n-th root of unity in some algebraically closed
field of characteristic 0.

If o,f are class functions on a finite group H over an algebraically closed
field of characteristic 0, then (o, 8), = (1/|H|) Y., ez (h)B(h~1). If f is a function
on a set S and if T is a subset of S, then f|T denotes the restriction of f to 7.

As to the notation of the complex irreducible characters of G, we follow
that of Srinivasan in [22]; in particular, the following notation will be used
as parameter-sets of some of the complex irreducible characters of G: R; =
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{1,2,...,(1/4)(¢*> = 1)}, R, is a set of (1/4)(q— 1)? distinct positive integers
i such that 0,607 ,07 674 are all distinct, T} ={1,2,...,(1/2)(¢—3)} and
T, ={1,2,...,(1/2)(¢g — 1)}.

Let K be a field of characteristic 0, and let L be an algebraically closed
extension of K. Let y be a (generalized) character of a finite group H over L.
Then we set K(y) = K(x(h),he H). If y is absolutely irreducible, then A(y, H)
denotes the simple component of the group algebra K[H] of H over K associated
with y and mg(y) denotes the Schur index of y with respect to K. In this case
A(y, K) is isomorphic over K to A(x,K(x)) (see, e.g., [27, Proposition 1.5, p. §]
and mg(y) is equal to the index of A(y, K).

Let K be a field. If 4 is a finite-dimensional central simple algebra over K,
then [A4] denotes the class of 4 in the Brauer group of K; for two such algebras
A,B over K, we write A ~ B if [4] = [B].

Let K be a finite algebraic extension of Q. Then, for a place v of K (see Weil
[24, pp. 43-44]), K, is the completion of K at v. If v is a place of K lying above
a finite place r of Q (we write w|r), then Q, is the topological closure of Q in K,
and may be idetified with the r-adic rational field. If 4 is a finite-dimensional
central simple algebra over K, then, for a place v of K, 4, denotes the simple
algebra 4 ®x K, over K,, and h,(A4) or h(A,) denotes the Hasse invariant of
A, (h,(A) e Q/Z).

Let K be a field and let L be a finite Galois extension of K. Then Gal(L/K)
denotes the Galois group of L over K. Put H = Gal(L/K), and let f: H x
H — L be a factor set (i.e. 2-cocycle) of H with values in L. Then (f,L/k)
denotes the crossed product algebra over K corresponding to f: (f,L/K) is a left
vactor-space over L with a basis {u,;,0 € H} such that the multiplication law is
given by the following formula:

(Z xaua> (Z y,ur> = Z Z xs0(y.) (o, T)u, (x5, y. € L).

geH teH veH \ 6,7e H
gT=b

Assume that L is a cyclic extension of K of degree n, and let H = {o). Then, for
aeK*, (a,L/K,0) or (a,L,o) denotes the cyclic algebra over K corresponding
to a (with respect to o); if we set f(a’,0/) = al+)/n=li/n=li/" ([*] is the Gauss
symbol), then we have (a,L,0) = (8,L/K).

Let a,b be rational integers with a # 0. Then (a, b) is the greatest commomn
divisor of a,b. We wrire alb (resp. atb) if a divides b (resp. if a does not divide
b). Let r be a prime number such that rja. Then we write r¢||a (e is a positive
integer) if r¢|la but r¢tl ya; in this case we write ord, a = e.
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1. Preliminaries

In the following, K is a field of characteristic 0, C is an algebraically closed
extension of K, H is a finite group and y is an absolutely irreducible character of
H over C.

ProposiTiON A (E. Witt; see [27, Proposition 3.8, p. 29]). Assume that
K(y) =K. Let M be a subgroup of H and let ¢ be an absolutely irreducible
character of M over C such that K(&) = K and (x|M,&),, = n # 0. Then, for each
prime number r such that (r,n) =1, the r-parts of [A(x,K)| and [A(¢,K)| are the
same.

COROLLARY B. Let the notation and the assumption be as in Proposition
A. Assume that mg(x) and mg(E) are coprime to n. Then we have [A(y,K)] =
[A(&,K)]. In particular, (T. Yamada) if y = ¥, then [A(y, K)] = [A(£, K)).

Let L be a finite Galois extension of K of the form K(¢) for some root of
unity &. Then, if £ is a factor set of Gal(L/K) such that, for any o, 7 € Gal(L/K),
B(o,7) is a root of unity in L, the crossed product algebra (S, L/K) will be called
a cyclotomic algebra over K.

In the following two propositions and the remark, N is a normal subgroup of
H. If Y is a character of N, then, for # € H, y" is the character of N defined by
Y (x) = Y(hxh™), xe N.

ProrosiTION C (T. Yamada [27, Proposition 3.4, p. 23]). Suppose that y is
induced by an absolutely irreducible character  of N over C and that K(y) = K.
Set F={feH|y =y for some t(f) e Gal(K(y)/K)}. Let Nfi,Nf,...,
Nf: (fi =1) be all the distinct cosets of N in F, and set 7, = ©(f;), 1 £i < t. Then
F/N ~{71,73,...,7,} = Gal(K(y)/K) and K(y¥) = K.

ProrosITION D (T. Yamada [27, Proposition 3.5, p. 24]). Let the notation
and the assumption be as in Proposition C. For 1 <i,j <t let fifi=n;fi ),
nieN, v(i,j) e {1,2,...,t}. Suppose that Y is a linear character of N, and put
B(ti, ;) = Y(ny), I <i,j < t. Then B is a factor set of Gal(K(y)/K) consisting of
roots of unity in K(y) and the algebra A(Y*,K) over K is isomorphic over K to
the cyclotomic algebra (B,K(y)/K) over K.

REMARK E. Let the notation and the assumption be as in Propositions C,
D. Suppose that F/N is a cyclic group of order z. Let f be an element of F



250 Joujuu (Zyozyu) OHMORI

such that F/N = (Nf», and put t = 7(f). Then (S, K(y¥)/K) is a cyclic algebra
(W(f"),K(¥)/K,t) (the verification is easy).

LemMma F (see, e.g., [26, Lemma 7]). Suppose that K is a finite algebraic
extension of Q. Let L be a finite Galois extension of K, let B be a factor set
of Gal(L/K) such that for o,7€ Gal(L/K), B(o,7) is a unit in L, and let
A = (B,L/K). Then, if v is a finite place of K that is unramified in L, we have
h,(4) =0 (mod 1).

THEOREM G (Hasse’s sum formula; see, e.g., [24, Theorem 2, p. 255]). If A is
a finite-dimensional central simple algebra over a finite algebraic extension K of Q,
then we have )  h,(A) =0 (mod 1), where the sum is taken over all the places v of
K. b

Lemma H (22, Lemma 3.1)). Let H be a subgroup of G. If there is a matrix
y in G such that y~'ay = a\9 for all a € H, then there is a matrix z in G such that
z'Hz c G.

LemMMA I ([22, Lemma 1.1]). Let S be the set of non-zero elements of F,
which are squares in Fy, and let S’ be the set of elements of F, which are not
squares in Fy. Put s = (=)D (recall that q is odd). Then there are complex
additive characters ¢,&' of F, such that

Soex) = D €'(x) = =5 (s + V59),

xeS xeS§’
> e(x) =Y ¢(x) = 5 (s~ V59).
xeS’ xeSs

THEOREM J (The Brauer-Speiser Theorem; see, e.g., [27, Corollary 1.8, p. 9]).
If y is a complex irreducible character of a finite group whose values are real, then
we have mg(y) < 2.

THEOREM K (R. Gow [7, Theorem 209]). For any complex irreducible
character x of Spi.(F,), we have mo(x) < 2.

ProrosiTION L (G. J. Janusz [9, Proposition 1]). Let n be an integer = 3,

K= Q(Cn +C;l)a Gal(Q(Cn)/K) = <l>’ where crlz = C;l’ and A = (_17 Q(é’n)/K> l)'
Let v be a place of K. Then, if v is infinite (i.e. real), we have h,(4)=1/2
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(mod 1), and, if v is finite, we have h,(A) =0 (mod 1) except in the following
cases: If n is of the form r™ or 2r™, where r is an odd prime number of the form
4k — 1 and m = 1, and if v|r, we have h,(A) =1/2 (mod 1). If n=4 and v =2,
we have hy(A) =1/2 (mod 1).

ProposITION N (Janusz [9, Proposition 3]). Let t be an automorphism of
Q(,) having order either p—1 or (p—1)/2. Let K be the subfield Q(CI,)<T>
of Q(C) fixed by () and let A= (-1,0((,)/K,t). Then: (i) If t has order
p—1, K=Q, hy(Ad) =hy(4)=1/2 (mod 1) and h,(4) =0 (mod 1) for each
Sinite place r # p of Q. (ii) If © has order (p—1)/2 and p=1 (mod4), then
K = Q(\/p), h,(4)=1/2 (mod 1) for two real places v of K and h,(A) =0
(mod 1) for any finite place v of K. (iii) If t has order (p—1)/2 and
p=-—1 (mod4), then K = Q(,/=p) and A ~ K.

2. The Hasse Invariants of A(y,(j), Q)

Let y=x(j) (JeR1), K=Q(x) and 4 = A(x,K). In this section we cal-
culate the invariants of A.

We have K = Q({V 4 (9 4 £99 4 799 j e R)) = Q(E))<™, where 7 is the auto-
morphism of Q(/) given by ({/)* = ({/)™7 (see below). In the first part of the
following arguments, we follow those in Przygocki [21, (3.1)]: Let

¢ 0 00 01
| _ oo -1 0
7= f » *Tl1 0 o0 ool

0 -1 01 00

and let H = <a,%). Then ¥ 'yx = y@ for all ye H, so that, by Lemma H,
there is an element z of G such that z~'Hz c G. Fixing one such element z, put
a=zlaz, x=z"'%zand H =z 'Hz. Then a? ! = x8 = 1 and xax~! = a~9. Let
N = <a) (a normal subgroup of H), and let ¥ be the linear character of N
defined by y(a) = /. Then y¥ is an irreducible character of H and oy =K
(cf. [22, Table on p. 496]). Since y and y* are real characters, by the Brauer-
Speiser theorem (Theorem J), we have mg(x) <2 and mp(y¥) <2. And
(I H, ™)y = (1IN, ¥)y = 2¢% — 5, odd. So (x|H,y*™), is coprime to mg(x) and
mo(y ™). Therefore, by Corollary B, we have [4] = [A(y", K)]. Thus it suffices to
calculate the invariants of A(y”, K).

Set F={feH|y  =y") for some z(f)e Gal(K(y)/K)}. Since y* =
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Y 4=y x belongs to F and 7= 1(x). So F = H. By Proposition C, we see
that F/N ~ (t) = Gal(K(y)/K) ~ Z/4Z (thus K = Q(y)” = Q(Z/)?). By
Propositon D and Remark E, we see that A(y“,K)~ C, where C=
W), KW)/K ) = (=1, (@), 7). )

If j is even, then C ~ K. Suppose therefore j is odd. Let L = K(y) = Q(¢/).
Let w be any infinite place of L, and let v be the place of K lying below v. Then
Gal(L,/K,) can be canonically viewed as the subgroup {z?» of Gal(L/K), and
we see that C, ~ (—1,L,/K,,1?). L, is isomorphic to C and K, is isomorphic to
R, so (—1,L,/K,,t?) is isomorphic (as rings) to the quaternion algebra over R.
Thus A(C,) =1/2 (mod 1).

Let v be a finite place of K. The determinetion of the invariant of C, is rather
formally and is essestially achieved by Janusz in [9]. Since C is a cyclotomic
.algebra over K, by Lemma F, we have A(C,) =0 (mod 1) whenever v is un-
ramified in L. Let n = (¢®> +1)/(j, ¢*> + 1), the order of £/, L is a cyclic extension
of K of degree 4 and K is real, so the real field Q({, +¢;') is the unique
internediate subfield of L containing K. Thus v is ramified in L only if # is of the
form 2r™, where r is an odd prime number and m = 1, and v|r. In this case, r is
totally ramified in L, so v is unique. Since [L: Q] = (r — 1)r™ ! and [L : K] =4,
we must have r =1 (mod 4), and K has just ((r — 1)/4)r~! real places. Thus
Hasse’s sum formula (Theorem G) forces that A4,(C)=0 or 1/2 (mod 1)
according as (r — 1)/4 is even or odd respectively. We note that we see easily that
when ¢ is an even power of p we have h,(4) =0 (mod 1) for each finite place
v’ of K.

Thus we get

ProposITION 1 (cf. Przygocki [21, (3.1)]). Let y=x,(j) (jeRi), K= Q(x)
and A = A(y,K). Then K = Q{7 + 77 4+ {99 + {99 i e Ry) = Q({/)<7, where ©
is the automorphism of Q) given by (()) = ()9 If j is even, A~ K.
Suppose that j is odd and let v be a place of K. Then, if v is infinite (real), we
have h,(A) =1/2 (mod 1), and if v is finite, we have h,(A) =0 (mod 1) except
in the following case: If (¢* +1)/(j,q* + 1) is of the form 2r™  where r is an odd
prime number of the form 8k +5 and m =1, and if vlr, then h,(A) =1/2
(mod 1). In particular, if q is an even power of p, then h,(A) =0 (mod 1) for all
finite places v of K.

EXxaMPLE. Let g=p=3. Then R;={1,2}. We have Q(x;(1))
Q(x1(2)) = @, A(x1(2), Q) ~ @, mr(x1(1)) = mg,(x1(1)) =2 and mg,(x,(1)) =

for each prime number r # 5.

1
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RemMARK. For j,k € Ry, x,(k) is algebraically conjugate to y;(/) is and only
if there is an integer m such that (% = ({/)™ and (m, (> +1)/(j,¢> + 1)) = 1.

3. Hasse Invariants of A(—y,(j), Q)

Let y = —x»(j) (j € Ry). In [21, (3.2)], Przygocki states that mgp(y) =1 if jis
even and mpg(y) =2 if j is odd. As we shall see below, his statement is correct,
but his argument is valid only when (¢ —1)/24j and (¢+1)/2 4 j, since his
calculation on p. 294, line 26, is not right: in fact, we have

2(¢* +1) (even) if (¢—1)/2|j and (g+1)/24J,

Y {2612+1 (odd) if (g—1)/24j and (¢+1)/2k ],
(X’é )=
2¢* (even) if (q—1)/24j and (g+1)/2]|j

(the case where (¢ — 1)/2|j and (¢ + 1)/2]|j does not happen). We have Q(y) =
O(oj, 85,07 + 079 + 69 + =99 j € R).

3.1. Thecase (9—1)/2%jand (¢+ 1)/2 4 j: In this case, we can follow the
argument of Przygocki in [21, (3.2)]. Let

0 0 010
I VS E | 0o 00
0 99 : 1 00 0]
g4 0 =1 0 0
0 0 0 1
o o -1 0
Yo -1 o0 o)
1 0 0 0

and let H = <a,%, ). Then ¥ 'cx = ¢@ for all ce H. Let z be an element of G
such that z7!Hz < G, and put a =z~ 'az, x=z"'%z, y=z"'yz and H = z"'Hz
(see [22, p. 496]). Let N = {a)> (a normal subgroup of H), and let y be the linear
character of N defined by y(a) = 6/. Then y* =4, y” =y 7 and ¥ =y .
It follows that ¥ is an irreducible character of H and Q(y*) = Q(y), real.
Since (x|H,¥")y = (xIN,¥)y =2¢>+1, odd, we have [4(x,K)] = [AW",K)]
with K = 0(z) = Q).

Let L = K(y) = Q(#/), and let ¢ and t be the automorphisms of L over
K given by (6/)° = (6/)? and (6/)° = (6/)™7 respectively. Then we see that
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F={feH|y =y™ for some 7(f) € Gal(L/K)} = H, o = 7(x), 7 = 7() and
Gal(L/K) =<o,7) ~F/N = H/N (Proposition C). R= {l,x, y,xy} is a set of
complete system of representatives for F/N, and the factor set f of Gal(L/K)
with respect to R (Proposition D) is given by f(a,0) = (—1)’, B(g,7) = B(1,0) =
B(t,7) = 1. Let ¢’ and 7’ be respectively the restriction of ¢ to L<> and the
restriction of 7 to L¢°’. Then we have:

1 1
A(!//HaK) = (ﬁ’L/K) = ZzLuasr’

s=0 =0
1 1 1 1
= Z Z LOLu . = Z Z LUy L4,
s=0 =0 s=0 =0
1 1 1 1
- (2g0e) (10 = () (g5
s=0 t=0 5s=0 =0
1 1
~ (Z L<r>(va/)S) ®x (Z L<T>(v,f)')
5= =0

(-1)/,L?/K,0") @ (1, L7 /K, ') ~ ((-1)/, LK, d").

Thus, if j is even, A(Yy7 K) ~ K.

Suppose that j is odd, and let C = (-1,L’/K,5'). Let n=(¢g*—-1)/
(j,q*> — 1), the order of 6/, and let n = nany/, where n; is the 2-part of n and ny is
the odd part of n. Then we see that L7 = K(,, +,7) if ordy(g+1) =1 and
L = K(Ly,2) if ordy(g— 1) = 1. Since ordy n, 23, L is not a real field.

Put M = L<”. Let w be a finite place of M and let v be the place of K lying
below w. Then K, ~ R and M,, = M - K, ~ C, and Gal(M,/K,) ~ <a’'). So, if
we let Gal(M,,/K,) = (1), then C, ~ (-1, M - K,/K,,1) ~ (—1,C/R,n) (an iso-
morphism of rings) with () = Gal(C/R). The last algebra is the quaternion
algebra over R. Hence A(C,) =1/2 (mod 1).

Putd =(q+1),/(j,q+ 1), where (¢ + 1),, is the odd part of g + 1. Then we
see that M = K({;) if d > 1. Thus, if d > 1, since M is also contained in K({,,),
any finite place of K is unramified in M, and if d = 1, each finite place v of K
such that v}2 is unramified in M. Thus, by Lemma F, we see that, if d > 1, we
have h,(C) =0 (mod 1) for any finite place v of K, and if d =1, we have
hy(C) =0 (mod 1) for each finite place v of K such that v}t2. But when d = 1
and v is a finite place of K lying above 2, we can prove, by rather long
considerations, that 4,(C) =0 (mod 1).
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We give here a sketch of these considerations. Let ¢” and t” be respectively
the restrictions of ¢ and 7 to Q((,,). Let P = Q(Cm)(T”> and S = Q(C,,z)<“”’r”>.
Then we see that M =K-P and KNP=S and that C ~ D ®gK, where
D = (-1,P/S,0") (6" is the restriction of ¢” to P). Let v’ be the place of S
lying below v, and let f = [K,:S,]. Then A,(C)= f-h,(D) (mod1). Since
[D]* = [S], we have h, (D) =0 or 1/2 (mod 1). Put ¢ = [05(,) : K,]. Then we
see that ¢ =2 or 4, and that, if ¢ =4, then 2|[Q2({,,) : @2]/c. Finally, we have
f=4-[02(¢,,) : @2]/c, even. Thus h,(C) =0 (mod 1).

3.2. The case (¢ —1)/2|j and (¢ +1)/2 4 j: Let a(j) be the character of G
defined in [22, (3.13), pp. 502-3]. Then we have (x,0(j))g = 2¢*> —2q + 1, odd,
and Q(a(j)) = Q(f;) = Q(x). In this subsection we use this o(j) in order to
investigate the rationality of y.

Let &’ be an element of F, such that 5 = y; we have 8" = —¢'. Let

n 0 1 0 0 ¢p
-1 ~ 0 1 0 0O
5 — n -
0
7 0 0 o0 1
0 010
5o 0 0 0 1
| -1 0 0 O
0 -1 0 O
and
g~ ((g=1)/(p-1)) 0
i gla—1/(p—1)
o~ (a=1)/(p-1))q
0 g\a=1)/(p-1))g

(cf. [22, p. 500]), and let H = {w, c;'ﬂ(ﬁe F,),?, b>. Then & transforms each ele-
ment y of H to y@. Let z be an element of G such that z~!Hz = G, and put
w=z"Yz, dp=z"'dpz (feF,), v==z"'pz, b=2z"'bz and H = z-'Hz. Then we
have: witl = p* = di =1 (BeFy), v*=—1, vwo ' =w ' =wi, vdpv ! =d_g=
di' (BeF,), bwb'=w, b\ =w!, bdgh~' =d,1s (BEF,) and vbv~! = b7,
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Let N = (w,dg(f e Fy)> =<w) x {dg|f e F;}. Then N is a normal subgroup of
H, (H:N)=2(p—-1) and R= {b',vb',i=0,1,...,p—2} is a set of complete
system of representatives for H/N. Let ¢ be an additive character of F, as
in Lemma I, and let  be the linear character of N defined by y(w*ds) =
(7)*e(B). Then ¥© = a(j) (22, pp. 502-3]). We have y*'(wkds) = (/) 2(B)*
and z//”bi(wkbﬁ) = wbi(wkdﬂ)_l, where ¢ is an integer such that g mod pZ = v~!
in F, =Z/pZ. From this we see that Yy (wkdg) = (p - 1)Bs if B eKer(e), and
= —p; otherwise. Then it follows that W,y g =1, so0 Y is an irreducible

character of H. We have Q(y")=0(8) = Q(x), (xIH.¥™)y = (x,0()))¢ =
2¢2 —2g+1, odd, and y and y* are real. Therefore we have [4(x, Q(x))] =

A7, 0()]

Let K = Q(y*™), L=K(y) = Q(#’,{,) and B=A(y"”,K). Then Gal(L/K) =
(@) x (), where (7))” =7/, {Z={5, ()" =()"" and [ =0, We see
that y® = y* and lﬁ”b(p_‘)/z =y? so F={feH|y = Y™ for some 1(f)e
Gal(L/K)} = H, hence B ~ (B, L/K), where f is the factor set of Gal(L/K) with
respect to R.

Let u’' be any infinite place of L, and let u be the place of K lying below u'.
Then L, ~C and K, ~ R and Gal(L,/K,) is canonically isomorphic to the
subgroup <wP~V/2¢% of Gal(L/K). Let Gal(L, /K,) = <1y, and let B, be the
restriction of B to <{i>. Then B,(1,1) = (=1)’, so B, ~ (B,,L./K,) (see, e.g. [24,
Chap. IX, §3, Corollary to [Proposition 7, p. 174]) = ((-1)?,L,//K,,1). Thus
h,B) =0 (mod 1) if j is even, and h,(B) =1/2 (mod 1) if j is odd.

Let u be a finite place of K. Let n = (¢ + 1)/(j,q + 1), the order of #/. Then
L =Q((n,¢,) = O(Lyy). We see that u is unramified in L except in the following
cases: (a) If u|p, then u is ramified in L. (b) If n is of the form r™ or 2r™, where r
is an odd prime number and m = 1, and if u|r, then u is ramified in L. (c) If »
is of the form 2™ with m = 2 and if u|2, then u is ramified in L.

Suppose that u|p. Then, by using the index formula of 7. Yamada ([27,
Theorem 4.4, p. 43]), we see that the index m, of B, is equal to (p—1)/
((g — s)/n, p— 1), where s = p//? with f = [Q,((,) : Q] (even), and, by relatively
elementary arguments, we can conclude that m, = 1.

Suppose that » is of the form r™ or 2r™, where r is an odd prime number and
m = 1, and that u|r. Then r is totally ramified in K, so that u is unique. We see
that j is even, so that, by sum formula, we must have A,(B) =0 (mod 1).

Suppose that 7 is of the form 2™ with m = 2 and that u|2. Then 2 is totally
ramified in K, so that u is unique. Thus, if j is even, we must have A,(B) =0
(mod 1). Suppose that j is odd. Since [K: Q] =2""2 K has just 2™ 2 real
places. Therefore we must have h,(B) =0 (mod 1) if m > 2, and h,(B)=1/2
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(mod 1) if m = 2. If m =2, then we see that Q(y) = Q, so we have myg,(y) =
sz(‘//H) =2.

33. The case (¢q—1)/24j and (¢+1)/2]j: In this case we have
(x,0())g = 29(q — 1), even. But, if p(j) is the character of G which is defined in
[22, pp. 502-3], we have (x,p(j))s = 24*+2q+ 3, odd, and Q(p(j)) = Q(w) =
Q(x). So in this subsection, we use p(j) in order to investigate the rationality

of y.
Let
y 0 1 0 0 8
-1
y 01 0 O
= = F,
u 0 y_] ) bﬂ O ﬁ 1 0 (ﬁe q)>
y 0 0 0 1
0 01 0 1 0
b 0 0 0 1 o 1
1 0 0 0} B o y1 ’
01 00 Y

and let H = (u,bg(f e F,),v,s) (cf. [22, p. 499]). Then v? =71 =u97!1 =1,
vuv! = u"l, vbgv = by (Be Fy), sus™ = u, sbgs™' =b,5 (BeF,;) and ubgu~! =
bg (BeF,). Let N = u,bg(feF,)>=<uyx{bg|BfeF,}. Then N is a normal
subgroup of H, (H:N)=2(p—1) and R= {s',vs",i=0,1,...,p—2} is a set
of complete system of representatives for H/N. Let i be the linear character of
N defined by y(u*bg) = (77/’)1‘8(/)’)7 Then ¢ =p(j) (22, p. 502]). We have
U (ubg) = Y(uFbyip) = () e(B)? and Y™ (ukbg) = Y(u*by-ip) = (3) “e(B)”".
It follows that Y (ukbg) = (p — 1)By if B eKer(e), and = 0 otherwise, and we
see that ¥ is an irreducible character of H and o) = O(o) = Q(x)- Since
Y* and y are real and H vy = (up()e = 2¢* + 29+ 3, odd, we have
[4(x, Q0] = [4( ™, ()]

Let K=0QW"), L=K®)=0Q(/,{,) and B= Ay ,K). Then we have
Gal(L/K) = (@) x {¢), where ()* =3/, {* =(¢, (77) = ()" and (¢ =¢,.
We have ¢* = ¢ and " = y*. Therefore B ~ (f, L/K), where f is the factor set
of Gal(L/K) with respect to R.

As in 3.2, we see that, for an infinite place w of K, we have h,(B) =0



258 Joujuu (Zyozyu) OHMORI

(mod 1) if j is even and A,(B) =1/2 (mod 1) if j is odd. When w is a finite
place of K the argument goes similarly as in 3.2.
We get

ProposITION 2 (cf. [21, (3.2)]). Let x = —x,(j) (J€ Rz). Then K = Q(y) =
Q(aj,ﬁj,éij+ 679+ 09 + 69 e R,). Let A= A(x, Q). Then, if j is even, A ~ K.
Suppose that j is odd. Then h,(A) =1/2 (mod 1) for all infinite places v of
K, and if v is a finite place of K, we have h,(A) =0 (mod 1) except in the
Jollowing cases: (a) If (q—1)/2|j and (q+1)/2)j and (¢ +1)/(j,q+ 1) =4,
then K = Q and hy(A) =1/2 (mod 1). (b) If (9—1)/2k%j and (q+1)/2|j and
(g—1)/(j,q—1) =4, then K = Q and hy(4) =1/2 (mod 1).

4. The Hasse Invariants of A(y;(k,?), Q)

Let x =x3(k.¢) (k¢ € Ti,k #¢). Then Q(x) = Q((=1) o + (= 1) e (i€ Th),
a + o (i€ Th), awoie (i€ Ty), awoje+ e (i,j€ Th,i # j). Generally, this
differs from the calculation in [21, p. 295, line 12] that Q(y) = Q(A(k) x A(¢)) =
O(ox,0r), so the assertion in [21, (3.3)] is not correct.

4.1. The case (¢—1)/24k+¢: Let

y 0 : 0
a= ! , b= I ,
0 I 0o
1 y”l
0 01 0 0100 10 0 0
0 0 0 1 10 0 0 01 00
-1t ooo] YTl oo1o0o|l Tloo o 1)
0 -1 0 0 00 0 1 00 —1 0

and let H = <a,b, x, y,z) (cf. [22, p. 496]). Let N = (a,b) (a normal subgroup of
H), and let ¢ be the linear character of N defined by y(a’b/) = (5%)(5¢)’. Then
we see that ¥ is an irreducible character of H and Q(y) = Q(y), real. We have

2¢% +8q+29 (odd) if 2|k, or 24k, ¢,
XIH ™)y =< 2¢* + 8¢+ 25 (odd) if 2|k and 24¢,
2¢% +8q + 25 (odd) if 24k and 2|/.

Therefore we have [A(x,K)] = [A(y",K)] with K = Q(y).
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Set F={feH|y' =y for some 7(f) € Gal(K(y)/K)}. Then, by Prop-
ositon C, we have K(y*)=K and F/K ~ Gal(K(y)/K), an abelian group.
Since ¥ = (yF)", by Corollary B, we have [A(y?, K)] = [4(yF,K)]. In our
case, the group F is not uniquely determined. For he H, let h = Nhe H/N.
Then the abelian subgroup of H/N are {1},<{x), <7D, <2),<Fz),{F, 2D, <X, JZ),
(Xpzy,{Xpy = (XZy. We see easily that the cases F/N = {1},<{x), {7, {2,
{Xyz) cannot happen.

(1) The case F/N = (yz): This case happens when, for instance, g = 11,
k=1 and /=2. Put 7=1(yz). Then Gal(K(y)/K) =<t) ~Z/2Z, where
5)" =)™ and ()7 = (79)7". So K() = Q(7,7¢) = Q(") with m = (k,¢)
and K = Q(a,,). We see that AP, K) = (=1)**, Q(™)/O(am),7). Thus, if
k+¢ is even, A(x//F,K) ~ K, and, if K+ ¢ is odd, the invariants of A(WF,K)
can be determined by using [Proposition 1] We note that the case (¢ — 1)/
(m,q — 1) = 4 cannot happen.

(2) The case F/N = {(j,z): This case happens when, for instance, g = 13,
k=4 and 7/ = 3.

Put 7 =17(y) and v =7(z). Then Gal(K(y)/K) =<ty x{v) ~Z/2Z ~ Z/2Z,
where (7%)° = (757, (7)7 =%, (%)= and (59)"=(5°)"'. We have
K(y) = Q(7%,7%) and K = Q(o, %,). (We note that ((¢ —1)/(k,q—1),(¢ — 1)/
(¢,q—1))<2) R={l,y,z,yz} is a set of complete system of representatives
for F/N, and the factor set f of G(K(y)/K) with respect to R is given by
B(z,v) = B(v,7) = 1, B(r,7) = (—=1)* and B(v,v) = (=1)’. Let ¢” be the restriction
of 7 to Q(7%) and let v” be the restriction of v to Q(7¢). Then we see that
A(‘#F’K) ~ (Bl ®Q(ak)K) Ok (BZ ®Q(oc/) K): where By = ((_1)k7 Q(?k)/Q(ak)aT”)
and B, = ((-1)/,0(5)/O(as),v"). Thus the calculation of the invariants of
A(Y*,K) is easy (by using Proposition L).

(3) The case F/N = {x,yzy: This case happens when, for instance, ¢ = 31,
k=2 and ¢/ =38.

Let 7 =1(x) and v =1t(yz). Then Gal(K(y)/K)=<t,0) ~Z/2Z x Z/2Z,
where (75 =57, ()7 = 7, ()" = (#)"" and ()" = (9)"". So we have
K(Y) = Q(7,7°) = 0(7%) = 0(7°) and K = Qo + oz, a%%). Since 7* and § are
conjugate over (, they have the same order, that is, (¢—1)/(k,g—1)=
(g—1)/(£,9—1), so that k+ ¢ is even. R = {1, x, yz,xyz} is a set of complete
system of representatives for F/N, and the factor set of Gal(K(y)/K) with
respect to R is 1. Therefore A(y*,K) ~ K.

(4) The case F/N = <{xyy = {(xz): This case happens when, for instance,
g=11, k=1 and ¢/ = 3.

Let 7 = 7(xy). Then Gal(K(y)/K) = {z) ~ Z/4Z, where (7*)" = (5/)"! and
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(7)) = 7*. So K(¥) = Q(7) = () and K = Q(o + o, ). Since 7* and
7¢ are conjugate over Q, k+¢ is even. We see that A(y¥ K) = (y(xp)*

KW)/K,7) = (-1 K(y)/K,7) ~ K.

42. Thecase (q—1)/2|k+¢,1e, k+¢=(q—1)/2. If H and ¥ are as in
4.1, then we have (x|H,y"), = 2(¢> +4q + 15) if k,¢ are even or k,¢ are odd,
and (x|H,y™), = 2(q* + 49 + 13) otherwise. So we cannot use this y. Instead,
let H, N be as in 3.3, and let  be the linear character of N defined by y(u'bs) =
(7%-%)'e(B). Then we have (y|H, ™), = 2¢* + 6 + 11, odd, and Q(y™) = Q(x).
So in this subsection we use this ¥. Then we have [4(x, Q(x))] = [AWT, 0())].
And the arguments go as in 3.3.

We get:

ProPOSITION 3. Let y=yx;(k,?) (k,/eTi,k#¢). Then K=Q(y) =
Q((—l)[oc,-k + (—l)koc,-/ (ieT), ax+ai (ieTh), owxoiy (i€Th), o+ st
(i,je Ty,i # j). Let A= A(x, Q). Then we have the following:

(1) Assume that (q—1)/2 ¥k +¢. Put T1 = Gal(Q(5%,7%)/K).

() Assume thar T = <>, where (%) =G5 and (59)' = (%), Put
m = (k,). Then, if k+ ¢ is even, A ~ K. Suppose that k + ¢ is odd. Then, if w
is any infinite place of K, we have h,(A) =1/2 (mod 1), and if w is a finite
place of K, we have h,(A) =0 (mod1l) except in the following case: If
(g —1)/(m,q — 1) is of the form r¢ or 2r¢, where r is an odd prime number of the
form 4u—1 and ¢ 2 1, and if w|r, then h,(4) =1/2 (mod 1).

(i) Assume that T1 = (1), where (5)' = %), G9) =7/, (G5’ =75~
and (3°)° = (5°)"'. Then: (a) If k,¢ are even, A ~ K. (b) Assume that k is even
and ¢ is odd. Then, if w is any infinite place of K, we have h,,(4) = 1/2 (mod 1),
and if w is a finite place of K, we have h,(A) =0 (mod 1) except in the
following cases: Put n= (q—1)/(¢,q—1). If n is of the form 2r¢, where r is an
odd prime number of the form 4u—1 and ¢ 21, if [Q,(o) : Q) is odd and if
wlr, then h,(A) =1/2 (mod 1). If n=4, if [Q2(ox) : Q2] is odd and if w|2, then
hy,(A) =1/2 (mod 1). (c) Assume that k is odd and ¢ is even. Then, if w is any
infinite place of K, we have h,(A) = 1/2 (mod 1), and if w is a finite place of K,
we have h,(A) =0 (mod 1) except in the following cases: Put m=(q—1)/
(k,q—1). If m is of the form 2r¢, where r is an odd prime number of the form
4u—1and c 21, if [Q,(os) : Q] is odd and if w|r, then h,(4) =1/2 (mod 1). If
m=4, if [Qz(0) : Q2] is odd and if w|2, then h,(A) =1/2 (mod 1). (d) Assume
that k,¢ are odd. Then, if w is any infinite place of K, we have h,(A) =0
(mod 1), and if w is a finite place of K, we have h,,(A) =0 (mod 1) except in the
following cases: Put m= (q—1)/(k,q—1) and n=(q—-1)/(¢{,q—1). If m is of
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the form 2r¢, where r is an odd prime number of the form 4u—1 and ¢ =1, if
[Or(ar) = Q)] is odd and if wir, then h,(A) = 1/2 (mod 1). If n is of the form 2r°,
where r is an odd prime number of the form 4u—1 and ¢ 2 1, if [Qy(o) : Q] is
odd and if wir, then h,(A) =1/2 (mod 1). (The case that m =4 or n =4 does
not happen.)

(iti) Assume that I1 = (z,v), where (7%)° =7/, (7?)" = 3%, (5%)" = (5*)" and
(7)" = (59)7". Then K = O(ox + ay,axoy) and A ~ K.

(iv) Assume that n = (t) ~ Z/4Z, where (7*)° = (5°)" and (5°)° = 5*. Then
K = Q(ox + as,o00) and A ~ K.

(II) Assume that (q—1)/2|k+¢, ie, k+¢=(q—1)/2. Then, if k+¢
is even, A ~ K. Suppose that k+ ¢ is odd. Then, if w is any infinite place of
K, we have h,(A) =1/2 (mod 1), and if w is a finite place of K, we have
hw(A) =0 (mod 1) except in the following case: If (g —1)/(k —¢,q — 1) is of the
Jorm 2r¢, where r is an odd prime number of the form 4u—1 and ¢ = 1, and if
wir, then h,(A) =1/2 (mod 1).

S. The Hasse Invariants of A(y,(k,7), Q)

Let x = xa(k,¢) (k,¢ € Ta,k #¢). Then Q(x) = Q((=1)" By + (—1)*B, (i T),
B + Bir (i€ T2), BubBir (i€T2), Bubis + BuBir (i,j € Ta,i# j)). We note that,
generally, Q(y) # Q(A'(k) x A'(¢)) = Q(B,B,). So the assertion in [21, (3.4)] is
not correct.

S5.1. The case (¢q+1)/2 ¥k +¢: Let

7 0 1 0
-1 . 1
a= " , b= ,
. 7
00 1 0 010 0 10 00
_ oo o1 _[-1 000 _lo1 oo
“l1 o000l P o010l “Tloo o 1]
010 0 000 1 00 -1 0
01 0 0
10 0 0
v= ,
00 0 1
00 -1 0
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and let H = <a,b, %, 7,2>. Then v transforms each element ¢ of H to ¢9. Let
d be an element of G such that d"'Hd = G, and put a =d~'ad, b = d'bd,
x=d'xd, y=d~'yd, z=d'2d and H=d 'Hd. Let N =<a,b) (a normal
subgroup of H), and let y be the linear character of N defined by y(a'd/) =
(#*)'(7¢)’. Then y¥ is an irreducible character of H and QW) = 0(y). We

have

29> —8q+17 if k+¢ is even,

HyM, =
(H )y {2q2—8q+13 if k4 ¢ is odd.

Since y and Y are real, we have [A(y, ()] = AW, 0(x))]. The arguments
go as in 4.1. We omit the details.

5.2. The case (g+1)/2|k+¢, ie, k+¢=(q+1)/2: We have
(x:0(k =€) =2¢* —6g+9 (odd) and Q(o(k —¢)) = Q(Bx) = Q(x) (we have
Q(x) = Q(By) if k+ ¢ is odd and Q(x) = Q(By) if k + ¢ is even). Let H, N be as
in 3.2, and let § be the linear character of N defined by y/(w'dp) = (7%~¢)'e(B).
Then ¥* is an irreducible character of H and QW) = Q(a(k — ¢)). Since
Y% =0k —¢), we have (x|H,y"), =2¢® ~ 6g+9, odd. Thus, since y and y*
are real, we have [A4(x, Q(x))] = [AW¥, Q(x))]. We omit the detailed calculation.

We get

PROPOSITION 4. Let  y = y4(k,t) (k,teTr,k#¢). Then Q(x)=
Q(=1) B+ (~=1)"Biy (€ T), Bu+PBi (i€ T), BB (i€ T), Bubj+Bubic
(i,je€Tai# j)). Put K= Q(x) and A= A(x, Q). Then we have the following:

(I) Assume that (q+1)/24k+¢. Put L= Q(7i*,%’), and 11 = Gal(L/K).
Then:

(i) Assume that 1= iy, where (7%)' = H5)™' and (7%)' = (7). Put
m = (k,£). Then L = Q") and K = Q(B,,). If k+¢ is even, A ~ K. Suppose
that k + ¢ is odd. Then h,(A) = 1/2 (mod 1) for any infinite place u of K, and if u
is a finite place of K, we have h,(A) =0 (mod 1) except in the following case: If
(g+1)/(m,q +1) is of the form r¢ or 2r¢, where r is an odd prime number of the
Jorm 4s—1 and ¢ =2 1, and if u|r, then h,(A) =1/2 (mod 1).

(il) Assume that T1 = (t,0) ~ Z/2Z x Z/2Z, where (7*)" = (75)7", ()" =
7 (%) =% and ()" = (7). Put m=(q+1)/(k,q+1) and n=(q+1)/
(¢,q+1). Then (m,n) <2 and K = Q(By,B,). (a) If k,¢ are even, A ~ K. (b)
Suppose that k is even and ¢ is odd. Then h,(A) =1/2 (mod 1) for any infinite
place u of K, and if u is a finite place of K, we have h,(4) =0 (mod 1) except in
the following cases: If n is of the form 2r¢, where r is an odd prime number of the
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form 4s—1 and c =1, if [Q,(B): Q] is odd and if ulr, then h,(A)=1/2
(mod 1). If n =4, if [Q2(By) : Q2] is odd and if u|2, then h,(A) = 1/2 (mod 1). (c)
Suppose that k is odd and ¢ is even. Then h,(A) =1/2 (mod 1) for any infinite
place u of K, and if u is a finite place of K, we have h,(4) =0 (mod 1) except in
the following cases: If m is of the form 2r¢, where r is an odd prime number of the
Jorm 4s—1 and cz1, if [Q(B,): Q] is odd and if ulr, we have
h,(A4) =1/2 (mod 1). If m =4, if (Q2(B,): Q2] is odd and if u|2, then h,(A) =
1/2 (mod 1). (d) Suppose that k,/ are odd. Then we have h,(4) =0 (mod 1)
Jor any infinite place u of K, and if u is a finite place of K, we have
hy(A) =0 (mod 1) except in the following cases: If m is of the form 2r¢, where r
is an odd prime number of the form 4s—1 and ¢ 2 1, if (Q,(B,) : Q. is odd and
if ulr, then h,(A) =1/2 (mod 1). If n is of the form 2r¢, where r is an odd prime
number of the form 4s—1 and ¢ 21, if [Q,(By): Q)] is odd and if ulr, then
h,(4) =1/2 (mod 1).

(iii) Assume that T = (t,v) ~ Z/2Z x Z/2Z, where (i%)" =7, (#°)" = #i*,
(7)"= ()" and (7%)" = (7°)"". Then L= Q(i*) = Q(i’), K = Q(Bi + B, BiB,)
and A ~ K.

(iv) Assume that TI =ty ~ Z/4Z, where (7*)" = (7°)™" and (7°)° = fi*.
Then L= Q(7) = Q(11°), K = Qi+ Bs, Bi;) and A ~ K.

(IL) Assume that (q+1)/2|k+¢, ie, k+¢ = (q+1)/2. Then, if k—¢ is
even, A ~ K. Suppose that k — ¢ is odd. Then h,(A)=1/2 (mod 1) for any
infinite place u of K, and if u is a finite place of K, we have h,(A) =0 (mod 1)
except in the following case: If (9 + 1)/(k —¢,q+ 1) is of the form 2r¢, where r
is an odd prime number of the form 4s — 1 and ¢ 2 1, and if u is the unique place of
K that lies above r, then h,(4) =1/2 (mod 1).

6. The Hasse Invariants of A(—ys(k,7), Q)

Let y=-xsk,?) (keTy,/eT). Then QO(x)= Q(fy, )= Q(-4'(k) x
AM?)), where —2'(k) and A(¢) are irreducible characters of SLy(F,;) whose
character-values are listed up on p. 504 of [22]. In this case the assertion in [21,
(3.5)] is correct. Let 3,3 be characters of G which are constructed in [22, pp.
494-5]. Then, by [22, p. 505], we have —y = (4'(k) x A(£)) + Y5, where ¥, = 5
(resp. Y53 = 3) if k+ ¢ is even (resp. odd). We have (y, l/;3)G = 3, hence, since
(1, X0)¢=1, we must have (y,(—2'(k) x 4(¢))%)g =3, odd. So, since y and
~2/(k) x A(¢) are real, we have [A(y, Q(x))] = [A(=A"(k) x A(¢),O(x))]. The
local Schur indices of the character —4'(k) x A(¢) have been calculated in [21,
Proposition (2.5)]. Here we shall give a more direct treatment.
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Let
1
g 0 1 0
_1 ~
d: ’7 ,b= 3
1 y
0 1 0 g1
010 0 10 0 0
-1 00 0 N N
Yl o010 oo o 1}/
00 0 1 00 -1 0

and let H = <a,b, y,7y. The group SLy(F,) x SLy(F,) can be embedded into G
diagonally, and H is a subgroup of SLy(Fg4) x SLy(F,). y transforms each
element w of H to w@), so that, by a result similar to Lemma H, there is an
element d of SL,(F,) x SLy(F,) such that d"'Hd = SL,(F,) x SLy(F,). Fixing
one such element d, we put a =d 'ad, b=d 'bd, y=d 'yd, z=d '5d and
H=d 'Hd. Let N = {a,b) (a normal subgroup of H), and let y be the linear
character of N defined by y(a'd’) = (7*)'(7¢)’. Then ((=A'(k) x A(£))|N,¥)y =
3. We see that ¥ is an irreducible character of H and O = O(x). Therefore
we have [A(=21'(k) x A(£), O(x))] = [A(W™, O(x))]. The calculation of the invari-
ants of A(y¥ Q")) is standard.
We get

ProposITION 5 (21, (3.5), (2.4)]). Let x = —ys(k,?) (ke T2, € Th). Then
O(x) = O(By,0r). Put K= Q(x) and A = A(x, Q). Then we have the following:

(@) If k,¢ are even, A ~ K.

(b) Suppose that k is even and ¢ is odd. Then h,(A) = 1/2 (mod 1) for any
infinite place v of K, and if v is a finite place of K, we have h,(4) =0 (mod 1)
except in the following cases: Put n = (q—1)/(£,q—1). If n is of the form 2r¢,
where r is an odd prime number of the form 4u—1 and ¢ = 1, if [Q,(Bi) : Q)] is
odd and if v|r, then h,(A) =1/2 (mod 1). If n =4, if [Q2(B:) : Q2] is odd and if
v|2, then h,(4) =1/2 (mod 1).

(c) Suppose that k is odd and ¢ is even. Then h,(A) =1/2 (mod 1) for any
infinite place v of K, and if v is a finite place of K, we have h,(4) =0 (mod 1)
except in the following cases: Put m = (q+1)/(k,q+ 1). If m is of the form 2r¢,
where r is an odd prime number of the form 4u—1 and ¢ 2 1, if [Qy(oy) : Q)] is
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odd and if v|r, then h,(A) =1/2 (mod 1). If m =4, if [Q2(0s) : Q2] is odd and if
v|2, then h,(A) =1/2 (mod 1).

(d) Suppose that k,¢ are odd. Then h,(A) =0 (mod 1) for any infinite place v
of K, and if v is a finite place of K, we have h,(A) =0 (mod 1) except in the
Jollowing cases: Put m= (q+1)/(k,q+1) and n=(q—-1)/({,q—1). If m is
of the form 2r¢, where r is an odd prime number of the form 4u—1 and ¢ 2 1,
if [O(oy): Q)] is odd and if v|r, then h,(A)=1/2 (modl). If m=4, if
[02(0y) : Q5] is odd and if v|2, then h,(A) = 1/2 (mod 1). If n is of the form 2s%,
where s is an odd prime number of the form 4t —1 and d = 1, if [Qs(By) : Qs is
odd and if v|s, then h,(A) =1/2 (mod 1). If n=4, if (Q2(By) : Q2] is odd and if
v|2, then h,(4) =1/2 (mod 1).

7. The Hasse Invariants of A(y;(k),Q), i=16,7,8,9

In this case Przygocki has obtained the following result:

ProposITION 6 ([21, (3.6)]). We have Q(—yxs(k)) = Qx:(k)) = Q(Bs)
(ke T2) and Q(x3(k)) = Q(xo(k)) = Qo) (k€ Th). And, for x = —xs(k), x71(k),
xg(k) and xqo(k), A(x, Q) ~ Q(x)-

8. The Hasse Invariants of A(—¢(k), Q)

Let x = —¢(k) (ke T). Then Q(x) = Q(By)- Let

7 0 0100
- -1 -1 0 0 O
h=| 7 v =
" 001 0]
0 1 0 0 0 1

and H = <(h,%)>. Then % transforms each element ¢ of H to ¢@. Let z be an
element of G such that z'Hz < G, and let h = z7lhz, x = z7'%z and H = z"'Hz.
Let N = <h) (a normal subgroup of H), and let  be the linear character of
N defined by y(h) = #*. Then, as Przygocki observed in [21, (3.7)], we have
(XIN,¥)y = ¢*> — 2q+ 2 (odd). We see that y is an irreducible character of H
and Q(y"") = Q(x) (real). Therefore we have [4(x, Q(x))] = [A(¥", Q(x))]. We
see that AW, Q(x)) ~ ((=1)%, Q%) /Q(B,), 7), where 7 is the automorphism of
Q(#*) given by (5%)* = (#%)'. Thus, by Proposition L, we get:
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ProposiTION 7 (cf. [21, (3.7)]). Let y = —¢&,(k) (k€ Ta). Then Q(x) = Q(Bi)-
Put K = Q(x) and A = A(y, Q). Then, if k is even, A ~ K. Suppose that k is odd.
Then h,(A) =1/2 (mod 1) for any infinite place v of K, and if v is a finite place
of K, we have h,(A) =0 (mod 1) except in the following cases: Put n = (q+ 1)/
(k,q+1). If n is of the form 2r¢, where r is an odd prime number of the
form 4u—1 and c =1, and if v|r, then h,(4)=1/2 (mod1). If n=4, then
hy(A) =1/2 (mod 1).

9. The Hasse Invariants of 4(—¢](k), Q)

Let y = —¢[(k) (ke T,). Then Q(x) = Q(B;). Let H,N and ¥ be as in §8.
Then we have (x|N,¢)y = ¢> — 2¢* + 49 — 2 if k is even (this differs from [21, p.

296)), and = q(q? — 2q + 2) if k is odd. So [A(x, ()] = [A(¥*, Q(x))]. Thus the
same statements as in [Proposition 7] holds for .

10. The Hasse Invariants of A(&3(k), Q)
Let y = &;5(k) (ke Tp). Then Q(x) = Q(ax). Let

(]
O O =
S = O O
-_o O O

and H = <b, y). Let N = <b) (a normal subgroup of H), and let  be the linear
character of N defined by y(b) = j*. Then, as Przygocki observed in [21, p.
296], we have (x|N,¥)y = q*>+2q +4 (odd). We see that ¥ is an irreducible
character of H and Q)= Q(x) (real). Therefore we have [4(y, Q(x))] =
[AW", Q(0)). We see that AW, 0(x)) = (1), Q(7*)/Q(ou), 7), where t is the
automorphism of Q(7%) given by (5¥)° = (5%)'. Thus, by Proposition L, we get

ProposITION 8 (cf. [21, (3.7)]). Let y =& (k) (ke Ty). Then Q(x) = Qox).
Put K = Q(x) and A = A(x, Q). Then, if k is even, A ~ K. Suppose that k is odd.
Then we have h,(A) = 1/2 (mod 1) for any infinite place v of K, and if v is a finite
place of K, we have h,(A) =0 (mod 1) except in the following cases: Put
n=1(q-1)/(k,q—1). If n is of the form 2r¢, where r is an odd prime number of
the form 4u—1 and ¢ = 1, and if v|r, then h,(4) =1/2 (mod 1). If n =4, then
hy(A4) =1/2 (mod 1).
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11. The Hasse Invariants of A(&5(k), Q)

Let y = &(k) (ke Th). Then Q(x) = Q(ox). Let H,N and ¢ be as in §10.
Then we have (x|N,¥)y = ¢°> + 2¢* + 6q + 2 if k is even, and = ¢(¢* + 2q + 4) if
k is odd (this differs from [21, p. 296]). Thus the same statement as in
8 holds for y.

12. The Hasse Invariants of A(—¢&;(k), Q)

Let y = —& (k) (ke Ts). Then Q(x) = O(\/59,B;), where s= (_1)(q—1)/2_
Let

1 00 0
5 -1 0 0 O . n!
| oo 1 0| ¢ . 1 ’
0 0 0 1 1
1 0 0 O 1
01 0 O 1 0
- . s
kﬂ_ 0 O 1 ﬂ (ﬁeFQ)? = 0 f—l (5 —V)
0 0 0 1 &
and
1 0
= 1
— -
0
v

Put H = (i, c"i,lgﬁ (BeF,),t) if q is square (i.e. g is an even power of p), and
H' =<q,a, 15/; (BeF,),t"> if ¢q is non-square. Then, if ¢ is square (resp. non-
square), # transforms each element ¢ of H (resp. H') to ¢9, so that there is
an element z of G such that z7!Hz = G (resp. z"'H’z = G). Fixing one such
element z, we put u=z"liiz, a=z"'az, ky=z""kyz (feF,), t=2z"'#z (resp.
t'=z71z) and H=z""Hz (resp. H =z"'H'z). Let N =<a,ks (BeF))) =
<a) x {kg|p e F;}. Then N is a normal subgroup of H (resp. H'). Let ¢ and v’
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be the linear characters of N defined by y(a'ks) = (7#%)'e(p) and W' (a'kg) =
(7#%)'¢’(B) (see Lemma I). Then we have

(XIN,¥)y = (¢* +1)/2 (odd) if g=1 (mod4) and 2|k,
(XIN,¥)y = (¢* =29+ 3)/2 (0odd) if g=—1 (mod4) and 2|k,
(xIN, W)y = (¢ —2¢+3)/2 (odd) if g=1 (mod4) and 2/tk,

(xIN, ¥ )y = (g +1)/2 (odd) if g=—1 (mod4) and 2tk.

12.1. Assume that g is square. Then Q(x) = Q(B). Put K = Q(x). Let
Z = {—1) (the centre of Z). For i =0, 1, let y; (resp. y,) be the linear character
of NZ defined by y,|N = and y;(—1) = (=1)' (resp. ¥/|N = ¢’ and ¢/(-1) =
(=1)). Ro={f,ut,0<i<2(p—1)—1} (resp. R={t,ut',0<i<p-2})isa
set of complete system of representatives for H/N (resp. H/NZ). For i =0,1,
YH (resp. y/¥) is an irreducible character of H and y* = yf' + ¢’ (resp. y'7 =

o +yi).

Suppose that k is even. Then (x|H,¥")= (x|H, ¥y + (H ¥y =
(g% +1)/2. Since x(=1) = x(1), ¥5'(=1) =y¢' (1) and y{'(=1) = =y’ (1), by
Schur’s lemma, we must have (y|H,¥{),; = (¢ +1)/2 (odd) and (x|H,¥{"), = 0.
We have Q(yf) = K (real). Therefore we have [A(y,K)] = [A(y¢,K)]. Put
B = A('p({l’K)

Let L = K(o) = Q(7i*,{,)- Then Gal(L/K) = {w) x {¢), where (7*)” = 7*,
(2= (gmod pZ =v7"), () =7 and (f=¢. Set F={feH]
t//({ = (/,S(f) for some 7(f) € Gal(L/K)}. Then we see that t,u e F and o = (1),
¢ =1(u). So F=H. Let f§ be the factor set of Gal(L/K) with respect to R.
Then B ~ (B,L/K). We have B(4,4) = ¥o(u?) = (-1)* = 1, (o, ) = B(4,w) =
Vo) =1 and B(wP~2,0) = (1) = Yo(u?(~1)) = (1)*(~1)° = 1. Let o’
(resp. #') be the restriction of w (resp. @) to Q((,,B:) (resp. Q(7*)). Then
(B,L/K) ~ (1,L? ¢") ®k (1, L, 0") ~ K.

Suppose that k is odd. Then we have (y|H,y "), = (¢*> —2q+3)/2 (odd)
and QW/H)=K, so [A(x,K)] = [AW{" K)]. Put B'=A(Y¥ ,K). Then we
see that B’ ~ B ®x By, where B = (—1,L{* ¢') and B, = (1,L{?,w’) (cf.
K(W])=L). So B,~K, and B’ ~ (-1,0(*)/0(Bi),¢'). By Proposition L,
we have h,(B') =1/2 (mod 1) for any infinite place v of K. Put n= (g +1)/
(k,q+ 1). Then, since g is square, ord, n =1, so that the case n =4 can-
not happen. Moreover, since ¢ is square, for any odd prime divisor r of n,
the congruence relation x?> = —1 (modr) has an integral solution (e.g.
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g = —1 (modr)), so that the Legendre symbol (—1/r) =1, hence r =1 (mod 4).
Therefore, by Proposition L, we see that 4,(B’) =0 (mod 1) for any finite place
v of K.

12.2. Assume that g is an odd power of p=1 (mod4). Then Q(y) =
O(y.Bo)- Put K = Q(z).

Let Y,y (i=0,1) be as in 12.1. Then we have the irreducible decom-
positions ¥ =y’ +y i, Y7 =y + ¢ and Q) = Q") = K.

Suppose that k is even. Then, since y(—1)=x(1), we must have
UH W ) = (g2 +1)/2 (0dd), s0 [A(x, K)] = [AWE', K)). Let L =K(}y) =
Q(7i*,¢,). Then we have Gal(L/K) = <v) x {(¢>, where (7%)"=7*, () = o,
#*)? = ()" and (=0, We see that F = {(feH |yl =y for some
7(f) € Gal(L/K)} = H', and v = ©(¢') and ¢ = 7(u). Let v’ be the restriction of v
to Q(Bx,¢{,) and let ¢’ be the restriction of ¢ to Q(7*,/P). Then we see that
B~ (1,L? ¢ ®k (1, L¢P, v') ~ K.

Suppose that k is odd. Then, since y(—1)= —x(1), we must have
H W) g = (g —29+3)/2 (0dd), so [A(xK)] = [AW™,K)]. Let L,v,
#,0',¢' be as above. Then we see that B' = A(WH  K)=(—1,L?, ¢') ®x
(1,LD, ') ~ (=1, LD, ¢') ~ (=1, Q%) /Q(Bi), 8") g K, Where ¢" is the
restriction of ¢’ to Q(#*). The invariants of (—1, Q(7*), ") can be determined by
using Proposition L.

Put n=(¢g+1)/(k,g+1). We note that, since (p—1,n)=2 and p=1
(mod 4), the case n = 4 cannot happen. If v is any infinite place of K and v’ is the
place of Q(B;) that lies below v, then K, = Q(fy), ~ R, so we have h,(B') = 1/2
(mod 1). Suppose that n is of the form 2r™, where r is an odd prime number
of the form 4s—1 and m = 1, let w be a place of K that lies above r and let
v be the place of Q(f,) that lies below w. Put f = [K, : Q(B;),]. Then we
have Ah,(B') = f x 1/2 (mod 1). We show that f =2, which would imply that
hy(B') =0 (mod 1).

In fact, since K, = Qr(Bi,vP) = Q(Bi)(vP) and Q(Bi), = Cr(By), f =
[0 (Br)(\/P) : @r(Bi)] <2. Suppose that f=1. Then ,/p must belong to
0r(B) = Qr(&om + G (= Qr(¢ym)). Since Q-(L,)/Qr is unramified and Q,((m)/ Qs
is totally ramified, we have Q,(¢,) N Q/({,») = Q,. So, since /p € Q({,) N Or({m),
/P belongs to Q,, hence ,/p € Z,, where Z, is the integer ring of Q,. Since
Z,/rZ, = Z/rZ, this implies that there must be a rational integer x, coprime to 7,
such that x2 = p (mod r). Then p—1/2 = (x2)"/2 = x~1 = 1 (mod r), so that
the order e of pmodrZ in F* = (Z/rZ)* divides (r—1)/2. Since r =4s—1,
(r—1)/2=2s—1, odd, so e must be odd. Put g = p¢ with d an odd positive
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integer. Then, since r is a divisor of ¢+ 1 = p? + 1, we have p? =1 (mod r).
Then, since e is equal to the smallest positive integer 4 such that p” =1 (mod r),
e must divide 2d, hence, since e is odd, e must divide 4. Hence p¢ =1 (mod r).
Hence r divides (¢ + 1,4 — 1) = 2, a contradiction, since r is odd. Therefore we
must have f = 2.

12.3. Assume that ¢ is an odd power of p=—1 (mod4). Then K =
Q(x) = Q(v/—P,Bi). We show that A(x,K) ~ K.

Suppose that k is even. Then, since y(—1) = —y(l), we must have
(X H' Ui ) = (42 — 29+ 3)/2 (0dd), and Q(¥{") = K. Put B= A(y{", K). Let
L=K(¥y) = Q(*,¢,). Then Gal(L/K) = v} x <#), where (7*)" =¥, {y = ¢F,
#*)? = (7%)7! and Cg’ =, We have F={feH'|y/ = ://f(f) for some 7(f) €
Gal(L/K)} = H' and v=1(¢t') and ¢ = t(u). We see that B~ (1,L ¢') ®«
(—1,L<¢>30,) ~ (_l’L<¢>?UI) ~ (_la Q(Cp)/Q(\/—_P)7U”) ®Q(ﬁ) K. Here ¢/ (resp.
v') is the restriction of ¢ (resp. v) to Q(7*,\/=p) (resp. Q(B,{,)), and v” is
the restriction of v to Q({,). But, by Proposition M, (iii), we see that
(—-1,0(,)/9(/=p),v") ~ Q(y/=p). Thus mg (W) = 1. By Theorem K, we have
mg(x) < 2. Therefore, since (y|H’ ,|//1H /) g 18 odd, by Corollary B, we conclude
that A(y,k) ~ B~ K.

Finally, suppose that k£ is odd. Then, since y(—1) = x(1), we must have
IH' WH Yy = (% +1)/2 (odd), and Q') = K. Put B' = A(Y{',K). Then
we see that B’ ~ B ®x B), where B = (—1,L" ¢') and B, = (—1,L% v').
Here the notation is the same as that in the case when k is even. By Proposition
M, (iii), we see that B; ~ (=1, Q({,)/Q(v/=P),v") ®g(,=5) K ~ K. So B' ~ B| ~
D ®qs,) K, where D= (—1,0(7")/Q(By),4") (4" is the restriction of ¢’ to
Q(7i%)). The invariants of D can be determined by [Proposition D} If w is an
infinite place of K, then K, ~C, so h,(B')=0 (mod1). Put n=(g+1)/
(k,q + 1). Then, since ord(q¢+ 1) = ord2(p + 1) = 2 and k is odd, ord, n = 2, so
that, for a finite place v of Q(B;), we have h,(D) = 1/2 (mod 1) only when n =4
and v = 2. Suppose therefore that is the case, and let w be any place of K that lies
above 2. Put f=[K,: Q) =[0:(y/—P): Q2. Since 4=n=(q+1)/(k,q+1)
and k is odd, ordy(¢+ 1) =ordy(p+1) =2, so —p # 1 (mod 8). This implies
that —p is not a square in @,. Therefore f =2, and h,(B])=2x1/2=0
(mod 1). Thus B’ ~ Bj ~ K and mK(tlx(',H') = 1. Since mg(y) <2, we see that
A(, K) ~ AW K) ~ K.

By summarizing the results obtained above, we get:

ProposiTION 9 (cf. [21, (3.8)]). Let x = —¢&;1(k) (ke Tz). Then K = Q(x) =
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0(\/59,By), where s = (=) V2 pyr 4 = A(y, Q). Then, if k is even, A ~ K.
Suppose that k is odd. Then: (a) If ¢ =1 (mod 4), we have h,(4) =1/2 (mod 1)
Jor any infinite place v of K, and h,(A) =0 (mod 1) for any finite place v of K.
(b) If g= —1 (mod 4), then A ~ K.

13. The Hasse Invariants of A(—¢5(k), Q)

Let y = —&p(k) (ke T,). Then Q(x) = Q(,/59, i), where s = (—1)¥@"V/2 It
g is non-square, then y is the conjugate of —¢&, (k) under the automorphism
V39 — —./5q of Q(x) over Q(f;). Assume that g is square. Let H, N,y and v’
be as in §12. Then we have (x|N,¥')y = (¢*>+1)/2 (odd) if k is even, and
(XIN,¥)y = (¢*> — 2g + 3)/2 (odd) if k is odd. Therefore the rationality of y is the

same as that of —¢&,; (k). Thus the same statement as in holds for .

14. The Hasse Invariants of A(&5,(k), Q)

Let y = &y (k) (k€ Tz). Then Q(x) = Q(,/54, Bi), where s = (—1)@"D/2 Let
H,H' /N,y and ¢’ be as in §12. Then we have:

XIN, W)y = {(q2—44+5)/2 (odd) if g=1 (mod4) and 2|k,
HEYIN = (> —29+3)/2 (odd) if g=—1 (mod4) and 2|k,

(¢> —2q+3)/2 (odd) if g=1 (mod4) and 24k,

(XN, Y )y = {(qz —49+5)/2 (odd) if g=—1 (mod4) and 2tk.

Thus, by arguments similar to those in §12, we get:

ProposITION 10 (cf. [21, (3.9)]). Let y =&, (k) (ke Tz). Then K = Q(x) =
0(\/59, Bi), where s=(—1)"D2 Pur 4= A(y,Q). Then: (a) Assume that
q =1 (mod 4). Then, if k is even, h,(A) = 1/2 (mod 1) for any infinite place v of
K, and h,(4) =0 (mod 1) for any finite place v of K. If k is odd, then A ~ K. (b)
If g=—1 (mod 4), then A ~ K.

15. The Hasse Invariants of A(&5,(k), Q)

Let x = &), (k) (ke T»). Then Q(x) = O(\/54, i), where s = (=1)9"V/2 If 4
is non-square, then y is a conjugate of &5 (k). Assume that g is square, and let
H,N,y and ¢ be as in §12. Then we have (x|N,y)y = (¢> —2¢ +3)/2 (odd)
if k is odd and (x|N,y')y = (¢*> —4g+5)/2 (odd) if k is even. Therefore the
rationality of y is the same as that of &5,(k). Thus the same statement as in
[Proposition 10| holds for .
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16. The Hasse Invariants of A(&4 (k), Q)

Let x = &4 (k) (ke Th). Then K = Q(x) = Q(\/5G, %), where s = (—1)" /2,
Let

y 0 1 0 0 O
-1 01 0 O
I _
a= 1 ,hﬂ OOIﬂ(ﬁeFQ)’
0 1 000 1
01 0 O
-1 000
““I o010
0 0 0 1

and let N =<a,hs (BeF,)y=<ay x {hg|peF,}. Let y and y' be the linear
characters of N defined by y(a’hs) = (7*)'e(f) and y'(a’hg) = (7%)'¢’(B) respec-
tively. Then we have:

g? +2g +3)/2 (odd) if g=1 (mod4) and 2k,
2

_
(XN, ¥)y = {(q +4g+9)/2 (odd) if g=—-1 (mod4) and 2|k,

N ') = {(q2+4q+9)/2 (odd) if g=1 (mod4) and 2tk,
XEOVIN =\ (42 +29+3)/2 (0dd) if g=—1 (mod 4) and 2tk.

In the case where g is square we set H = {t,u, N), where ¢t = diag(1, 1, é‘l,é)
with ¢2 = v, and in the case where g is non-square we set H' = {t',u, N, where
t' = diag(1,1,v"!,v). Then the arguments go similarly as in §12. We get:

ProposITION 11 (cf. [21, (3.10)]). Let y = &4 (k) (ke Th). Then K = Q(x) =
O( /59, k), where s = (—1)(‘7_1)/2. Let A= A(y, Q). Then: (a) Assume that q =1
(mod 4). Then, if k is even, A ~ K. If k is odd, we have h,(A) =1/2 (mod 1) for
any infinite place of K, and h,(A) =0 (mod 1) for any finite place v of K. (b) If
qg=-1 (mod4), then A ~K.

17. The Hasse Invariants of A(&y4, Q)

Let x = &q(k) (ke Ty). Then Q(x) = O(\/54, o), where s = (=1)4"V/2 If ¢
is non-square, then y is a conjugate of &4 (k). Assume that g is square, and let
H,N,y and ' be as in §16. Then we have (x|H, )y = (¢°> + 49 +9)/2 (odd) if
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k is odd, and (x|N,y")y = (¢*> +2q+3)/2 (odd) if k is even. Therefore the
rationality of y is the same as that of & (k). Thus the same statement as in

IProposition 11 holds for .

18. The Hasse Invariants of A(—¢;(k), Q)

Let y = —¢&,,(k) (keT;). Then Q(y) = Q(,/5G, o), where s= (_1)(q—1)/2'
Let N,y,y' H,H' be as in §16. Then we have:

(¢* +2¢+7)/2 (odd) if g=1 (mod4) and 2|k,

(XN, ¥)y = {(qz +2g +3)/2 (odd) if g=—1 (mod 4) and 2|k,

(g% +1)/2 (odd) if g=1 (mod4) and 24k,

(XIN Y )y = {(q2+2q+7)/2 (odd) if ¢g=—1 (mod4) and 2tk

Thus, by a rather long consideration as in §12, we get:

ProposiTioN 12 (cf. [21, (3.11)]). Let y = —&4 (k) (ke Ti). Then K =
O(x) = O(\/59,0x), where s = (=) D2 Let A= A(y,Q). Then we have the
Sfollowing: (a) Assume that q is square. Then, if k is even, we have h,(A) =
1/2 (mod 1) for any infinite place v of K, and if v is a finite place of K, we have
hy,(4) =0 (mod 1) except in the following case. Put n= (q—1)/(k,q—1) and
let g = p** with (2,u) =1. Then, if n|p*—1 or n|p“+1 and if v|p, we have
hy(A4) = 1/2 (mod 1). If k is odd, then A ~ K. (b) Assume that q is an odd power
of p=1 (mod4). Then, if k is even, we have h,(4) =1/2 (mod 1) for any
infinite place v of K, and h,(A) =0 (mod 1) for any finite place v of K. If k is
odd, then A ~ K. (c) If q is an odd power of p=—1 (mod 4), then A ~ K.

19. The Hasse Invariants of A(—¢;,(k), Q)

Let y = —&,,(k) (ke Ti). Then Q(x) = Q(,/5g, ), where s = (—1)4"V/2 1f
q is non-square, then y is a conjugate of —&;, (k). If ¢ is square and if N,y and
yY' are as in §16, then we have (x|N,y)y = (¢°> +1)/2 (odd) if k is odd, and
(XIN ¥y = (¢*> + 29+ 7)/2 (odd) if k is even. Therefore the rationality of y is
the same as that of —¢,,(k). Thus the same statement as in [Proposition 12] holds
for y.

20. The Hasse Invariants of 4(®;,Q) (1<i<8)

We have Q(®;) = O(,/5q), 1 <i <8, where s = (—1)("_1)/2. Let
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S = O

hg =

[ i
S = O O

0
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(ﬁEFQ)a

- O O

and let N = {hg|B e F,}. Let ¢ and ¢ be respectively the linear characters of N
defined by y/(hg) = &(p) and y'(hs) = &'(B). Then we have the following:

(=@ N Yy = {Zggi BZ
q(g+1)/2
(—=@2|N,¥')y {q(q 1)/2
B q(q2 +1)/2
(—D3|N,¥)y = {q(q _ 1)2/2 (even)

(—®3|N, ¥ )y = q(q> +1)/2

if g=1 (mod 4),
if g=—1 (mod 4),
if g=1 (mod 4),

if g=—1 (mod 4),

if g=1 (mod4),

if g=—-1 (mod 4),

if g=—1 (mod 4),

(—@u|N, ¥ )y =q(¢* +1)/2 if g=1 (mod 4),
(—Ds|N,¥)y = q(g*> +1)/2 if g=—1 (mod 4),
q(q + 1)/2 ifg=1 (mod 4),
(DN ¥ = {q<q if g = —1 (mod4),
_ q(q+ if g=1 (mod4),
(®s|N, )y = {q if g=—1 (mod 4),
(©1IN, ), = {q(q+ 1)2/2 (even) if g=1 (mod 4),
(¢*+1)/2 if g=—1 (mod 4),

(@7IN,¥")y = a(d?

(@s|N,¥")y = alg®

Put K = Q(,/59).

+1)/2
(©s|N,¥)y = q(q> +1)/2

+1)/2

if g=1 (mod4),
if g=1 (mod4),

if g=—-1 (mod 4).

Let y = —®;. Assume that g is square. Then K = Q. Let ¢ = diag(f‘l,f,

ET1E) with €2 = v, and let H = (N, t).

Y to NZ such that y;(—1) = (-1)".
tion ¢

For i =0,1, let y; be the extension of

Then we have the irreducible decomposi-
=yf +yf and QW)= 0Q (i=0,1). Since y(—1) = —x(1), we must

have (x|H, i)y = q(g+1)/2, 0dd, so we have [A(x, Q)] = [4(¥ ¥, 0)]. We see
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that A(Y{", Q) ~ (¥, ("1, Q(5,),7) = (=1, (L), 7), where {% = ¢ (g mod pZ =
v~!). Thus the invariants of A({, Q) can be determined by using Proposition
M, (i).

Assume that g is an odd power of p =1 (mod 4). Then K = Q(,/p). Let
t' = diag(v=1,v,v"1,v), and let H' = (N,t'>. We have the irreducible decom-
position Y7 =y +yf and QH') =K (i=0,1). Since y(—1) = —x(1), we
must have (y|H',y{")y = q(g+1)/2, 0odd, so [A(x,K)] = [AWH' K)]. We see
that [A(yH' K)] ~ (=1,0(¢,),7%), so the invariants of A(y ' K) can be de-
termined by using Proposition M, (ii).

Assume that g is an odd power of p=—1 (mod4). Then A(y,K) ~
AW K) = (1,0(8,),7) ~ K, since mg(y) < 2.

The characters ®;, 2 <i <8, can be treated similarly. Thus we get

ProposiTION 13 (cf. [21, (3.12), (3.14), (3.15)]). Let y = —®;,—D,, ~D3 or
—®4. Then K = Q(x) = O(,/59), where s = (=Y D2 pyr 4 = A(x,K). Then, if
q is square, we have hy(A) = hy(A) =1/2 (mod 1) and h,(4) =0 (mod 1) for
each finite place r # p of K = Q. If q is an odd power of p =1 (mod 4), then
hy(4) = 1/2 (mod 1) for each real place v of K = Q(,/p) and h,(4) =0 (mod 1)
Sor any finite place v of K. If q is an odd power of p=—1 (mod4), then

A~ K = Q(/=P).
For 5 <i<8, Q(®;) = O(,/59), where s = (—1)"V/2 and A(®;, Q) ~ O(®,).

Przygocki has observed
ProrosiTION 14 ([21, (3.16)]). A(Dy, Q) ~ Q.

21. The Hasse Invariants of 4(6;,Q) (1 <i<38)

We have Q(6;) = Q(y/59) (1 £i<8), where s = (—1)7"V/2 Let N,y and ¢/
be as in §20. Then we have the following:

_ [q*(g+1)/2 ifg=1 (mod4),
(01N, ¥)y = {qz(q_l)/z if g=—1 (mod 4),

g’ (g+1)/2 if ¢g=1 (mod 4),

(02|Na‘//)N = {qz(q_ 1)/2 if g=—1 (mod 4),

(63IN, ¥)y = {0 if g=—1 (mod 4),

(3IN, ')y =q if ¢=—1 (mod 4),
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n _ [q ifg=1 (mod4),
(04|N,11’)N_{0 if g=—1 (mod4),

(O4|N,¥)y =q if g=—1 (mod 4),

4 (g+1)/2 if g=1 (mod4),
(=0sIN,¥)y = {qz(q—l)/?. if g=—1 (mod 4),

n _ [d*(qg+1)/2 ifg=1 (mod4),
(_96|N,¢ )N - {qz(q_ 1)/2 if g= -1 (mod 4),

_[q ifg=1 (mod4),
( 07|N"p)”_{0 if = —1 (mod 4),

(—07|N,¢')N=q if ¢g=—1 (mod 4),

n _ fq ifg=1 (mod4),
( 08|N,W)N‘“{0 if g=—1 (mod 4),

(~Os|N,¥)y =4 if g=-1 (mod 4).

Thus, by the arguments similar to those in §20, we get:

ProposiTION 15 (cf. [21, (3.17), (3.18), (3.19), (3.20)]). Suppose that y =
01,6,,03 or 04. Then Q(x) = Q(./59), where s = (=DYD2 and Ay, Q) ~ O(x).
Suppose that y = —0s,—0s,—0; or —0s. Then K = Q(x) = Q(\/59). Put A=
A(x, Q). Then, if q is square, we have hs(A) = hy(A)=1/2 (mod 1) and
h,(A) =0 (mod 1) for each finite place r # p of K= Q. If q is an odd power
of p=1 (mod4), then h,(A) =1/2 (mod 1) for each real place v of K = Q(,/p)
and h,(A) =0 (mod 1) for each finite place v of K. If q is an odd power of
p=—1 (mod4), then A ~ K = Q(,/=p)-

22. The Hasse Invariants of 4(6;,Q) (9 <i < 13)
ProposiTiON 16 (cf. [21, (3.21), (3.23)]). For 9 <i <13, A(6;, Q) ~ Q.

REMARK. The characters above are the unipotent characters of G, so Prop-
osition 16 is well known (Benson and Curtis [2], Lusztig [10, (7.6)]).
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