SIMPLE COMPONENTS OF $Q[Sp_4(F_q)]$

By

Joujuu (Zyozyu) Ohmori

Abstract. The character table of $G = Sp_4(F_q)$, q odd, was calculated by B. Srinivasan in 1968 [22]. The rational and the real Schur indices of each complex irreducible character of G were calculated by A. Przygocki in 1982 [21]. We calculate the Hasse invariants of each simple component of the group algebra Q[G] of G over Q.

Introduction

Let F_q be a finite field with q elements of characteristic p. In this paper we shall calculate the Hasse invariants of each simple component of the group algebra $Q[Sp_4(F_q)]$, q odd. Our main interest is to seek the distribution of the invariants. We will see that the results are similar to those obtained by G. J. Janusz for $SL_2(F_q)$ ([9]). In this connection, we should mention that A. Przygocki has already determined the rational and the real Schur indices of each complex irreducible character of $Sp_4(F_q)$, q odd, ([21]) and R. Gow has shown that each complex irreducible character of $Sp_4(F_{2^f})$ has the rational Schur index 1 ([6]).

It may be needed to explain why we treat such a special finite group $Sp_4(F_q)$. In the following discussion, if χ is a complex irreducible character of a finite group, then $m_Q(\chi)$ denotes the Schur index of χ with respect to Q and, for a rational prime $r, m_{Q_r}(\chi)$ denotes the r-local Schur index of χ .

Let \tilde{G} be a connected, reductive linear algebraic group, defined over F_q , and let G be the group of F_q -rational points of \tilde{G} . Let \tilde{Z} be the centre of \tilde{G} . Let χ be a complex irreducible character of G. Then the following theorems hold:

Theorem 1 ([14, 15, 18]). Assume (for the sake of simplicity) that p is good for \tilde{G} , and that $(\lambda^G, \chi)_G = 1$ for some linear character λ of a Sylow p-subgroup of

Received November 29, 2000. Revised May 13, 2004.

G or the degree of χ is coprime to p. Then $m_Q(\chi) \leq 2$. If \tilde{Z} is connected or if q is an even power of $p \neq 2$, then we have $m_{Q_r}(\chi) = 1$ for each prime number $r \neq p$. If \tilde{Z} is connected and \tilde{G} is split over F_q , then we have $m_Q(\chi) = 1$.

THEOREM 2 ([1, 4, 6, 16, 17, 18, 28]). If $G = GL_n(F_q)$, $SO_5(F_q)$, $CSp_4(F_q)$, $G_2(F_q)$ (\tilde{Z} is connected and \tilde{G} is split over F_q) or $^3D_4(F_q)$ (\tilde{Z} is trivial), then $m_Q(\chi) = 1$. If $G = U_n(F_q)$ (\tilde{Z} is connected but \tilde{G} is not split over F_q), then $m_Q(\chi) \leq 2$ and, for each prime number $r \neq p$, we have $m_{Q_r}(\chi) = 1$.

THEOREM 3 ([10, 12, 19]). If χ is a unipotent character of G, then, for each prime number $r \neq p$, we have $m_{Q_r}(\chi) = 1$.

We should remark that M. Geck has shown that the cuspidal unipotent characters of $E_7(F_q)$ have the p-local Schur indices 2 provided that q is an even power of p such that $p \equiv 1 \pmod{4}$ and that p is sufficiently large so the G. Lusztig's results in [11] can be used ([5]) (the condition that $p \gg 0$ can be removed [20]); thus $E_8(F_q)$ also has unipotent characters having the same rationality when q is an even power of p such that $p \equiv 1 \pmod{4}$.

We note that the characters χ which satisfy the condition in Theorem 1 occupy "almost all" the complex irreducible characters of G, so that Theorems 1, 2, 3 suggest that when \tilde{Z} is connected or q is an even power of $p \neq 2$, the distribution of the invariants will be comparatively simple. On the other hand, when \tilde{Z} is not connected (e.g. \tilde{G} is a non-adjoint semi-simple algebraic group) and q is an odd power of $p \neq 2$ the known results are considerable complicated.

Let, for example, $G = SL_n(F_q)$ (see [6, 7, 9, 13, 23, 28]). Then we have $m_Q(\chi) \le 2$, and, if p = 2, or n is odd, or $\operatorname{ord}_2 n > \operatorname{ord}_2(p-1)$, we have $m_Q(\chi) = 1$; if $1 \le \operatorname{ord}_2 n \le \operatorname{ord}_2(p-1)$ and q is an even power of p, we have $m_{Q_r}(\chi) = 1$ for each prime number $r \ne p$; if $1 \le \operatorname{ord}_2 n \le \operatorname{ord}_2(p-1)$ and q is an odd power of p, it often happens that $m_{Q_r}(\chi) = 2$ for some prime numbers $r \ne p$. Thus it would be natural to wish to know the distribution of the invariants for other groups, such as $Sp_4(F_q)$, as an example when \tilde{Z} is not connected.

Let $G = Sp_4(F_q)$, q odd. Then, as is well known, the character table of G was first calculated by B. Srinivasan in [22]. Later Hiromichi Yamada reconstructed the character table of G in [25] (unpublished) along the same line as in the paper [3] of H. Enomoto. Gow has obtained some results about the rationality-properties of characters of $Sp_{2n}(F_q)$ ([6, 7, 8]). In some cases of our arguments below, we can follow Przygocki's arguments in [21].

Our first task was to calculate the value fields $Q(\chi)$ $Q(\chi(g), g \in G)$. But, in Srinivasan's character table in [22], some character-values are omitted. I asked Professor Ken-ichi Shinoda about these omitted values. Then Professor H. Yamada sent me his preprint [25] and permitted me to use it; in [25] all character-values are typed; he also taught me that the omitted values in [22] can be obtained from informations in [22]. I wish to thank these two professors for their kindness. Professor Toshihiko Yamada has published many works on the rationality-properties of characters of finite groups; in particular, I employed in several places of my proofs his index formulas [27, Chap. 4] which have been very useful. Finally, I wish to thank the referee for his (her) kind advice.

Notation

 F_q is a finite field with q elements of characteristic $p \neq 2$ and \overline{F}_q is an algebraic closure of F_q . \widetilde{G} is the group of all non-singular matrices X of degree 4 with entries in \overline{F}_q such that $XJ^tX=J$ where

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

(tX is the transpose of X), and G is the subgroup of \tilde{G} consisting of the matrices in \tilde{G} with entries in F_q . The Frobenius endomorphism of the algebraic group \tilde{G} will be given by $a \to a^{(q)}$ (if $a = [a_{ij}]$, then $a^{(q)} = [a_{ij}^q]$). The centre \tilde{Z} of \tilde{G} is $\{1, -1\}$, which is also the centre of G.

If K is a field, then K^{\times} denotes the multiplicative group of K.

As in [22], let κ be a fixed element of order q^4-1 in \overline{F}_q^{\times} , and let $\theta=\kappa^{q^2+1}$, $\zeta=\kappa^{q^2-1}$, $\eta=\theta^{q-1}$, $\gamma=\theta^{q+1}$ and $\nu=\gamma^{(q-1)/(p-1)}$. Fixing an isomorphism Θ of the cyclic group $\langle \kappa \rangle$ into C^{\times} , we put $\tilde{\theta}=\Theta(\theta)$, $\tilde{\zeta}=\Theta(\zeta)$, $\tilde{\eta}=\Theta(\eta)$, $\tilde{\gamma}=\Theta(\gamma)$ and $\tilde{\nu}=\Theta(\nu)$. For an integer k, let $\alpha_k=\tilde{\gamma}^k+\tilde{\gamma}^{-k}$ and $\beta_k=\tilde{\eta}^k+\tilde{\eta}^{-k}$. For a positived integer n, ζ_n is a certain primitive n-th root of unity in some algebraically closed field of characteristic 0.

If α, β are class functions on a finite group H over an algebraically closed field of characteristic 0, then $(\alpha, \beta)_H = (1/|H|) \sum_{h \in H} \alpha(h)\beta(h^{-1})$. If f is a function on a set S and if T is a subset of S, then f|T denotes the restriction of f to T.

As to the notation of the complex irreducible characters of G, we follow that of Srinivasan in [22]; in particular, the following notation will be used as parameter-sets of some of the complex irreducible characters of G: $R_1 =$

 $\{1, 2, \dots, (1/4)(q^2 - 1)\}$, R_2 is a set of $(1/4)(q - 1)^2$ distinct positive integers i such that $\theta^i, \theta^{-i}, \theta^{qi}, \theta^{-qi}$ are all distinct, $T_1 = \{1, 2, \dots, (1/2)(q - 3)\}$ and $T_2 = \{1, 2, \dots, (1/2)(q - 1)\}$.

Let K be a field of characteristic 0, and let L be an algebraically closed extension of K. Let χ be a (generalized) character of a finite group H over L. Then we set $K(\chi) = K(\chi(h), h \in H)$. If χ is absolutely irreducible, then $A(\chi, H)$ denotes the simple component of the group algebra K[H] of H over K associated with χ and $m_K(\chi)$ denotes the Schur index of χ with respect to K. In this case $A(\chi, K)$ is isomorphic over K to $A(\chi, K(\chi))$ (see, e.g., [27, Proposition 1.5, p. 8] and $m_K(\chi)$ is equal to the index of $A(\chi, K)$.

Let K be a field. If A is a finite-dimensional central simple algebra over K, then [A] denotes the class of A in the Brauer group of K; for two such algebras A, B over K, we write $A \sim B$ if [A] = [B].

Let K be a finite algebraic extension of Q. Then, for a place v of K (see Weil [24, pp. 43–44]), K_v is the completion of K at v. If v is a place of K lying above a finite place r of Q (we write w|r), then Q_r is the topological closure of Q in K_v and may be idetified with the r-adic rational field. If A is a finite-dimensional central simple algebra over K, then, for a place v of K, A_v denotes the simple algebra $A \otimes_K K_v$ over K_v , and $h_v(A)$ or $h(A_v)$ denotes the Hasse invariant of A_v ($h_v(A) \in Q/Z$).

Let K be a field and let L be a finite Galois extension of K. Then $\operatorname{Gal}(L/K)$ denotes the Galois group of L over K. Put $H = \operatorname{Gal}(L/K)$, and let $\beta: H \times H \to L$ be a factor set (i.e. 2-cocycle) of H with values in L. Then $(\beta, L/K)$ denotes the crossed product algebra over K corresponding to β : $(\beta, L/K)$ is a left vactor-space over L with a basis $\{u_{\sigma}, \sigma \in H\}$ such that the multiplication law is given by the following formula:

$$\left(\sum_{\sigma\in H}x_{\sigma}u_{\sigma}\right)\left(\sum_{\tau\in H}y_{\tau}u_{\tau}\right)=\sum_{\upsilon\in H}\left(\sum_{\substack{\sigma,\tau\in H\\\sigma\tau=\upsilon}}x_{\sigma}\sigma(y_{\tau})\beta(\sigma,\tau)u_{\upsilon}\right)\quad (x_{\sigma},y_{\tau}\in L).$$

Assume that L is a cyclic extension of K of degree n, and let $H = \langle \sigma \rangle$. Then, for $a \in K^{\times}$, $(a, L/K, \sigma)$ or (a, L, σ) denotes the cyclic algebra over K corresponding to a (with respect to σ); if we set $\beta(\sigma^i, \sigma^j) = a^{[(i+j)/n]-[i/n]-[j/n]}$ ([*] is the Gauss symbol), then we have $(a, L, \sigma) = (\beta, L/K)$.

Let a, b be rational integers with $a \neq 0$. Then (a, b) is the greatest commomn divisor of a, b. We write a|b (resp. $a \nmid b$) if a divides b (resp. if a does not divide b). Let r be a prime number such that r|a. Then we write $r^e|a$ (e is a positive integer) if $r^e|a$ but $r^{e+1} \nmid a$; in this case we write $ord_r a = e$.

1. Preliminaries

In the following, K is a field of characteristic 0, C is an algebraically closed extension of K, H is a finite group and χ is an absolutely irreducible character of H over C.

PROPOSITION A (E. Witt; see [27, Proposition 3.8, p. 29]). Assume that $K(\chi) = K$. Let M be a subgroup of H and let ξ be an absolutely irreducible character of M over C such that $K(\xi) = K$ and $(\chi|M,\xi)_M = n \neq 0$. Then, for each prime number r such that (r,n) = 1, the r-parts of $[A(\chi,K)]$ and $[A(\xi,K)]$ are the same.

COROLLARY B. Let the notation and the assumption be as in Proposition A. Assume that $m_K(\chi)$ and $m_K(\xi)$ are coprime to n. Then we have $[A(\chi,K)] = [A(\xi,K)]$. In particular, (T. Yamada) if $\chi = \xi^H$, then $[A(\chi,K)] = [A(\xi,K)]$.

Let L be a finite Galois extension of K of the form $K(\varepsilon)$ for some root of unity ε . Then, if β is a factor set of $\operatorname{Gal}(L/K)$ such that, for any $\sigma, \tau \in \operatorname{Gal}(L/K)$, $\beta(\sigma, \tau)$ is a root of unity in L, the crossed product algebra $(\beta, L/K)$ will be called a cyclotomic algebra over K.

In the following two propositions and the remark, N is a normal subgroup of H. If ψ is a character of N, then, for $h \in H$, ψ^h is the character of N defined by $\psi^h(x) = \psi(hxh^{-1}), x \in N$.

PROPOSITION C (T. Yamada [27, Proposition 3.4, p. 23]). Suppose that χ is induced by an absolutely irreducible character ψ of N over C and that $K(\chi) = K$. Set $F = \{f \in H | \psi^f = \psi^{\tau(f)} \text{ for some } \tau(f) \in \operatorname{Gal}(K(\psi)/K)\}$. Let Nf_1, Nf_2, \ldots, Nf_t $(f_1 = 1)$ be all the distinct cosets of N in F, and set $\tau_i = \tau(f_i), 1 \le i \le t$. Then $F/N \simeq \{\tau_1, \tau_2, \ldots, \tau_t\} = \operatorname{Gal}(K(\psi)/K)$ and $K(\psi^F) = K$.

PROPOSITION D (T. Yamada [27, Proposition 3.5, p. 24]). Let the notation and the assumption be as in Proposition C. For $1 \le i, j \le t$, let $f_i f_j = n_{ij} f_{\nu(i,j)}$, $n_{ij} \in N$, $\nu(i,j) \in \{1,2,\ldots,t\}$. Suppose that ψ is a linear character of N, and put $\beta(\tau_i,\tau_j) = \psi(n_{ij})$, $l \le i, j \le t$. Then β is a factor set of $Gal(K(\psi)/K)$ consisting of roots of unity in $K(\psi)$ and the algebra $A(\psi^F,K)$ over K is isomorphic over K to the cyclotomic algebra $(\beta,K(\psi)/K)$ over K.

REMARK E. Let the notation and the assumption be as in Propositions C, D. Suppose that F/N is a cyclic group of order t. Let f be an element of F

such that $F/N = \langle Nf \rangle$, and put $\tau = \tau(f)$. Then $(\beta, K(\psi)/K)$ is a cyclic algebra $(\psi(f^t), K(\psi)/K, \tau)$ (the verification is easy).

LEMMA F (see, e.g., [26, Lemma 7]). Suppose that K is a finite algebraic extension of Q. Let L be a finite Galois extension of K, let β be a factor set of Gal(L/K) such that for $\sigma, \tau \in Gal(L/K)$, $\beta(\sigma, \tau)$ is a unit in L, and let $A = (\beta, L/K)$. Then, if v is a finite place of K that is unramified in L, we have $h_v(A) \equiv 0 \pmod{1}$.

THEOREM G (Hasse's sum formula; see, e.g., [24, Theorem 2, p. 255]). If A is a finite-dimensional central simple algebra over a finite algebraic extension K of Q, then we have $\sum_{v} h_v(A) \equiv 0 \pmod{1}$, where the sum is taken over all the places v of K.

LEMMA H ([22, Lemma 3.1]). Let \tilde{H} be a subgroup of \tilde{G} . If there is a matrix y in \tilde{G} such that $y^{-1}ay = a^{(q)}$ for all $a \in \tilde{H}$, then there is a matrix z in \tilde{G} such that $z^{-1}\tilde{H}z \subset G$.

Lemma I ([22, Lemma 1.1]). Let S be the set of non-zero elements of F_q which are squares in F_q and let S' be the set of elements of F_q which are not squares in F_q . Put $s = (-1)^{(q-1)/2}$ (recall that q is odd). Then there are complex additive characters $\varepsilon, \varepsilon'$ of F_q such that

$$\sum_{x \in S} \varepsilon(x) = \sum_{x \in S'} \varepsilon'(x) = -\frac{s}{2} (s + \sqrt{sq}),$$

$$\sum_{x \in S'} \varepsilon(x) = \sum_{x \in S} \varepsilon'(x) = -\frac{s}{2} (s - \sqrt{sq}).$$

THEOREM J (The Brauer-Speiser Theorem; see, e.g., [27, Corollary 1.8, p. 9]). If χ is a complex irreducible character of a finite group whose values are real, then we have $m_Q(\chi) \leq 2$.

THEOREM K (R. Gow [7, Theorem 2.9]). For any complex irreducible character χ of $Sp_{2n}(F_q)$, we have $m_Q(\chi) \leq 2$.

PROPOSITION L (G. J. Janusz [9, Proposition 1]). Let n be an integer ≥ 3 , $K = Q(\zeta_n + \zeta_n^{-1})$, $Gal(Q(\zeta_n)/K) = \langle \iota \rangle$, where $\zeta_n^{\iota} = \zeta_n^{-1}$, and $A = (-1, Q(\zeta_n)/K, \iota)$. Let v be a place of K. Then, if v is infinite (i.e. real), we have $h_v(A) \equiv 1/2$

(mod 1), and, if v is finite, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: If n is of the form r^m or $2r^m$, where r is an odd prime number of the form 4k-1 and $m \geq 1$, and if v|r, we have $h_v(A) = 1/2 \pmod{1}$. If n = 4 and v = 2, we have $h_2(A) = 1/2 \pmod{1}$.

PROPOSITION N (Janusz [9, Proposition 3]). Let τ be an automorphism of $Q(\zeta_p)$ having order either p-1 or (p-1)/2. Let K be the subfield $Q(\zeta_p)^{\langle \tau \rangle}$ of $Q(\zeta_p)$ fixed by $\langle \tau \rangle$ and let $A = (-1, Q(\zeta_p)/K, \tau)$. Then: (i) If τ has order p-1, K = Q, $h_{\infty}(A) \equiv h_p(A) \equiv 1/2 \pmod{1}$ and $h_r(A) \equiv 0 \pmod{1}$ for each finite place $r \neq p$ of Q. (ii) If τ has order (p-1)/2 and $p \equiv 1 \pmod{4}$, then $K = Q(\sqrt{p})$, $h_v(A) \equiv 1/2 \pmod{1}$ for two real places v of K and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. (iii) If τ has order (p-1)/2 and $p \equiv -1 \pmod{4}$, then $K = Q(\sqrt{-p})$ and $A \sim K$.

2. The Hasse Invariants of $A(\chi_1(j), Q)$

Let $\chi = \chi_1(j)$ $(j \in R_1)$, $K = Q(\chi)$ and $A = A(\chi, K)$. In this section we calculate the invariants of A.

We have $K = Q(\tilde{\zeta}^{ij} + \tilde{\zeta}^{-ij} + \tilde{\zeta}^{qij} + \tilde{\zeta}^{-qij}, i \in R_1) = Q(\tilde{\zeta}^j)^{\langle \tau \rangle}$, where τ is the automorphism of $Q(\tilde{\zeta}^j)$ given by $(\tilde{\zeta}^j)^{\tau} = (\tilde{\zeta}^j)^{-q}$ (see below). In the first part of the following arguments, we follow those in Przygocki [21, (3.1)]: Let

$$\tilde{a} = \begin{pmatrix} \zeta & & & 0 \\ & \zeta^{-1} & & \\ & & & \zeta^{q} & \\ 0 & & & & \zeta^{-q} \end{pmatrix}, \quad \tilde{x} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

and let $\tilde{H}=\langle \tilde{a},\tilde{x}\rangle$. Then $\tilde{x}^{-1}y\tilde{x}=y^{(q)}$ for all $y\in \tilde{H}$, so that, by Lemma H, there is an element z of \tilde{G} such that $z^{-1}\tilde{H}z\subset G$. Fixing one such element z, put $a=z^{-1}\tilde{a}z,\ x=z^{-1}\tilde{x}z$ and $H=z^{-1}\tilde{H}z$. Then $a^{q^2+1}=x^8=1$ and $xax^{-1}=a^{-q}$. Let $N=\langle a\rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(a)=\tilde{\zeta}^j$. Then ψ^H is an irreducible character of H and $Q(\psi^H)=K$ (cf. [22, Table on p. 496]). Since χ and ψ^H are real characters, by the Brauer-Speiser theorem (Theorem J), we have $m_Q(\chi) \leq 2$ and $m_Q(\psi^H) \leq 2$. And $(\chi|H,\psi^H)_H=(\chi|N,\psi)_N=2q^2-5$, odd. So $(\chi|H,\psi^H)_H$ is coprime to $m_Q(\chi)$ and $m_Q(\psi^H)$. Therefore, by Corollary B, we have $[A]=[A(\psi^H,K)]$. Thus it suffices to calculate the invariants of $A(\psi^H,K)$.

Set $F = \{ f \in H \mid \psi^f = \psi^{\tau(f)} \text{ for some } \tau(f) \in \text{Gal}(K(\psi)/K) \}$. Since $\psi^x = (f \in H) = (f \in H) = (f \in H)$

 $\psi^{-q} = \psi^{\tau}$, x belongs to F and $\tau = \tau(x)$. So F = H. By Proposition C, we see that $F/N \simeq \langle \tau \rangle = \text{Gal}(K(\psi)/K) \simeq Z/4Z$ (thus $K = Q(\psi)^{\langle \tau \rangle} = Q(\tilde{\zeta}^j)^{\langle \tau \rangle}$). By Proposition D and Remark E, we see that $A(\psi^F, K) \simeq C$, where $C = (\psi(x^4), K(\psi)/K, \tau) = ((-1)^j, Q(\tilde{\zeta}^j), \tau)$.

If j is even, then $C \sim K$. Suppose therefore j is odd. Let $L = K(\psi) = Q(\tilde{\zeta}^j)$. Let w be any infinite place of L, and let v be the place of K lying below v. Then $Gal(L_w/K_v)$ can be canonically viewed as the subgroup $\langle \tau^2 \rangle$ of Gal(L/K), and we see that $C_v \sim (-1, L_w/K_v, \tau^2)$. L_w is isomorphic to C and K_v is isomorphic to R, so $(-1, L_w/K_v, \tau^2)$ is isomorphic (as rings) to the quaternion algebra over R. Thus $h(C_v) \equiv 1/2 \pmod{1}$.

Let v be a finite place of K. The determinetion of the invariant of C_v is rather formally and is essestially achieved by Janusz in [9]. Since C is a cyclotomic algebra over K, by Lemma F, we have $h(C_v) \equiv 0 \pmod{1}$ whenever v is unramified in L. Let $n = (q^2 + 1)/(j, q^2 + 1)$, the order of $\tilde{\zeta}^j$. L is a cyclic extension of K of degree 4 and K is real, so the real field $Q(\zeta_n + \zeta_n^{-1})$ is the unique internediate subfield of L containing K. Thus v is ramified in L only if n is of the form $2r^m$, where r is an odd prime number and $m \ge 1$, and v|r. In this case, r is totally ramified in L, so v is unique. Since $[L:Q] = (r-1)r^{m-1}$ and [L:K] = 4, we must have $r \equiv 1 \pmod{4}$, and K has just $((r-1)/4)r^{m-1}$ real places. Thus Hasse's sum formula (Theorem G) forces that $h_v(C) \equiv 0$ or $1/2 \pmod{1}$ according as (r-1)/4 is even or odd respectively. We note that we see easily that when q is an even power of p we have $h_{v'}(A) \equiv 0 \pmod{1}$ for each finite place v' of K.

Thus we get

PROPOSITION 1 (cf. Przygocki [21, (3.1)]). Let $\chi = \chi_1(j)$ $(j \in R_1)$, $K = Q(\chi)$ and $A = A(\chi, K)$. Then $K = Q(\tilde{\zeta}^{ij} + \tilde{\zeta}^{-ij} + \tilde{\zeta}^{qij} + \tilde{\zeta}^{-qij}, i \in R_1) = Q(\tilde{\zeta}^{j})^{\langle \tau \rangle}$, where τ is the automorphism of $Q(\tilde{\zeta}^{j})$ given by $(\tilde{\zeta}^{j})^{\tau} = (\tilde{\zeta}^{j})^{-q}$. If j is even, $A \sim K$. Suppose that j is odd and let v be a place of K. Then, if v is infinite (real), we have $h_v(A) \equiv 1/2 \pmod{1}$, and if v is finite, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following case: If $(q^2 + 1)/(j, q^2 + 1)$ is of the form $2r^m$, where r is an odd prime number of the form 8k + 5 and $m \geq 1$, and if $v \mid r$, then $h_v(A) \equiv 1/2 \pmod{1}$. In particular, if q is an even power of p, then $h_v(A) \equiv 0 \pmod{1}$ for all finite places v of K.

EXAMPLE. Let q = p = 3. Then $R_1 = \{1, 2\}$. We have $Q(\chi_1(1)) = Q(\chi_1(2)) = Q$, $A(\chi_1(2), Q) \sim Q$, $m_R(\chi_1(1)) = m_{Q_5}(\chi_1(1)) = 2$ and $m_{Q_r}(\chi_1(1)) = 1$ for each prime number $r \neq 5$.

REMARK. For $j, k \in R_1$, $\chi_1(k)$ is algebraically conjugate to $\chi_1(j)$ is and only if there is an integer m such that $\tilde{\zeta}^k = (\tilde{\zeta}^j)^m$ and $(m, (q^2 + 1)/(j, q^2 + 1)) = 1$.

3. Hasse Invariants of $A(-\chi_2(j), Q)$

Let $\chi = -\chi_2(j)$ $(j \in R_2)$. In [21, (3.2)], Przygocki states that $m_Q(\chi) = 1$ if j is even and $m_R(\chi) = 2$ if j is odd. As we shall see below, his statement is correct, but his argument is valid only when $(q-1)/2 \nmid j$ and $(q+1)/2 \nmid j$, since his calculation on p. 294, line 26, is not right: in fact, we have

$$(\chi, \delta^{H}) = \begin{cases} 2q^{2} + 1 \text{ (odd)} & \text{if } (q-1)/2 \not\mid j \text{ and } (q+1)/2 \not\mid j, \\ 2(q^{2} + 1) \text{ (even)} & \text{if } (q-1)/2 \mid j \text{ and } (q+1)/2 \not\mid j, \\ 2q^{2} \text{ (even)} & \text{if } (q-1)/2 \not\mid j \text{ and } (q+1)/2 \mid j. \end{cases}$$

(the case where $(q-1)/2 \mid j$ and $(q+1)/2 \mid j$ does not happen). We have $Q(\chi) = Q(\alpha_j, \beta_j, \tilde{\theta}^{ij} + \tilde{\theta}^{-ij} + \tilde{\theta}^{qij} + \tilde{\theta}^{-qij}, j \in R_2)$.

3.1. The case $(q-1)/2 \nmid j$ and $(q+1)/2 \nmid j$: In this case, we can follow the argument of Przygocki in [21, (3.2)]. Let

$$\tilde{a} = \begin{pmatrix} \theta & & & 0 \\ & \theta^{-1} & & 0 \\ 0 & & \theta^{q} & \\ & & & \theta^{-q} \end{pmatrix}, \quad \tilde{x} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

$$\tilde{y} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix},$$

and let $\tilde{H}=\langle \tilde{a},\tilde{x},\tilde{y}\rangle$. Then $\tilde{x}^{-1}c\tilde{x}=c^{(q)}$ for all $c\in \tilde{H}$. Let z be an element of \tilde{G} such that $z^{-1}\tilde{H}z\subset G$, and put $a=z^{-1}\tilde{a}z$, $x=z^{-1}\tilde{x}z$, $y=z^{-1}\tilde{y}z$ and $H=z^{-1}\tilde{H}z$ (see [22, p. 496]). Let $N=\langle a\rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(a)=\tilde{\theta}^j$. Then $\psi^x=\psi^q$, $\psi^y=\psi^{-q}$ and $\psi^{xy}=\psi^{-1}$. It follows that ψ^H is an irreducible character of H and $Q(\psi^H)=Q(\chi)$, real. Since $(\chi|H,\psi^H)_H=(\chi|N,\psi)_N=2q^2+1$, odd, we have $[A(\chi,K)]=[A(\psi^H,K)]$ with $K=Q(\chi)=Q(\psi^H)$.

Let $L = K(\psi) = Q(\tilde{\theta}^j)$, and let σ and τ be the automorphisms of L over K given by $(\tilde{\theta}^j)^{\sigma} = (\tilde{\theta}^j)^q$ and $(\tilde{\theta}^j)^{\tau} = (\tilde{\theta}^j)^{-q}$ respectively. Then we see that

 $F = \{f \in H \mid \psi^f = \psi^{\tau(f)} \text{ for some } \tau(f) \in \operatorname{Gal}(L/K)\} = H, \ \sigma = \tau(x), \ \tau = \tau(y) \text{ and } \operatorname{Gal}(L/K) = \langle \sigma, \tau \rangle \simeq F/N = H/N \text{ (Proposition C)}. \ R = \{1, x, y, xy\} \text{ is a set of complete system of representatives for } F/N, \text{ and the factor set } \beta \text{ of } \operatorname{Gal}(L/K) \text{ with respect to } R \text{ (Proposition D)} \text{ is given by } \beta(\sigma, \sigma) = (-1)^j, \ \beta(\sigma, \tau) = \beta(\tau, \sigma) = \beta(\tau, \sigma) = \beta(\tau, \sigma) = 1.$ Let σ' and τ' be respectively the restriction of σ to $L^{\langle \tau \rangle}$ and the restriction of τ to $L^{\langle \sigma \rangle}$. Then we have:

$$A(\psi^{H}, K) \simeq (\beta, L/K) = \sum_{s=0}^{1} \sum_{t=0}^{1} L u_{\sigma^{s}\tau^{t}}$$

$$= \sum_{s=0}^{1} \sum_{t=0}^{1} L^{\langle \tau \rangle} L^{\langle \sigma \rangle} u_{\sigma^{s}} u_{\tau^{t}} = \sum_{s=0}^{1} \sum_{t=0}^{1} L^{\langle \tau \rangle} u_{\sigma^{s}} L^{\langle \sigma \rangle} u_{\tau^{t}}$$

$$= \left(\sum_{s=0}^{1} L^{\langle \tau \rangle} u_{\sigma^{s}}\right) \cdot \left(\sum_{t=0}^{1} L^{\langle \sigma \rangle} u_{\tau^{t}}\right) = \left(\sum_{s=0}^{1} L^{\langle \tau \rangle} (u_{\sigma})^{s}\right) \cdot \left(\sum_{t=0}^{1} L^{\langle \sigma \rangle} (u_{\tau})^{t}\right)$$

$$\simeq \left(\sum_{s=0}^{1} L^{\langle \tau \rangle} (v_{\sigma^{t}})^{s}\right) \otimes_{K} \left(\sum_{t=0}^{1} L^{\langle \tau \rangle} (v_{\tau^{t}})^{t}\right)$$

$$= ((-1)^{j}, L^{\langle \tau \rangle} / K, \sigma^{t}) \otimes_{K} (1, L^{\langle \sigma \rangle} / K, \tau^{t}) \sim ((-1)^{j}, L^{\langle \tau \rangle} / K, \sigma^{t}).$$

Thus, if j is even, $A(\psi^H, K) \sim K$.

Suppose that j is odd, and let $C=(-1,L^{\langle \tau \rangle}/K,\sigma')$. Let $n=(q^2-1)/(j,q^2-1)$, the order of $\tilde{\theta}^j$, and let $n=n_2n_{2'}$, where n_2 is the 2-part of n and $n_{2'}$ is the odd part of n. Then we see that $L^{\langle \tau \rangle}=K(\zeta_{n_2}+\zeta_{n_2}^{-q})$ if $\operatorname{ord}_2(q+1)=1$ and $L^{\langle \tau \rangle}=K(\zeta_{n_2/2})$ if $\operatorname{ord}_2(q-1)=1$. Since $\operatorname{ord}_2 n_2 \geq 3$, $L^{\langle \tau \rangle}$ is not a real field.

Put $M = L^{\langle \tau \rangle}$. Let w be a finite place of M and let v be the place of K lying below w. Then $K_v \simeq R$ and $M_w = M \cdot K_v \simeq C$, and $Gal(M_w/K_v) \simeq \langle \sigma' \rangle$. So, if we let $Gal(M_w/K_v) = \langle \iota \rangle$, then $C_v \simeq (-1, M \cdot K_v/K_v, \iota) \simeq (-1, C/R, \eta)$ (an isomorphism of rings) with $\langle \eta \rangle = Gal(C/R)$. The last algebra is the quaternion algebra over R. Hence $h(C_v) \equiv 1/2 \pmod{1}$.

Put $d=(q+1)_{2'}/(j,q+1)$, where $(q+1)_{2'}$ is the odd part of q+1. Then we see that $M=K(\zeta_d)$ if d>1. Thus, if d>1, since M is also contained in $K(\zeta_{n_2})$, any finite place of K is unramified in M, and if d=1, each finite place v of K such that $v \not \sim 2$ is unramified in M. Thus, by Lemma F, we see that, if d>1, we have $h_v(C)\equiv 0\pmod 1$ for any finite place v of K, and if d=1, we have $h_v(C)\equiv 0\pmod 1$ for each finite place v of K such that $v\not\sim 2$. But when d=1 and v is a finite place of K lying above 2, we can prove, by rather long considerations, that $h_v(C)\equiv 0\pmod 1$.

We give here a sketch of these considerations. Let σ'' and τ'' be respectively the restrictions of σ and τ to $Q(\zeta_{n_2})$. Let $P=Q(\zeta_{n_2})^{\langle \tau'' \rangle}$ and $S=Q(\zeta_{n_2})^{\langle \sigma'', \tau'' \rangle}$. Then we see that $M=K\cdot P$ and $K\cap P=S$ and that $C\sim D\otimes_S K$, where $D=(-1,P/S,\sigma''')$ (σ''' is the restriction of σ'' to P). Let v' be the place of S lying below v, and let $f=[K_v:S_{v'}]$. Then $h_v(C)\equiv f\cdot h_{v'}(D)\pmod 1$. Since $[D]^2=[S]$, we have $h_{v'}(D)\equiv 0$ or $1/2\pmod 1$. Put $c=[Q_2(\zeta_n):K_v]$. Then we see that c=2 or 4, and that, if c=4, then $2\mid [Q_2(\zeta_{n_{2'}}):Q_2]/c$. Finally, we have $f=4\cdot [Q_2(\zeta_{n_{2'}}):Q_2]/c$, even. Thus $h_v(C)\equiv 0\pmod 1$.

3.2. The case $(q-1)/2 \mid j$ and $(q+1)/2 \nmid j$: Let $\sigma(j)$ be the character of G defined in [22, (3.13), pp. 502-3]. Then we have $(\chi, \sigma(j))_G = 2q^2 - 2q + 1$, odd, and $Q(\sigma(j)) = Q(\beta_j) \subset Q(\chi)$. In this subsection we use this $\sigma(j)$ in order to investigate the rationality of χ .

Let δ' be an element of \bar{F}_q such that $\delta'^2 = \gamma$; we have $\delta'^q = -\delta'$. Let

$$\tilde{w} = \begin{pmatrix} \eta & & & & \\ & \eta^{-1} & & & \\ & & & \eta^{-1} & \\ 0 & & & & \eta \end{pmatrix}, \qquad \tilde{d_{\beta}} = \begin{pmatrix} 1 & 0 & 0 & \delta'\beta \\ 0 & 1 & 0 & 0 \\ 0 & \delta'\beta & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (\beta \in F_q),$$

$$\tilde{v} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

and

$$\tilde{b} = \begin{pmatrix} \theta^{-((q-1)/(p-1))} & & & 0 \\ & \theta^{(q-1)/(p-1)} & & & \\ & & \theta^{-((q-1)/(p-1))q} & \\ & & 0 & & \theta^{((q-1)/(p-1))q} \end{pmatrix}$$

(cf. [22, p. 500]), and let $\tilde{H} = \langle \tilde{w}, \tilde{d}_{\beta} (\beta \in F_q), \tilde{v}, \tilde{b} \rangle$. Then \tilde{v} transforms each element y of H to $y^{(q)}$. Let z be an element of \tilde{G} such that $z^{-1}\tilde{H}z \subset G$, and put $w = z^{-1}\tilde{w}z$, $d_{\beta} = z^{-1}\tilde{d}_{\beta}z$ ($\beta \in F_q$), $v = z^{-1}\tilde{v}z$, $b = z^{-1}\tilde{b}z$ and $H = z^{-1}\tilde{H}z$. Then we have: $w^{q+1} = v^4 = d_{\beta}^p = 1$ ($\beta \in F_q$), $v^2 = -1$, $vwv^{-1} = w^{-1} = w^q$, $vd_{\beta}v^{-1} = d_{-\beta} = d_{\beta}^{-1}$ ($\beta \in F_q$), $bwb^{-1} = w$, $b^{p-1} = w^{-1}$, $bd_{\beta}b^{-1} = d_{v^{-1}\beta}$ ($\beta \in F_q$) and $vbv^{-1} = b^q$.

Let $N = \langle w, d_{\beta}(\beta \in F_q) \rangle = \langle w \rangle \times \{d_{\beta} \mid \beta \in F_q\}$. Then N is a normal subgroup of H, (H:N) = 2(p-1) and $R = \{b^i, vb^i, i = 0, 1, \dots, p-2\}$ is a set of complete system of representatives for H/N. Let ε be an additive character of F_q as in Lemma I, and let ψ be the linear character of N defined by $\psi(w^k d_{\beta}) = (\tilde{\eta}^j)^k \varepsilon(\beta)$. Then $\psi^G = \sigma(j)$ ([22, pp. 502-3]). We have $\psi^{b^i}(w^k d_{\beta}) = (\tilde{\eta}^j)^k \varepsilon(\beta)^{g^i}$ and $\psi^{vb^i}(w^k b_{\beta}) = \psi^{b^i}(w^k d_{\beta})^{-1}$, where g is an integer such that $g \mod pZ = v^{-1}$ in $F_p = Z/pZ$. From this we see that $\psi^H(w^k d_{\beta}) = (p-1)\beta_{jk}$ if $\beta \in \text{Ker}(\varepsilon)$, and $= -\beta_{jk}$ otherwise. Then it follows that $(\psi^H, \psi^H)_H = 1$, so ψ^H is an irreducible character of H. We have $Q(\psi^H) = Q(\beta_j) \subset Q(\chi)$, $(\chi|H,\psi^H)_H = (\chi,\sigma(j))_G = 2q^2 - 2q + 1$, odd, and χ and ψ^H are real. Therefore we have $[A(\chi,Q(\chi))] = [A(\psi^H,Q(\chi))]$.

Let $K = Q(\psi^H)$, $L = K(\psi) = Q(\tilde{\eta}^j, \zeta_p)$ and $B = A(\psi^H, K)$. Then $Gal(L/K) = \langle \omega \rangle \times \langle \phi \rangle$, where $(\tilde{\eta}^j)^\omega = \tilde{\eta}^j$, $\zeta_p^\omega = \zeta_p^g$, $(\tilde{\eta}^j)^\phi = (\tilde{\eta}^j)^{-1}$ and $\zeta_p^\phi = \zeta_p$. We see that $\psi^b = \psi^\omega$ and $\psi^{vb^{(p-1)/2}} = \psi^\phi$, so $F = \{f \in H | \psi^f = \psi^{\tau(f)} \text{ for some } \tau(f) \in Gal(L/K)\} = H$, hence $B \simeq (\beta, L/K)$, where β is the factor set of Gal(L/K) with respect to R.

Let u' be any infinite place of L, and let u be the place of K lying below u'. Then $L_{u'} \simeq C$ and $K_u \simeq R$ and $\operatorname{Gal}(L_{u'}/K_u)$ is canonically isomorphic to the subgroup $\langle \omega^{(p-1)/2} \phi \rangle$ of $\operatorname{Gal}(L/K)$. Let $\operatorname{Gal}(L_{u'}/K_u) = \langle \iota \rangle$, and let β_u be the restriction of β to $\langle \iota \rangle$. Then $\beta_u(\iota, \iota) = (-1)^j$, so $B_u \sim (\beta_u, L_{u'}/K_u)$ (see, e.g. [24, Chap. IX, §3, Corollary to Proposition 7, p. 174]) = $((-1)^j, L_{u'}/K_u, \iota)$. Thus $h_u(B) \equiv 0 \pmod{1}$ if j is even, and $h_u(B) \equiv 1/2 \pmod{1}$ if j is odd.

Let u be a finite place of K. Let n=(q+1)/(j,q+1), the order of $\tilde{\eta}^j$. Then $L=Q(\zeta_n,\zeta_p)=Q(\zeta_{np})$. We see that u is unramified in L except in the following cases: (a) If u|p, then u is ramified in L. (b) If n is of the form r^m or $2r^m$, where r is an odd prime number and $m \ge 1$, and if u|r, then u is ramified in L. (c) If n is of the form 2^m with $m \ge 2$ and if u|2, then u is ramified in L.

Suppose that u|p. Then, by using the index formula of T. Yamada ([27, Theorem 4.4, p. 43]), we see that the index m_p of B_u is equal to (p-1)/((q-s)/n, p-1), where $s=p^{f/2}$ with $f=[Q_p(\zeta_n):Q_p]$ (even), and, by relatively elementary arguments, we can conclude that $m_p=1$.

Suppose that n is of the form r^m or $2r^m$, where r is an odd prime number and $m \ge 1$, and that u|r. Then r is totally ramified in K, so that u is unique. We see that j is even, so that, by sum formula, we must have $h_u(B) \equiv 0 \pmod{1}$.

Suppose that n is of the form 2^m with $m \ge 2$ and that u|2. Then 2 is totally ramified in K, so that u is unique. Thus, if j is even, we must have $h_u(B) \equiv 0 \pmod{1}$. Suppose that j is odd. Since $[K:Q] = 2^{m-2}$, K has just 2^{m-2} real places. Therefore we must have $h_u(B) \equiv 0 \pmod{1}$ if m > 2, and $h_u(B) \equiv 1/2$

(mod 1) if m=2. If m=2, then we see that $Q(\chi)=Q$, so we have $m_{Q_2}(\chi)=m_{Q_2}(\psi^H)=2$.

3.3. The case $(q-1)/2 \nmid j$ and $(q+1)/2 \mid j$: In this case we have $(\chi, \sigma(j))_G = 2q(q-1)$, even. But, if $\rho(j)$ is the character of G which is defined in [22, pp. 502-3], we have $(\chi, \rho(j))_G = 2q^2 + 2q + 3$, odd, and $Q(\rho(j)) = Q(\alpha_j) \subset Q(\chi)$. So in this subsection, we use $\rho(j)$ in order to investigate the rationality of χ .

Let

$$u = egin{pmatrix} \gamma & & & & 0 \ & \gamma^{-1} & & \ & & & \gamma^{-1} \ & & & & \gamma \end{pmatrix}, \qquad b_{eta} = egin{pmatrix} 1 & 0 & 0 & eta \ 0 & 1 & 0 & 0 \ 0 & eta & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \quad (eta \in F_q),$$

$$v = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \qquad s = \begin{pmatrix} 1 & & & 0 \\ & 1 & & & 0 \\ & & v^{-1} & & \\ 0 & & & v \end{pmatrix},$$

and let $H = \langle u, b_{\beta}(\beta \in F_q), v, s \rangle$ (cf. [22, p. 499]). Then $v^2 = s^{p-1} = u^{q-1} = 1$, $vuv^{-1} = u^{-1}$, $vb_{\beta}v = b_{\beta}$ ($\beta \in F_q$), $sus^{-1} = u$, $sb_{\beta}s^{-1} = b_{v^{-1}\beta}$ ($\beta \in F_q$) and $ub_{\beta}u^{-1} = b_{\beta}$ ($\beta \in F_q$). Let $N = \langle u, b_{\beta}(\beta \in F_q) \rangle = \langle u \rangle \times \{b_{\beta} \mid \beta \in F_q\}$. Then N is a normal subgroup of H, (H:N) = 2(p-1) and $R = \{s^i, vs^i, i = 0, 1, \dots, p-2\}$ is a set of complete system of representatives for H/N. Let ψ be the linear character of N defined by $\psi(u^kb_{\beta}) = (\tilde{\gamma}^j)^k \varepsilon(\beta)$. Then $\psi^G = \rho(j)$ ([22, p. 502]). We have $\psi^{s^i}(u^kb_{\beta}) = \psi(u^kb_{v^{-i}\beta}) = (\tilde{\gamma}^j)^k \varepsilon(\beta)^{g^i}$ and $\psi^{vs^i}(u^kb_{\beta}) = \psi(u^{-k}b_{v^{-i}\beta}) = (\tilde{\gamma}^j)^{-k}\varepsilon(\beta)^{g^i}$. It follows that $\psi^H(u^kb_{\beta}) = (p-1)\beta_{jk}$ if $\beta \in \text{Ker}(\varepsilon)$, and = 0 otherwise, and we see that ψ^H is an irreducible character of H and $Q(\psi^H) = Q(\alpha_j) \subset Q(\chi)$. Since ψ^H and χ are real and $(\chi|H,\psi^H)_H = (\chi,\rho(j))_G = 2q^2 + 2q + 3$, odd, we have $[A(\chi,Q(\chi))] = [A(\psi^H,Q(\chi))]$.

Let $K = Q(\psi^H)$, $L = K(\psi) = Q(\tilde{\gamma}^j, \zeta_p)$ and $B = A(\psi^H, K)$. Then we have $\operatorname{Gal}(L/K) = \langle \omega \rangle \times \langle \phi \rangle$, where $(\tilde{\gamma}^j)^\omega = \tilde{\gamma}^j$, $\zeta_p^\omega = \zeta_p^g$, $(\tilde{\gamma}^j)^\phi = (\tilde{\gamma}^j)^{-1}$ and $\zeta_p^\phi = \zeta_p$. We have $\psi^s = \psi^\omega$ and $\psi^v = \psi^\phi$. Therefore $B \simeq (\beta, L/K)$, where β is the factor set of $\operatorname{Gal}(L/K)$ with respect to R.

As in 3.2, we see that, for an infinite place w of K, we have $h_w(B) \equiv 0$

(mod 1) if j is even and $h_w(B) \equiv 1/2 \pmod{1}$ if j is odd. When w is a finite place of K the argument goes similarly as in 3.2.

We get

PROPOSITION 2 (cf. [21, (3.2)]). Let $\chi = -\chi_2(j)$ $(j \in R_2)$. Then $K = Q(\chi) = Q(\alpha_j, \beta_j, \tilde{\theta}^{ij} + \tilde{\theta}^{-ij} + \tilde{\theta}^{qij} + \tilde{\theta}^{-qij}, i \in R_2)$. Let $A = A(\chi, Q)$. Then, if j is even, $A \sim K$. Suppose that j is odd. Then $h_v(A) \equiv 1/2 \pmod{1}$ for all infinite places v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: (a) If $(q-1)/2 \mid j$ and $(q+1)/2 \nmid j$ and (q+1)/(j,q+1) = 4, then K = Q and $h_2(A) \equiv 1/2 \pmod{1}$. (b) If $(q-1)/2 \nmid j$ and $(q+1)/2 \mid j$ and (q-1)/(j,q-1) = 4, then K = Q and $h_2(A) \equiv 1/2 \pmod{1}$.

4. The Hasse Invariants of $A(\chi_3(k,\ell),Q)$

Let $\chi = \chi_3(k,\ell)$ $(k,\ell \in T_1, k \neq \ell)$. Then $Q(\chi) = Q((-1)^{\ell}\alpha_{ik} + (-1)^{j}\alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik} + \alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik}\alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik}\alpha_{j\ell} + \alpha_{i\ell}\alpha_{jk}$ $(i,j \in T_1, i \neq j)$. Generally, this differs from the calculation in [21, p. 295, line 12] that $Q(\chi) = Q(\lambda(k) \times \lambda(\ell)) = Q(\alpha_k, \alpha_\ell)$, so the assertion in [21, (3.3)] is not correct.

4.1. The case $(q-1)/2 \nmid k + \ell$: Let

$$a = \begin{pmatrix} \gamma & & & 0 \\ & \gamma^{-1} & & \\ & 0 & & 1 \\ & & & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & & & 0 \\ & 1 & & \\ & 0 & & \gamma & \\ & & & \gamma^{-1} \end{pmatrix},$$

$$x = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

and let $H = \langle a, b, x, y, z \rangle$ (cf. [22, p. 496]). Let $N = \langle a, b \rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(a^i b^j) = (\tilde{\gamma}^k)^i (\tilde{\gamma}^\ell)^j$. Then we see that ψ^H is an irreducible character of H and $Q(\psi^H) = Q(\chi)$, real. We have

$$(\chi|H,\psi^H)_H = \begin{cases} 2q^2 + 8q + 29 \text{ (odd)} & \text{if } 2|k,\ell \text{ or } 2\not k,\ell, \\ 2q^2 + 8q + 25 \text{ (odd)} & \text{if } 2|k \text{ and } 2\not \ell\ell, \\ 2q^2 + 8q + 25 \text{ (odd)} & \text{if } 2\not k \text{ and } 2|\ell. \end{cases}$$

Therefore we have $[A(\chi, K)] = [A(\psi^H, K)]$ with $K = Q(\chi)$.

Set $F = \{f \in H | \psi^f = \psi^{\tau(f)} \text{ for some } \tau(f) \in \operatorname{Gal}(K(\psi)/K)\}$. Then, by Proposition C, we have $K(\psi^F) = K$ and $F/K \simeq \operatorname{Gal}(K(\psi)/K)$, an abelian group. Since $\psi^H = (\psi^F)^H$, by Corollary B, we have $[A(\psi^H, K)] = [A(\psi^F, K)]$. In our case, the group F is not uniquely determined. For $h \in H$, let $\bar{h} = Nh \in H/N$. Then the abelian subgroup of H/N are $\{\bar{1}\}, \langle \bar{x}\rangle, \langle \bar{y}\rangle, \langle \bar{z}\rangle, \langle \bar{y}z\rangle, \langle \bar{y}, \bar{z}\rangle, \langle \bar{x}, \bar{y}z\rangle, \langle \bar{x}y\rangle = \langle \bar{x}z\rangle$. We see easily that the cases $F/N = \{\bar{1}\}, \langle \bar{x}\rangle, \langle \bar{y}\rangle, \langle \bar{z}\rangle, \langle \bar{x}y\rangle > cannot happen.$

- (1) The case $F/N=\langle \overline{yz}\rangle$: This case happens when, for instance, q=11, k=1 and $\ell=2$. Put $\tau=\tau(yz)$. Then $\operatorname{Gal}(K(\psi)/K)=\langle \tau\rangle\simeq Z/2Z$, where $(\tilde{\gamma}^k)^{\tau}=(\tilde{\gamma}^k)^{-1}$ and $(\tilde{\gamma}^\ell)^{\tau}=(\tilde{\gamma}^\ell)^{-1}$. So $K(\psi)=Q(\tilde{\gamma}^k,\tilde{\gamma}^\ell)=Q(\tilde{\gamma}^m)$ with $m=(k,\ell)$ and $K=Q(\alpha_m)$. We see that $A(\psi^F,K)=((-1)^{k+\ell},\ Q(\tilde{\gamma}^m)/Q(\alpha_m),\tau)$. Thus, if $k+\ell$ is even, $A(\psi^F,K)\sim K$, and, if $k+\ell$ is odd, the invariants of $A(\psi^F,K)$ can be determined by using Proposition L. We note that the case (q-1)/(m,q-1)=4 cannot happen.
- (2) The case $F/N = \langle \bar{y}, \bar{z} \rangle$: This case happens when, for instance, q = 13, k = 4 and $\ell = 3$.

Put $\tau = \tau(y)$ and $v = \tau(z)$. Then $\operatorname{Gal}(K(\psi)/K) = \langle \tau \rangle \times \langle v \rangle \simeq Z/2Z \simeq Z/2Z$, where $(\tilde{\gamma}^k)^{\tau} = (\tilde{\gamma}^k)^{-1}$, $(\tilde{\gamma}^\ell)^{\tau} = \tilde{\gamma}^\ell$, $(\tilde{\gamma}^k)^v = \tilde{\gamma}^k$ and $(\tilde{\gamma}^\ell)^v = (\tilde{\gamma}^\ell)^{-1}$. We have $K(\psi) = Q(\tilde{\gamma}^k, \tilde{\gamma}^\ell)$ and $K = Q(\alpha_k, \alpha_\ell)$. (We note that $((q-1)/(k, q-1), (q-1)/(\ell, q-1)) \le 2$.) $R = \{1, y, z, yz\}$ is a set of complete system of representatives for F/N, and the factor set β of $G(K(\psi)/K)$ with respect to R is given by $\beta(\tau, v) = \beta(v, \tau) = 1$, $\beta(\tau, \tau) = (-1)^k$ and $\beta(v, v) = (-1)^\ell$. Let τ'' be the restriction of τ to $Q(\tilde{\gamma}^k)$ and let v'' be the restriction of v to $Q(\tilde{\gamma}^\ell)$. Then we see that $A(\psi^F, K) \sim (B_1 \otimes_{Q(\alpha_k)} K) \otimes_K (B_2 \otimes_{Q(\alpha_\ell)} K)$, where $B_1 = ((-1)^k, Q(\tilde{\gamma}^k)/Q(\alpha_k), \tau'')$ and $B_2 = ((-1)^\ell, Q(\tilde{\gamma}^\ell)/Q(\alpha_\ell), v'')$. Thus the calculation of the invariants of $A(\psi^F, K)$ is easy (by using Proposition L).

(3) The case $F/N=\langle \bar{x}, \overline{yz}\rangle$: This case happens when, for instance, q=31, k=2 and $\ell=8$.

Let $\tau = \tau(x)$ and $v = \tau(yz)$. Then $\operatorname{Gal}(K(\psi)/K) = \langle \tau, v \rangle \simeq Z/2Z \times Z/2Z$, where $(\tilde{\gamma}^k)^{\tau} = \tilde{\gamma}^\ell$, $(\tilde{\gamma}^\ell)^{\tau} = \tilde{\gamma}^k$, $(\tilde{\gamma}^k)^v = (\tilde{\gamma}^k)^{-1}$ and $(\tilde{\gamma}^\ell)^v = (\tilde{\gamma}^\ell)^{-1}$. So we have $K(\psi) = Q(\tilde{\gamma}^k, \tilde{\gamma}^\ell) = Q(\tilde{\gamma}^k) = Q(\tilde{\gamma}^\ell)$ and $K = Q(\alpha_k + \alpha_\ell, \alpha_k \alpha_\ell)$. Since $\tilde{\gamma}^k$ and $\tilde{\gamma}^\ell$ are conjugate over Q, they have the same order, that is, $(q-1)/(k, q-1) = (q-1)/(\ell, q-1)$, so that $k+\ell$ is even. $R = \{1, x, yz, xyz\}$ is a set of complete system of representatives for F/N, and the factor set of $\operatorname{Gal}(K(\psi)/K)$ with respect to R is 1. Therefore $A(\psi^F, K) \sim K$.

(4) The case $F/N = \langle \overline{xy} \rangle = \langle \overline{xz} \rangle$: This case happens when, for instance, q = 11, k = 1 and $\ell = 3$.

Let $\tau = \tau(xy)$. Then $\operatorname{Gal}(K(\psi)/K) = \langle \tau \rangle \simeq Z/4Z$, where $(\tilde{\gamma}^k)^{\tau} = (\tilde{\gamma}^{\ell})^{-1}$ and

- $(\tilde{\gamma}^{\ell})^{\tau} = \tilde{\gamma}^{k}$. So $K(\psi) = Q(\tilde{\gamma}^{k}) = Q(\tilde{\gamma}^{\ell})$ and $K = Q(\alpha_{k} + \alpha_{\ell}, \alpha_{k}\alpha_{\ell})$. Since $\tilde{\gamma}^{k}$ and $\tilde{\gamma}^{\ell}$ are conjugate over Q, $k + \ell$ is even. We see that $A(\psi^{F}, K) = (\psi(xy)^{4}, K(\psi)/K, \tau) = ((-1)^{k+\ell}, K(\psi)/K, \tau) \sim K$.
- **4.2.** The case $(q-1)/2 \mid k+\ell$, i.e., $k+\ell=(q-1)/2$. If H and ψ are as in 4.1, then we have $(\chi \mid H, \psi^H)_H = 2(q^2+4q+15)$ if k,ℓ are even or k,ℓ are odd, and $(\chi \mid H, \psi^H)_H = 2(q^2+4q+13)$ otherwise. So we cannot use this ψ . Instead, let H,N be as in 3.3, and let ψ be the linear character of N defined by $\psi(u^ib_\beta) = (\tilde{\gamma}^{k-\ell})^i \varepsilon(\beta)$. Then we have $(\chi \mid H, \psi^H)_H = 2q^2+6q+11$, odd, and $Q(\psi^H) \subset Q(\chi)$. So in this subsection we use this ψ^H . Then we have $[A(\chi,Q(\chi))] = [A(\psi^H,Q(\chi))]$. And the arguments go as in 3.3.

We get:

PROPOSITION 3. Let $\chi = \chi_3(k,\ell)$ $(k,\ell \in T_1, k \neq \ell)$. Then $K = Q(\chi) = Q((-1)^{\ell}\alpha_{ik} + (-1)^{k}\alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik} + \alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik}\alpha_{i\ell}$ $(i \in T_1)$, $\alpha_{ik}\alpha_{j\ell} + \alpha_{i\ell}\alpha_{jk}$ $(i,j \in T_1, i \neq j)$. Let $A = A(\chi,Q)$. Then we have the following:

- (I) Assume that $(q-1)/2 \nmid k + \ell$. Put $\Pi = Gal(Q(\tilde{\gamma}^k, \tilde{\gamma}^\ell)/K)$.
- (i) Assume that $\Pi = \langle i \rangle$, where $(\tilde{\gamma}^k)^i = (\tilde{\gamma}^k)^{-1}$ and $(\tilde{\gamma}^\ell)^i = (\tilde{\gamma}^\ell)^{-1}$. Put $m = (k, \ell)$. Then, if $k + \ell$ is even, $A \sim K$. Suppose that $k + \ell$ is odd. Then, if w is any infinite place of K, we have $h_w(A) \equiv 1/2 \pmod{1}$, and if w is a finite place of K, we have $h_w(A) \equiv 0 \pmod{1}$ except in the following case: If (q-1)/(m,q-1) is of the form r^c or $2r^c$, where r is an odd prime number of the form 4u 1 and $c \geq 1$, and if $w \mid r$, then $h_w(A) \equiv 1/2 \pmod{1}$.
- (ii) Assume that $\Pi = \langle \tau, v \rangle$, where $(\tilde{\gamma}^k)^{\tau} = (\tilde{\gamma}^k)^{-1}$, $(\tilde{\gamma}^{\ell})^{\tau} = \tilde{\gamma}^{\ell}$, $(\tilde{\gamma}^k)^{v} = \tilde{\gamma}^k$ and $(\tilde{\gamma}^{\ell})^{\nu} = (\tilde{\gamma}^{\ell})^{-1}$. Then: (a) If k, ℓ are even, $A \sim K$. (b) Assume that k is even and ℓ is odd. Then, if w is any infinite place of K, we have $h_w(A) \equiv 1/2 \pmod{1}$, and if w is a finite place of K, we have $h_w(A) \equiv 0 \pmod{1}$ except in the following cases: Put $n = (q-1)/(\ell, q-1)$. If n is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \ge 1$, if $[Q_r(\alpha_k):Q_r]$ is odd and if w|r, then $h_w(A) \equiv 1/2 \pmod{1}$. If n = 4, if $[Q_2(\alpha_k) : Q_2]$ is odd and if w|2, then $h_w(A) \equiv 1/2 \pmod{1}$. (c) Assume that k is odd and ℓ is even. Then, if w is any infinite place of K, we have $h_w(A) \equiv 1/2 \pmod{1}$, and if w is a finite place of K, we have $h_w(A) \equiv 0 \pmod{1}$ except in the following cases: Put m = (q-1)/q(k, q-1). If m is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \ge 1$, if $[Q_r(\alpha_\ell):Q_r]$ is odd and if w|r, then $h_w(A) \equiv 1/2 \pmod{1}$. If m=4, if $[Q_2(\alpha_\ell):Q_2]$ is odd and if w|2, then $h_w(A)\equiv 1/2\pmod{1}$. (d) Assume that k,ℓ are odd. Then, if w is any infinite place of K, we have $h_w(A) \equiv 0$ (mod 1), and if w is a finite place of K, we have $h_w(A) \equiv 0 \pmod{1}$ except in the following cases: Put m = (q-1)/(k, q-1) and $n = (q-1)/(\ell, q-1)$. If m is of

the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \ge 1$, if $[Q_r(\alpha_\ell):Q_r]$ is odd and if w|r, then $h_w(A) \equiv 1/2 \pmod 1$. If n is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \ge 1$, if $[Q_r(\alpha_k):Q_r]$ is odd and if w|r, then $h_w(A) \equiv 1/2 \pmod 1$. (The case that m=4 or n=4 does not happen.)

- (iii) Assume that $\Pi = \langle \tau, v \rangle$, where $(\tilde{\gamma}^k)^{\tau} = \tilde{\gamma}^{\ell}$, $(\tilde{\gamma}^{\ell})^{\tau} = \tilde{\gamma}^k$, $(\tilde{\gamma}^k)^{v} = (\tilde{\gamma}^k)^{-1}$ and $(\tilde{\gamma}^{\ell})^{v} = (\tilde{\gamma}^{\ell})^{-1}$. Then $K = Q(\alpha_k + \alpha_\ell, \alpha_k \alpha_\ell)$ and $A \sim K$.
- (iv) Assume that $\pi = \langle \tau \rangle \simeq Z/4Z$, where $(\tilde{\gamma}^k)^{\tau} = (\tilde{\gamma}^{\ell})^{-1}$ and $(\tilde{\gamma}^{\ell})^{\tau} = \tilde{\gamma}^k$. Then $K = Q(\alpha_k + \alpha_\ell, \alpha_k \alpha_\ell)$ and $A \sim K$.
- (II) Assume that $(q-1)/2 \mid k+\ell$, i.e., $k+\ell=(q-1)/2$. Then, if $k+\ell$ is even, $A \sim K$. Suppose that $k+\ell$ is odd. Then, if w is any infinite place of K, we have $h_w(A) \equiv 1/2 \pmod 1$, and if w is a finite place of K, we have $h_w(A) \equiv 0 \pmod 1$ except in the following case: If $(q-1)/(k-\ell,q-1)$ is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \ge 1$, and if $w \mid r$, then $h_w(A) \equiv 1/2 \pmod 1$.

5. The Hasse Invariants of $A(\chi_4(k,\ell),Q)$

Let $\chi = \chi_4(k,\ell)$ $(k,\ell \in T_2, k \neq \ell)$. Then $Q(\chi) = Q((-1)^\ell \beta_{ik} + (-1)^k \beta_{i\ell}$ $(i \in T_2)$, $\beta_{ik} + \beta_{i\ell}$ $(i \in T_2)$, $\beta_{ik}\beta_{i\ell}$ $(i \in T_2)$, $\beta_{ik}\beta_{j\ell} + \beta_{jk}\beta_{i\ell}$ $(i,j \in T_2, i \neq j)$). We note that, generally, $Q(\chi) \neq Q(\lambda'(k) \times \lambda'(\ell)) = Q(\beta_k,\beta_\ell)$. So the assertion in [21, (3.4)] is not correct.

5.1. The case $(q+1)/2 \times k + \ell$: Let

$$\tilde{a} = \begin{pmatrix} \eta & & & & \\ & \eta^{-1} & & \\ & & 1 \\ 0 & & 1 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 1 & & & 0 \\ & 1 & & \\ & & \eta & \\ 0 & & & \eta^{-1} \end{pmatrix},$$

$$\tilde{x} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \tilde{y} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \tilde{z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

$$v = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

and let $\tilde{H}=\langle \tilde{a},\tilde{b},\tilde{x},\tilde{y},\tilde{z}\rangle$. Then v transforms each element c of H to $c^{(q)}$. Let d be an element of \tilde{G} such that $d^{-1}\tilde{H}d\subset G$, and put $a=d^{-1}\tilde{a}d$, $b=d^{-1}\tilde{b}d$, $x=d^{-1}\tilde{x}d$, $y=d^{-1}\tilde{y}d$, $z=d^{-1}\tilde{z}d$ and $H=d^{-1}\tilde{H}d$. Let $N=\langle a,b\rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(a^ib^j)=(\tilde{\eta}^k)^i(\tilde{\eta}^\ell)^j$. Then ψ^H is an irreducible character of H and $Q(\psi^H)=Q(\chi)$. We have

$$(\chi | H, \psi^H)_H = \begin{cases} 2q^2 - 8q + 17 & \text{if } k + \ell \text{ is even,} \\ 2q^2 - 8q + 13 & \text{if } k + \ell \text{ is odd.} \end{cases}$$

Since χ and ψ^H are real, we have $[A(\chi, Q(\chi))] = [A(\psi^H, Q(\chi))]$. The arguments go as in 4.1. We omit the details.

5.2. The case $(q+1)/2 \mid k+\ell$, i.e., $k+\ell=(q+1)/2$: We have $(\chi,\sigma(k-\ell))_G=2q^2-6q+9$ (odd) and $Q(\sigma(k-\ell))=Q(\beta_{2k})\subset Q(\chi)$ (we have $Q(\chi)=Q(\beta_k)$ if $k+\ell$ is odd and $Q(\chi)=Q(\beta_{2k})$ if $k+\ell$ is even). Let H,N be as in 3.2, and let ψ be the linear character of N defined by $\psi(w^id_\beta)=(\tilde{\eta}^{k-\ell})^i\varepsilon(\beta)$. Then ψ^H is an irreducible character of H and $Q(\psi^H)=Q(\sigma(k-\ell))$. Since $\psi^G=\sigma(k-\ell)$, we have $(\chi|H,\psi^H)_H=2q^2-6q+9$, odd. Thus, since χ and ψ^H are real, we have $[A(\chi,Q(\chi))]=[A(\psi^H,Q(\chi))]$. We omit the detailed calculation. We get

PROPOSITION 4. Let $\chi = \chi_4(k, \ell) \ (k, \ell \in T_2, k \neq \ell)$. Then $Q(\chi) = Q((-1)^{\ell}\beta_{ik} + (-1)^{k}\beta_{i\ell} \ (i \in T_2), \ \beta_{ik} + \beta_{i\ell} \ (i \in T_2), \ \beta_{ik}\beta_{i\ell} \ (i \in T_2), \ \beta_{ik}\beta_{j\ell} + \beta_{jk}\beta_{i\ell} \ (i, j \in T_2, i \neq j)$. Put $K = Q(\chi)$ and $A = A(\chi, Q)$. Then we have the following:

- (I) Assume that $(q+1)/2 \not k + \ell$. Put $L = Q(\tilde{\eta}^k, \tilde{\eta}^\ell)$, and $\Pi = \operatorname{Gal}(L/K)$. Then:
- (i) Assume that $\Pi = \langle i \rangle$, where $(\tilde{\eta}^k)^i = (\tilde{\eta}^k)^{-1}$ and $(\tilde{\eta}^\ell)^i = (\tilde{\eta}^\ell)^{-1}$. Put $m = (k, \ell)$. Then $L = Q(\tilde{\eta}^m)$ and $K = Q(\beta_m)$. If $k + \ell$ is even, $A \sim K$. Suppose that $k + \ell$ is odd. Then $h_u(A) \equiv 1/2 \pmod{1}$ for any infinite place u of K, and if u is a finite place of K, we have $h_u(A) \equiv 0 \pmod{1}$ except in the following case: If (q+1)/(m,q+1) is of the form r^c or $2r^c$, where r is an odd prime number of the form 4s-1 and $c \geq 1$, and if $u \mid r$, then $h_u(A) \equiv 1/2 \pmod{1}$.
- (ii) Assume that $\Pi = \langle \tau, v \rangle \simeq Z/2Z \times Z/2Z$, where $(\tilde{\eta}^k)^{\tau} = (\tilde{\eta}^k)^{-1}$, $(\tilde{\eta}^{\ell})^{\tau} = \tilde{\eta}^{\ell}$, $(\tilde{\eta}^k)^v = \tilde{\eta}^k$ and $(\tilde{\eta}^{\ell})^v = (\tilde{\eta}^{\ell})^{-1}$. Put m = (q+1)/(k,q+1) and n = (q+1)/(k,q+1). Then $(m,n) \leq 2$ and $K = Q(\beta_k,\beta_\ell)$. (a) If k,ℓ are even, $A \sim K$. (b) Suppose that k is even and ℓ is odd. Then $h_u(A) \equiv 1/2 \pmod{1}$ for any infinite place u of K, and if u is a finite place of K, we have $h_u(A) \equiv 0 \pmod{1}$ except in the following cases: If n is of the form $2r^c$, where r is an odd prime number of the

form 4s-1 and $c \ge 1$, if $[Q_r(\beta_k):Q_r]$ is odd and if u|r, then $h_u(A) \equiv 1/2$ (mod 1). If n=4, if $[Q_2(\beta_k):Q_2]$ is odd and if u|2, then $h_u(A) \equiv 1/2$ (mod 1). (c) Suppose that k is odd and ℓ is even. Then $h_u(A) \equiv 1/2$ (mod 1) for any infinite place u of K, and if u is a finite place of K, we have $h_u(A) \equiv 0 \pmod 1$ except in the following cases: If m is of the form $2r^c$, where r is an odd prime number of the form 4s-1 and $c \ge 1$, if $[Q_r(\beta_\ell):Q_r]$ is odd and if u|r, we have $h_u(A) \equiv 1/2 \pmod 1$. If m=4, if $[Q_2(\beta_\ell):Q_2]$ is odd and if u|2, then $h_u(A) \equiv 1/2 \pmod 1$. (d) Suppose that k,ℓ are odd. Then we have $h_u(A) \equiv 0 \pmod 1$ for any infinite place u of K, and if u is a finite place of K, we have $h_u(A) \equiv 0 \pmod 1$ except in the following cases: If m is of the form $2r^c$, where r is an odd prime number of the form 4s-1 and $c \ge 1$, if $[Q_r(\beta_\ell):Q_r]$ is odd and if u|r, then $h_u(A) \equiv 1/2 \pmod 1$. If n is of the form $2r^c$, where r is an odd prime number of the form 4s-1 and $c \ge 1$, if $[Q_r(\beta_k):Q_r]$ is odd and if u|r, then $h_u(A) \equiv 1/2 \pmod 1$.

- (iii) Assume that $\Pi = \langle \tau, v \rangle \simeq Z/2Z \times Z/2Z$, where $(\tilde{\eta}^k)^{\tau} = \tilde{\eta}^{\ell}$, $(\tilde{\eta}^{\ell})^{\tau} = \tilde{\eta}^k$, $(\tilde{\eta}^k)^v = (\tilde{\eta}^k)^{-1}$ and $(\tilde{\eta}^{\ell})^v = (\tilde{\eta}^{\ell})^{-1}$. Then $L = Q(\tilde{\eta}^k) = Q(\tilde{\eta}^{\ell})$, $K = Q(\beta_k + \beta_\ell, \beta_k \beta_\ell)$ and $A \sim K$.
- (iv) Assume that $\Pi = \langle \tau \rangle \simeq Z/4Z$, where $(\tilde{\eta}^k)^{\tau} = (\tilde{\eta}^{\ell})^{-1}$ and $(\tilde{\eta}^{\ell})^{\tau} = \tilde{\eta}^k$. Then $L = Q(\tilde{\eta}^k) = Q(\tilde{\eta}^{\ell})$, $K = Q(\beta_k + \beta_\ell, \beta_k \beta_\ell)$ and $A \sim K$.
- (II) Assume that $(q+1)/2 \mid k+\ell$, i.e., $k+\ell=(q+1)/2$. Then, if $k-\ell$ is even, $A \sim K$. Suppose that $k-\ell$ is odd. Then $h_u(A) \equiv 1/2 \pmod 1$ for any infinite place u of K, and if u is a finite place of K, we have $h_u(A) \equiv 0 \pmod 1$ except in the following case: If $(q+1)/(k-\ell,q+1)$ is of the form $2r^c$, where r is an odd prime number of the form 4s-1 and $c \ge 1$, and if u is the unique place of K that lies above r, then $h_u(A) \equiv 1/2 \pmod 1$.

6. The Hasse Invariants of $A(-\chi_5(k,\ell),Q)$

Let $\chi = -\chi_5(k,\ell)$ $(k \in T_2, \ell \in T_1)$. Then $Q(\chi) = Q(\beta_k, \alpha_\ell) = Q(-\lambda'(k) \times \lambda(\ell))$, where $-\lambda'(k)$ and $\lambda(\ell)$ are irreducible characters of $SL_2(F_q)$ whose character-values are listed up on p. 504 of [22]. In this case the assertion in [21, (3.5)] is correct. Let ψ_3, ψ_3' be characters of G which are constructed in [22, pp. 494–5]. Then, by [22, p. 505], we have $-\chi = (\lambda'(k) \times \lambda(\ell))^G + \tilde{\psi}_3$, where $\tilde{\psi}_3 = \psi_3$ (resp. $\tilde{\psi}_3 = \psi_3'$) if $k + \ell$ is even (resp. odd). We have $(\chi, \tilde{\psi}_3)_G = 3$, hence, since $(\chi, \chi)_G = 1$, we must have $(\chi, (-\lambda'(k) \times \lambda(\ell))^G)_G = 3$, odd. So, since χ and $-\lambda'(k) \times \lambda(\ell)$ are real, we have $[A(\chi, Q(\chi))] = [A(-\lambda'(k) \times \lambda(\ell), Q(\chi))]$. The local Schur indices of the character $-\lambda'(k) \times \lambda(\ell)$ have been calculated in [21, Proposition (2.5)]. Here we shall give a more direct treatment.

Let

$$ilde{a} = \left(egin{array}{ccc} \eta & & & & & & \\ & \eta^{-1} & & & & \\ & & 1 & & & \\ & 0 & & & 1 \end{array}
ight), \quad ilde{b} = \left(egin{array}{ccc} 1 & & & & & \\ & 1 & & & & \\ & & & \gamma & & \\ & 0 & & & \gamma^{-1} \end{array}
ight),$$

$$\tilde{y} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \tilde{z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

and let $\tilde{H}=\langle \tilde{a},\tilde{b},\tilde{y},\tilde{z}\rangle$. The group $SL_2(\overline{F}_q)\times SL_2(\overline{F}_q)$ can be embedded into \tilde{G} diagonally, and \tilde{H} is a subgroup of $SL_2(\overline{F}_q)\times SL_2(\overline{F}_q)$. \tilde{y} transforms each element w of \tilde{H} to $w^{(q)}$, so that, by a result similar to Lemma H, there is an element d of $SL_2(\overline{F}_q)\times SL_2(\overline{F}_q)$ such that $d^{-1}\tilde{H}d\subset SL_2(F_q)\times SL_2(F_q)$. Fixing one such element d, we put $a=d^{-1}\tilde{a}d$, $b=d^{-1}\tilde{b}d$, $y=d^{-1}\tilde{y}d$, $z=d^{-1}\tilde{z}d$ and $H=d^{-1}\tilde{H}d$. Let $N=\langle a,b\rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(a^ib^j)=(\tilde{\eta}^k)^i(\tilde{y}^\ell)^j$. Then $((-\lambda'(k)\times\lambda(\ell))\,|\,N,\psi)_N=3$. We see that ψ^H is an irreducible character of H and $Q(\psi^H)=Q(\chi)$. Therefore we have $[A(-\lambda'(k)\times\lambda(\ell),Q(\chi))]=[A(\psi^H,Q(\chi))]$. The calculation of the invariants of $A(\psi^H,Q(\psi^H))$ is standard.

We get

PROPOSITION 5 ([21, (3.5), (2.4)]). Let $\chi = -\chi_5(k,\ell)$ $(k \in T_2, \ell \in T_1)$. Then $Q(\chi) = Q(\beta_k, \alpha_\ell)$. Put $K = Q(\chi)$ and $A = A(\chi, Q)$. Then we have the following:

- (a) If k, ℓ are even, $A \sim K$.
- (b) Suppose that k is even and ℓ is odd. Then $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: Put $n = (q-1)/(\ell, q-1)$. If n is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \geq 1$, if $[Q_r(\beta_k):Q_r]$ is odd and if v|r, then $h_v(A) \equiv 1/2 \pmod{1}$. If n = 4, if $[Q_2(\beta_k):Q_2]$ is odd and if v|2, then $h_v(A) \equiv 1/2 \pmod{1}$.
- (c) Suppose that k is odd and ℓ is even. Then $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: Put m = (q+1)/(k,q+1). If m is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \geq 1$, if $[Q_r(\alpha_\ell): Q_r]$ is

odd and if v|r, then $h_v(A) \equiv 1/2 \pmod{1}$. If m = 4, if $[Q_2(\alpha_\ell) : Q_2]$ is odd and if v|2, then $h_v(A) \equiv 1/2 \pmod{1}$.

(d) Suppose that k, ℓ are odd. Then $h_v(A) \equiv 0 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: Put m = (q+1)/(k,q+1) and $n = (q-1)/(\ell,q-1)$. If m is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \geq 1$, if $[Q_r(\alpha_\ell):Q_r]$ is odd and if v|r, then $h_v(A) \equiv 1/2 \pmod{1}$. If m=4, if $[Q_2(\alpha_\ell):Q_2]$ is odd and if v|2, then $h_v(A) \equiv 1/2 \pmod{1}$. If n is of the form $2s^d$, where s is an odd prime number of the form 4t-1 and $d \geq 1$, if $[Q_s(\beta_k):Q_s]$ is odd and if v|s, then $h_v(A) \equiv 1/2 \pmod{1}$. If n = 4, if $[Q_2(\beta_k):Q_2]$ is odd and if v|s, then $h_v(A) \equiv 1/2 \pmod{1}$.

7. The Hasse Invariants of $A(\chi_i(k), Q)$, i = 6, 7, 8, 9

In this case Przygocki has obtained the following result:

PROPOSITION 6 ([21, (3.6)]). We have $Q(-\chi_6(k)) = Q(\chi_7(k)) = Q(\beta_k)$ $(k \in T_2)$ and $Q(\chi_8(k)) = Q(\chi_9(k)) = Q(\alpha_k)$ $(k \in T_1)$. And, for $\chi = -\chi_6(k), \chi_7(k), \chi_8(k)$ and $\chi_9(k)$, $A(\chi, Q) \sim Q(\chi)$.

8. The Hasse Invariants of $A(-\xi_1(k), Q)$

Let $\chi = -\xi_1(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\beta_k)$. Let

$$\tilde{h} = \begin{pmatrix} \eta & & & 0 \\ & \eta^{-1} & & \\ & & 1 & \\ 0 & & & 1 \end{pmatrix}, \quad \tilde{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and $\tilde{H}=\langle \tilde{h},\tilde{x}\rangle$. Then \tilde{x} transforms each element c of \tilde{H} to $c^{(q)}$. Let z be an element of G such that $z^{-1}\tilde{H}z\subset G$, and let $h=z^{-1}\tilde{h}z$, $x=z^{-1}\tilde{x}z$ and $H=z^{-1}\tilde{H}z$. Let $N=\langle h\rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(h)=\tilde{\eta}^k$. Then, as Przygocki observed in [21, (3.7)], we have $(\chi|N,\psi)_N=q^2-2q+2$ (odd). We see that ψ^H is an irreducible character of H and $Q(\psi^H)=Q(\chi)$ (real). Therefore we have $[A(\chi,Q(\chi))]=[A(\psi^H,Q(\chi))]$. We see that $A(\psi^H,Q(\chi))\simeq ((-1)^k,Q(\tilde{\eta}^k)/Q(\beta_k),\tau)$, where τ is the automorphism of $Q(\tilde{\eta}^k)$ given by $(\tilde{\eta}^k)^\tau=(\tilde{\eta}^k)^{-1}$. Thus, by Proposition L, we get:

PROPOSITION 7 (cf. [21, (3.7)]). Let $\chi = -\xi_1(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\beta_k)$. Put $K = Q(\chi)$ and $A = A(\chi, Q)$. Then, if k is even, $A \sim K$. Suppose that k is odd. Then $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: Put n = (q+1)/(k,q+1). If n is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \geq 1$, and if v|r, then $h_v(A) \equiv 1/2 \pmod{1}$. If n=4, then $h_2(A) \equiv 1/2 \pmod{1}$.

9. The Hasse Invariants of $A(-\xi'_1(k), Q)$

Let $\chi = -\xi_1'(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\beta_k)$. Let H, N and ψ be as in §8. Then we have $(\chi|N,\psi)_N = q^3 - 2q^2 + 4q - 2$ if k is even (this differs from [21, p. 296]), and $= q(q^2 - 2q + 2)$ if k is odd. So $[A(\chi, Q(\chi))] = [A(\psi^H, Q(\chi))]$. Thus the same statements as in Proposition 7 holds for χ .

10. The Hasse Invariants of $A(\xi_3(k), Q)$

Let $\chi = \xi_3(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\alpha_k)$. Let

$$b = \begin{pmatrix} \gamma & & & 0 \\ & \gamma^{-1} & & \\ & & 1 & \\ 0 & & & 1 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and $H = \langle b, y \rangle$. Let $N = \langle b \rangle$ (a normal subgroup of H), and let ψ be the linear character of N defined by $\psi(b) = \tilde{\gamma}^k$. Then, as Przygocki observed in [21, p. 296], we have $(\chi|N,\psi)_N = q^2 + 2q + 4$ (odd). We see that ψ^H is an irreducible character of H and $Q(\psi^H) = Q(\chi)$ (real). Therefore we have $[A(\chi,Q(\chi))] = [A(\psi^H,Q(\chi))]$. We see that $A(\psi^H,Q(\chi)) \simeq ((-1)^k,Q(\tilde{\gamma}^k)/Q(\alpha_k),\tau)$, where τ is the automorphism of $Q(\tilde{\gamma}^k)$ given by $(\tilde{\gamma}^k)^{\tau} = (\tilde{\gamma}^k)^{-1}$. Thus, by Proposition L, we get

PROPOSITION 8 (cf. [21, (3.7)]). Let $\chi = \xi_3(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\alpha_k)$. Put $K = Q(\chi)$ and $A = A(\chi, Q)$. Then, if k is even, $A \sim K$. Suppose that k is odd. Then we have $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following cases: Put n = (q-1)/(k, q-1). If n is of the form $2r^c$, where r is an odd prime number of the form 4u-1 and $c \geq 1$, and if v|r, then $h_v(A) \equiv 1/2 \pmod{1}$. If n=4, then $h_2(A) \equiv 1/2 \pmod{1}$.

11. The Hasse Invariants of $A(\xi_3'(k), Q)$

Let $\chi = \xi_3'(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\alpha_k)$. Let H, N and ψ be as in §10. Then we have $(\chi|N,\psi)_N = q^3 + 2q^2 + 6q + 2$ if k is even, and $= q(q^2 + 2q + 4)$ if k is odd (this differs from [21, p. 296]). Thus the same statement as in Proposition 8 holds for χ .

12. The Hasse Invariants of $A(-\xi_{21}(k), Q)$

Let $\chi=-\xi_{21}(k)$ $(k\in T_2)$. Then $Q(\chi)=Q(\sqrt{sq},\beta_k)$, where $s=(-1)^{(q-1)/2}$. Let

$$\tilde{u} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \tilde{a} = \begin{pmatrix} \eta & & & 0 \\ & \eta^{-1} & & \\ & 0 & & 1 \\ & & & 1 \end{pmatrix},$$

$$\tilde{k}_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (\beta \in F_q), \qquad \tilde{t} = \begin{pmatrix} 1 & & 0 \\ & 1 & & 0 \\ & & \xi^{-1} & \\ 0 & & & \xi \end{pmatrix} \quad (\xi^2 = \nu)$$

and

$$\tilde{t}' = \begin{pmatrix} 1 & & & 0 \\ & 1 & & 0 \\ & 0 & & v^{-1} & \\ & & & v \end{pmatrix}.$$

Put $\tilde{H}=\langle \tilde{u},\tilde{a},\tilde{k}_{\beta}\ (\beta\in F_q),\tilde{t}\rangle$ if q is square (i.e. q is an even power of p), and $\tilde{H}'=\langle \tilde{u},\tilde{a},\tilde{k}_{\beta}\ (\beta\in F_q),\tilde{t}'\rangle$ if q is non-square. Then, if q is square (resp. non-square), \tilde{u} transforms each element c of \tilde{H} (resp. \tilde{H}') to $c^{(q)}$, so that there is an element z of \tilde{G} such that $z^{-1}\tilde{H}z\subset G$ (resp. $z^{-1}\tilde{H}'z\subset G$). Fixing one such element z, we put $u=z^{-1}\tilde{u}z,\ a=z^{-1}\tilde{a}z,\ k_{\beta}=z^{-1}\tilde{k}_{\beta}z\ (\beta\in F_q),\ t=z^{-1}\tilde{t}z$ (resp. $t'=z^{-1}\tilde{t}'z$) and $H=z^{-1}\tilde{H}z$ (resp. $H'=z^{-1}\tilde{H}'z$). Let $N=\langle a,k_{\beta}\ (\beta\in F_q)\rangle=\langle a\rangle\times\{k_{\beta}\ |\beta\in F_q\}$. Then N is a normal subgroup of H (resp. H'). Let ψ and ψ'

be the linear characters of N defined by $\psi(a^ik_\beta) = (\tilde{\eta}^k)^i \varepsilon(\beta)$ and $\psi'(a^ik_\beta) = (\tilde{\eta}^k)^i \varepsilon'(\beta)$ (see Lemma I). Then we have

$$(\chi|N,\psi)_N = (q^2+1)/2 \text{ (odd)}$$
 if $q \equiv 1 \pmod{4}$ and $2|k$, $(\chi|N,\psi)_N = (q^2-2q+3)/2 \text{ (odd)}$ if $q \equiv -1 \pmod{4}$ and $2|k$, $(\chi|N,\psi')_N = (q^2-2q+3)/2 \text{ (odd)}$ if $q \equiv 1 \pmod{4}$ and $2 \nmid k$, $(\chi|N,\psi')_N = (q^2+1)/2 \text{ (odd)}$ if $q \equiv -1 \pmod{4}$ and $2 \nmid k$.

12.1. Assume that q is square. Then $Q(\chi) = Q(\beta_k)$. Put $K = Q(\chi)$. Let $Z = \langle -1 \rangle$ (the centre of Z). For i = 0, 1, let ψ_i (resp. ψ_i') be the linear character of NZ defined by $\psi_i | N = \psi$ and $\psi_i (-1) = (-1)^i$ (resp. $\psi_i' | N = \psi'$ and $\psi_i' (-1) = (-1)^i$). $R_0 = \{t^i, ut^i, 0 \le i \le 2(p-1)-1\}$ (resp. $R = \{t^i, ut^i, 0 \le i \le p-2\}$) is a set of complete system of representatives for H/N (resp. H/NZ). For i = 0, 1, ψ_i^H (resp. $\psi_i'^H$) is an irreducible character of H and $\psi_i^H = \psi_0^H + \psi_1^H$ (resp. $\psi_i'^H = \psi_0'^H + \psi_1'^H$).

Suppose that k is even. Then $(\chi|H,\psi^H) = (\chi|H,\psi_0^H)_H + (\chi|H,\psi_1^H)_H = (q^2+1)/2$. Since $\chi(-1) = \chi(1)$, $\psi_0^H(-1) = \psi_0^H(1)$ and $\psi_1^H(-1) = -\psi_1^H(1)$, by Schur's lemma, we must have $(\chi|H,\psi_0^H)_H = (q^2+1)/2$ (odd) and $(\chi|H,\psi_1^H)_H = 0$. We have $Q(\psi_0^H) = K$ (real). Therefore we have $[A(\chi,K)] = [A(\psi_0^H,K)]$. Put $B = A(\psi_0^H,K)$.

Let $L=K(\psi_0)=Q(\tilde{\eta}^k,\zeta_p)$. Then $\operatorname{Gal}(L/K)=\langle\omega\rangle\times\langle\phi\rangle$, where $(\tilde{\eta}^k)^\omega=\tilde{\eta}^k$, $\zeta_p^\omega=\zeta_p^g$ $(g \bmod pZ=v^{-1}), \quad (\tilde{\eta}^k)^\phi=(\tilde{\eta}^k)^{-1}$ and $\zeta_p^\phi=\zeta_p$. Set $F=\{f\in H\mid \psi_0^f=\psi_0^{\tau(f)} \text{ for some } \tau(f)\in\operatorname{Gal}(L/K)\}$. Then we see that $t,u\in F$ and $\omega=\tau(t),$ $\phi=\tau(u)$. So F=H. Let β be the factor set of $\operatorname{Gal}(L/K)$ with respect to R. Then $B\simeq(\beta,L/K)$. We have $\beta(\phi,\phi)=\psi_0(u^2)=(-1)^k=1, \ \beta(\omega,\phi)=\beta(\phi,\omega)=\psi_0(1)=1$ and $\beta(\omega^{p-2},\omega)=\psi_0(t^{p-1})=\psi_0(u^2(-1))=(-1)^k(-1)^0=1$. Let ω' (resp. ϕ') be the restriction of ω (resp. ϕ) to $Q(\zeta_p,\beta_k)$ (resp. $Q(\tilde{\eta}^k)$). Then $(\beta,L/K)\simeq(1,L^{\langle\omega\rangle},\phi')\otimes_K(1,L^{\langle\phi\rangle},\omega')\sim K$.

Suppose that k is odd. Then we have $(\chi|H,\psi_1'^H)_H=(q^2-2q+3)/2$ (odd) and $Q(\psi_1'^H)=K$, so $[A(\chi,K)]=[A(\psi_1'^H,K)]$. Put $B'=A(\psi_1'^H,K)$. Then we see that $B'\simeq B_1\otimes_K B_2$, where $B_1=(-1,L^{\langle\omega\rangle},\phi')$ and $B_2=(1,L^{\langle\phi\rangle},\omega')$ (cf. $K(\psi_1')=L)$. So $B_2\sim K$, and $B'\sim (-1,Q(\tilde{\eta}^k)/Q(\beta_k),\phi')$. By Proposition L, we have $h_v(B')\equiv 1/2\pmod{1}$ for any infinite place v of K. Put n=(q+1)/(k,q+1). Then, since q is square, ord₂ n=1, so that the case n=4 cannot happen. Moreover, since q is square, for any odd prime divisor r of n, the congruence relation $x^2\equiv -1\pmod{r}$ has an integral solution (e.g.

 $q \equiv -1 \pmod{r}$), so that the Legendre symbol (-1/r) = 1, hence $r \equiv 1 \pmod{4}$. Therefore, by Proposition L, we see that $h_v(B') \equiv 0 \pmod{1}$ for any finite place v of K.

12.2. Assume that q is an odd power of $p \equiv 1 \pmod{4}$. Then $Q(\chi) = Q(\sqrt{p}, \beta_k)$. Put $K = Q(\chi)$.

Let ψ_i, ψ_i' (i=0,1) be as in 12.1. Then we have the irreducible decompositions $\psi^{H'}=\psi_0^{H'}+\psi_1^{H'},\ \psi'^{H'}=\psi_0'^{H'}+\psi_1'^{H'}$ and $Q(\psi_i^{H'})=Q(\psi_i'^{H'})=K$.

Suppose that k is even. Then, since $\chi(-1)=\chi(1)$, we must have $(\chi|H',\psi_0^{H'})_{H'}=(q^2+1)/2$ (odd), so $[A(\chi,K)]=[A(\psi_0^{H'},K)]$. Let $L=K(\psi_0)=Q(\tilde{\eta}^k,\zeta_p)$. Then we have $\mathrm{Gal}(L/K)=\langle v\rangle\times\langle \phi\rangle$, where $(\tilde{\eta}^k)^v=\tilde{\eta}^k,\ \zeta_p^v=\zeta_p^{g^2},\ (\tilde{\eta}^k)^\phi=(\tilde{\eta}^k)^{-1}$ and $\zeta_p^\phi=\zeta_p$. We see that $F=\{f\in H'\,|\,\psi_0^f=\psi_0^{\tau(f)}\ \text{for some}\ \tau(f)\in\mathrm{Gal}(L/K)\}=H',$ and $v=\tau(t')$ and $\phi=\tau(u)$. Let v' be the restriction of v to $Q(\beta_k,\zeta_p)$ and let ϕ' be the restriction of ϕ to $Q(\tilde{\eta}^k,\sqrt{p})$. Then we see that $B\sim(1,L^{\langle v\rangle},\phi')\otimes_K(1,L^{\langle \phi\rangle},v')\sim K$.

Suppose that k is odd. Then, since $\chi(-1) = -\chi(1)$, we must have $(\chi|H',\psi_1'^{H'})_{H'} = (q^2 - 2q + 3)/2$ (odd), so $[A(\chi,K)] = [A(\psi_1'^{H'},K)]$. Let L,v, ϕ,v',ϕ' be as above. Then we see that $B' = A(\psi_1'^{H'},K) = (-1,L^{\langle v\rangle},\phi') \otimes_K (1,L^{\langle \phi\rangle},v') \sim (-1,L^{\langle v\rangle},\phi') \sim (-1,Q(\tilde{\eta}^k)/Q(\beta_k),\phi'') \otimes_{Q(\beta_k)} K$, where ϕ'' is the restriction of ϕ' to $Q(\tilde{\eta}^k)$. The invariants of $(-1,Q(\tilde{\eta}^k),\phi'')$ can be determined by using Proposition L.

Put n=(q+1)/(k,q+1). We note that, since (p-1,n)=2 and $p\equiv 1\pmod 4$, the case n=4 cannot happen. If v is any infinite place of K and V' is the place of $Q(\beta_k)$ that lies below v, then $K_v=Q(\beta_k)_{v'}\simeq R$, so we have $h_v(B')\equiv 1/2\pmod 1$. Suppose that n is of the form $2r^m$, where r is an odd prime number of the form 4s-1 and $m\geq 1$, let w be a place of K that lies above r and let v be the place of $Q(\beta_k)$ that lies below w. Put $f=[K_w:Q(\beta_k)_v]$. Then we have $h_w(B')\equiv f\times 1/2\pmod 1$. We show that f=2, which would imply that $h_w(B')\equiv 0\pmod 1$.

In fact, since $K_w = Q_r(\beta_k, \sqrt{p}) = Q_r(\beta_k)(\sqrt{p})$ and $Q(\beta_k)_v = Q_r(\beta_k)$, $f = [Q_r(\beta_k)(\sqrt{p}):Q_r(\beta_k)] \le 2$. Suppose that f = 1. Then \sqrt{p} must belong to $Q_r(\beta_k) = Q_r(\zeta_{r^m} + \zeta_{r^m}^{-1})$ ($\subset Q_r(\zeta_{r^m})$). Since $Q_r(\zeta_p)/Q_r$ is unramified and $Q_r(\zeta_{r^m})/Q_r$ is totally ramified, we have $Q_r(\zeta_p) \cap Q_r(\zeta_{r^m}) = Q_r$. So, since $\sqrt{p} \in Q(\zeta_p) \cap Q_r(\zeta_{r^m})$, \sqrt{p} belongs to Q_r , hence $\sqrt{p} \in Z_r$, where Z_r is the integer ring of Q_r . Since $Z_r/rZ_r = Z/rZ$, this implies that there must be a rational integer x, coprime to r, such that $x^2 \equiv p \pmod{r}$. Then $p^{(r-1)/2} \equiv (x^2)^{(r-1)/2} = x^{r-1} \equiv 1 \pmod{r}$, so that the order e of $p \mod rZ$ in $F_r^\times = (Z/rZ)^\times$ divides (r-1)/2. Since r = 4s - 1, (r-1)/2 = 2s - 1, odd, so e must be odd. Put $q = p^d$ with d an odd positive

integer. Then, since r is a divisor of $q+1=p^d+1$, we have $p^{2d}\equiv 1\pmod r$. Then, since e is equal to the smallest positive integer h such that $p^h\equiv 1\pmod r$, e must divide 2d, hence, since e is odd, e must divide d. Hence $p^d\equiv 1\pmod r$. Hence r divides (q+1,q-1)=2, a contradiction, since r is odd. Therefore we must have f=2.

12.3. Assume that q is an odd power of $p \equiv -1 \pmod{4}$. Then $K = Q(\chi) = Q(\sqrt{-p}, \beta_k)$. We show that $A(\chi, K) \sim K$.

Suppose that k is even. Then, since $\chi(-1) = -\chi(1)$, we must have $(\chi|H',\psi_1^{H'})_{H'} = (q^2 - 2q + 3)/2$ (odd), and $Q(\psi_1^{H'}) = K$. Put $B = A(\psi_1^{H'},K)$. Let $L = K(\psi_1) = Q(\tilde{\eta}^k,\zeta_p)$. Then $Gal(L/K) = \langle v \rangle \times \langle \phi \rangle$, where $(\tilde{\eta}^k)^v = \tilde{\eta}^k,\zeta_p^v = \zeta_p^{g^2}$, $(\tilde{\eta}^k)^\phi = (\tilde{\eta}^k)^{-1}$ and $\zeta_p^\phi = \zeta_p$. We have $F = \{f \in H' \mid \psi_1^f = \psi_1^{\tau(f)} \text{ for some } \tau(f) \in Gal(L/K)\} = H'$ and $v = \tau(t')$ and $\phi = \tau(u)$. We see that $B \simeq (1, L^{\langle v \rangle}, \phi') \otimes_K (-1, L^{\langle \phi \rangle}, v') \sim (-1, L^{\langle \phi \rangle}, v') \sim (-1, Q(\zeta_p)/Q(\sqrt{-p}), v'') \otimes_{Q(\sqrt{-p})} K$. Here ϕ' (resp. v') is the restriction of ϕ (resp. v) to $Q(\tilde{\eta}^k, \sqrt{-p})$ (resp. $Q(\beta_k, \zeta_p)$), and v'' is the restriction of v' to $Q(\zeta_p)$. But, by Proposition M, (iii), we see that $(-1, Q(\zeta_p)/Q(\sqrt{-p}), v'') \sim Q(\sqrt{-p})$. Thus $m_K(\psi_1^{H'}) = 1$. By Theorem K, we have $m_K(\chi) \leq 2$. Therefore, since $(\chi|H',\psi_1^{H'})_{H'}$ is odd, by Corollary B, we conclude that $A(\chi, k) \sim B \sim K$.

Finally, suppose that k is odd. Then, since $\chi(-1) = \chi(1)$, we must have $(\chi|H',\psi_0'^{H'})_{H'}=(q^2+1)/2$ (odd), and $Q(\psi_0'^{H'})=K$. Put $B'=A(\psi_0'^{H'},K)$. Then we see that $B' \simeq B'_1 \otimes_K B'_2$, where $B'_1 = (-1, L^{\langle v \rangle}, \phi')$ and $B'_2 = (-1, L^{\langle \phi \rangle}, v')$. Here the notation is the same as that in the case when k is even. By Proposition M, (iii), we see that $B_2' \sim (-1, Q(\zeta_p)/Q(\sqrt{-p}), v'') \otimes_{Q(\sqrt{-p})} K \sim K$. So $B' \sim B_1' \sim$ $D \otimes_{O(\beta_k)} K$, where $D = (-1, Q(\tilde{\eta}^k)/Q(\beta_k), \phi'')$ (ϕ'' is the restriction of ϕ' to $Q(\tilde{\eta}^k)$). The invariants of D can be determined by Proposition D. If w is an infinite place of K, then $K_w \simeq C$, so $h_w(B') \equiv 0 \pmod{1}$. Put n = (q+1)/q(k, q + 1). Then, since $\operatorname{ord}_2(q + 1) = \operatorname{ord}_2(p + 1) \ge 2$ and k is odd, $\operatorname{ord}_2(p + 1) \ge 2$, so that, for a finite place v of $Q(\beta_k)$, we have $h_v(D) \equiv 1/2 \pmod{1}$ only when n=4and v = 2. Suppose therefore that is the case, and let w be any place of K that lies above 2. Put $f = [K_w : Q_2] = [Q_2(\sqrt{-p}) : Q_2]$. Since 4 = n = (q+1)/(k, q+1)and k is odd, $\operatorname{ord}_2(q+1) = \operatorname{ord}_2(p+1) = 2$, so $-p \not\equiv 1 \pmod{8}$. This implies that -p is not a square in Q_2 . Therefore f=2, and $h_w(B_1)\equiv 2\times 1/2\equiv 0$ (mod 1). Thus $B' \sim B'_1 \sim K$ and $m_K(\psi_0^{\prime H'}) = 1$. Since $m_K(\chi) \leq 2$, we see that $A(\chi,K) \sim A(\psi_0^{\prime H^{\prime}},K) \sim K.$

By summarizing the results obtained above, we get:

Proposition 9 (cf. [21, (3.8)]). Let $\chi = -\xi_{21}(k)$ $(k \in T_2)$. Then $K = Q(\chi) =$

 $Q(\sqrt{sq}, \beta_k)$, where $s = (-1)^{(q-1)/2}$. Put $A = A(\chi, Q)$. Then, if k is even, $A \sim K$. Suppose that k is odd. Then: (a) If $q \equiv 1 \pmod{4}$, we have $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. (b) If $q \equiv -1 \pmod{4}$, then $A \sim K$.

13. The Hasse Invariants of $A(-\xi_{22}(k), Q)$

Let $\chi = -\xi_{22}(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\sqrt{sq}, \beta_k)$, where $s = (-1)^{(q-1)/2}$. If q is non-square, then χ is the conjugate of $-\xi_{21}(k)$ under the automorphism $\sqrt{sq} \to -\sqrt{sq}$ of $Q(\chi)$ over $Q(\beta_k)$. Assume that q is square. Let H, N, ψ and ψ' be as in §12. Then we have $(\chi|N,\psi')_N = (q^2+1)/2$ (odd) if k is even, and $(\chi|N,\psi)_N = (q^2-2q+3)/2$ (odd) if k is odd. Therefore the rationality of χ is the same as that of $-\xi_{21}(k)$. Thus the same statement as in Proposition 9 holds for χ .

14. The Hasse Invariants of $A(\xi'_{21}(k), Q)$

Let $\chi = \xi'_{21}(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\sqrt{sq}, \beta_k)$, where $s = (-1)^{(q-1)/2}$. Let H, H', N, ψ and ψ' be as in §12. Then we have:

$$(\chi|N,\psi)_N = \begin{cases} (q^2 - 4q + 5)/2 \text{ (odd)} & \text{if } q \equiv 1 \pmod{4} \text{ and } 2|k, \\ (q^2 - 2q + 3)/2 \text{ (odd)} & \text{if } q \equiv -1 \pmod{4} \text{ and } 2|k, \end{cases}$$

$$(\chi|N,\psi')_N = \begin{cases} (q^2 - 2q + 3)/2 \text{ (odd)} & \text{if } q \equiv 1 \pmod{4} \text{ and } 2 \not k, \\ (q^2 - 4q + 5)/2 \text{ (odd)} & \text{if } q \equiv -1 \pmod{4} \text{ and } 2 \not k. \end{cases}$$

Thus, by arguments similar to those in §12, we get:

PROPOSITION 10 (cf. [21, (3.9)]). Let $\chi = \xi'_{21}(k)$ $(k \in T_2)$. Then $K = Q(\chi) = Q(\sqrt{sq}, \beta_k)$, where $s = (-1)^{(q-1)/2}$. Put $A = A(\chi, Q)$. Then: (a) Assume that $q \equiv 1 \pmod{4}$. Then, if k is even, $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. If k is odd, then $A \sim K$. (b) If $q \equiv -1 \pmod{4}$, then $A \sim K$.

15. The Hasse Invariants of $A(\xi'_{22}(k), Q)$

Let $\chi = \xi'_{22}(k)$ $(k \in T_2)$. Then $Q(\chi) = Q(\sqrt{sq}, \beta_k)$, where $s = (-1)^{(q-1)/2}$. If q is non-square, then χ is a conjugate of $\xi'_{21}(k)$. Assume that q is square, and let H, N, ψ and ψ' be as in §12. Then we have $(\chi|N, \psi)_N = (q^2 - 2q + 3)/2$ (odd) if k is odd and $(\chi|N, \psi')_N = (q^2 - 4q + 5)/2$ (odd) if k is even. Therefore the rationality of χ is the same as that of $\xi'_{21}(k)$. Thus the same statement as in Proposition 10 holds for χ .

16. The Hasse Invariants of $A(\xi_{41}(k), Q)$

Let $\chi=\xi_{41}(k)$ $(k\in T_1)$. Then $K=Q(\chi)=Q(\sqrt{sq},\alpha_k)$, where $s=(-1)^{(q-1)/2}$. Let

$$a = \begin{pmatrix} \gamma & & & & \\ & \gamma^{-1} & & & \\ & & & 1 & \\ 0 & & & 1 \end{pmatrix}, \quad h_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \beta \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad (\beta \in F_q),$$

$$u = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and let $N = \langle a, h_{\beta} \ (\beta \in F_q) \rangle = \langle a \rangle \times \{h_{\beta} \ | \beta \in F_q\}$. Let ψ and ψ' be the linear characters of N defined by $\psi(a^i h_{\beta}) = (\tilde{\gamma}^k)^i \varepsilon(\beta)$ and $\psi'(a^i h_{\beta}) = (\tilde{\gamma}^k)^i \varepsilon'(\beta)$ respectively. Then we have:

In the case where q is square we set $H = \langle t, u, N \rangle$, where $t = \text{diag}(1, 1, \xi^{-1}, \xi)$ with $\xi^2 = v$, and in the case where q is non-square we set $H' = \langle t', u, N \rangle$, where $t' = \text{diag}(1, 1, v^{-1}, v)$. Then the arguments go similarly as in §12. We get:

PROPOSITION 11 (cf. [21, (3.10)]). Let $\chi = \xi_{41}(k)$ $(k \in T_1)$. Then $K = Q(\chi) = Q(\sqrt{sq}, \alpha_k)$, where $s = (-1)^{(q-1)/2}$. Let $A = A(\chi, Q)$. Then: (a) Assume that $q \equiv 1 \pmod{4}$. Then, if k is even, $A \sim K$. If k is odd, we have $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place of K, and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. (b) If $q \equiv -1 \pmod{4}$, then $A \sim K$.

17. The Hasse Invariants of $A(\xi_{42}, Q)$

Let $\chi = \xi_{42}(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\sqrt{sq}, \alpha_k)$, where $s = (-1)^{(q-1)/2}$. If q is non-square, then χ is a conjugate of $\xi_{41}(k)$. Assume that q is square, and let H, N, ψ and ψ' be as in §16. Then we have $(\chi | H, \psi)_N = (q^2 + 4q + 9)/2$ (odd) if

k is odd, and $(\chi|N,\psi')_N=(q^2+2q+3)/2$ (odd) if k is even. Therefore the rationality of χ is the same as that of $\xi_{41}(k)$. Thus the same statement as in Proposition 11 holds for χ .

18. The Hasse Invariants of $A(-\xi'_{41}(k), Q)$

Let $\chi = -\xi'_{41}(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\sqrt{sq}, \alpha_k)$, where $s = (-1)^{(q-1)/2}$. Let N, ψ, ψ', H, H' be as in §16. Then we have:

Thus, by a rather long consideration as in §12, we get:

PROPOSITION 12 (cf. [21, (3.11)]). Let $\chi = -\xi'_{41}(k)$ $(k \in T_1)$. Then $K = Q(\chi) = Q(\sqrt{sq}, \alpha_k)$, where $s = (-1)^{(q-1)/2}$. Let $A = A(\chi, Q)$. Then we have the following: (a) Assume that q is square. Then, if k is even, we have $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and if v is a finite place of K, we have $h_v(A) \equiv 0 \pmod{1}$ except in the following case. Put n = (q-1)/(k,q-1) and let $q = p^{2^t u}$ with (2,u) = 1. Then, if $n \mid p^u - 1$ or $n \mid p^u + 1$ and if $v \mid p$, we have $h_v(A) \equiv 1/2 \pmod{1}$. If k is odd, then $A \sim K$. (b) Assume that q is an odd power of $p \equiv 1 \pmod{4}$. Then, if k is even, we have $h_v(A) \equiv 1/2 \pmod{1}$ for any infinite place v of K, and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. If k is odd, then $A \sim K$. (c) If q is an odd power of $p \equiv -1 \pmod{4}$, then $A \sim K$.

19. The Hasse Invariants of $A(-\xi'_{42}(k), Q)$

Let $\chi = -\xi'_{42}(k)$ $(k \in T_1)$. Then $Q(\chi) = Q(\sqrt{sq}, \alpha_k)$, where $s = (-1)^{(q-1)/2}$. If q is non-square, then χ is a conjugate of $-\xi'_{41}(k)$. If q is square and if N, ψ and ψ' are as in §16, then we have $(\chi|N,\psi)_N = (q^2+1)/2$ (odd) if k is odd, and $(\chi|N,\psi')_N = (q^2+2q+7)/2$ (odd) if k is even. Therefore the rationality of χ is the same as that of $-\xi'_{42}(k)$. Thus the same statement as in Proposition 12 holds for χ .

20. The Hasse Invariants of $A(\Phi_i, Q)$ $(1 \le i \le 8)$

We have
$$Q(\Phi_i) = Q(\sqrt{sq}), 1 \le i \le 8$$
, where $s = (-1)^{(q-1)/2}$. Let

$$h_{eta} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & eta \ 0 & 0 & 0 & 1 \end{pmatrix} \quad (eta \in F_q),$$

and let $N = \{h_{\beta} \mid \beta \in F_q\}$. Let ψ and ψ' be respectively the linear characters of N defined by $\psi(h_{\beta}) = \varepsilon(\beta)$ and $\psi'(h_{\beta}) = \varepsilon'(\beta)$. Then we have the following:

$$(-\Phi_1|N,\psi)_N = \begin{cases} q(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\Phi_2|N,\psi')_N = \begin{cases} q(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\Phi_3|N,\psi)_N = \begin{cases} q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q(q-1)^2/2 & \text{(even)} & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\Phi_3|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv -1 \pmod{4},$$

$$(-\Phi_4|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(-\Phi_4|N,\psi)_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(-\Phi_4|N,\psi)_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_5|N,\psi)_N = \begin{cases} q(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\Phi_6|N,\psi')_N = \begin{cases} q(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\Phi_7|N,\psi)_N = \begin{cases} q(q+1)/2 & \text{(even)} & \text{if } q \equiv 1 \pmod{4}, \\ q(q^2+1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\Phi_7|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_8|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_8|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_8|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_8|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

$$(\Phi_8|N,\psi')_N = q(q^2+1)/2 & \text{if } q \equiv 1 \pmod{4},$$

Put $K = Q(\sqrt{sq})$.

Let $\chi=-\Phi_1$. Assume that q is square. Then K=Q. Let $t=\mathrm{diag}(\xi^{-1},\xi,\xi^{-1},\xi)$ with $\xi^2=v$, and let $H=\langle N,t\rangle$. For i=0,1, let ψ_i be the extension of ψ to NZ such that $\psi_i(-1)=(-1)^i$. Then we have the irreducible decomposition $\psi^H=\psi_0^H+\psi_1^H$ and $Q(\psi_i^H)=Q$ (i=0,1). Since $\chi(-1)=-\chi(1)$, we must have $(\chi|H,\psi_1^H)_H=q(q+1)/2$, odd, so we have $[A(\chi,Q)]=[A(\psi_1^H,Q)]$. We see

that $A(\psi_1^H,Q) \simeq (\psi_1(t^{p-1}),Q(\zeta_p),\tau) = (-1,Q(\zeta_p),\tau)$, where $\zeta_p^\tau = \zeta_p^g$ $(g \bmod pZ = v^{-1})$. Thus the invariants of $A(\psi_1^H,Q)$ can be determined by using Proposition M, (i).

Assume that q is an odd power of $p \equiv 1 \pmod{4}$. Then $K = Q(\sqrt{p})$. Let $t' = \operatorname{diag}(v^{-1}, v, v^{-1}, v)$, and let $H' = \langle N, t' \rangle$. We have the irreducible decomposition $\psi^{H'} = \psi_0^{H'} + \psi_1^{H'}$ and $Q(\psi_i^{H'}) = K$ (i = 0, 1). Since $\chi(-1) = -\chi(1)$, we must have $(\chi|H', \psi_1^{H'})_{H'} = q(q+1)/2$, odd, so $[A(\chi, K)] = [A(\psi_1^{H'}, K)]$. We see that $[A(\psi_1^{H'}, K)] \simeq (-1, Q(\zeta_p), \tau^2)$, so the invariants of $A(\psi_1^{H'}, K)$ can be determined by using Proposition M, (ii).

Assume that q is an odd power of $p \equiv -1 \pmod{4}$. Then $A(\chi, K) \sim A(\psi_0^{H'}, K) \simeq (1, Q(\zeta_p), \tau^2) \sim K$, since $m_K(\chi) \leq 2$.

The characters Φ_i , $2 \le i \le 8$, can be treated similarly. Thus we get

PROPOSITION 13 (cf. [21, (3.12), (3.14), (3.15)]). Let $\chi = -\Phi_1, -\Phi_2, -\Phi_3$ or $-\Phi_4$. Then $K = Q(\chi) = Q(\sqrt{sq})$, where $s = (-1)^{(q-1)/2}$. Put $A = A(\chi, K)$. Then, if q is square, we have $h_{\infty}(A) \equiv h_p(A) \equiv 1/2 \pmod{1}$ and $h_r(A) \equiv 0 \pmod{1}$ for each finite place $r \neq p$ of K = Q. If q is an odd power of $p \equiv 1 \pmod{4}$, then $h_v(A) \equiv 1/2 \pmod{1}$ for each real place v of $K = Q(\sqrt{p})$ and $h_v(A) \equiv 0 \pmod{1}$ for any finite place v of K. If q is an odd power of $p \equiv -1 \pmod{4}$, then $A \sim K = Q(\sqrt{-p})$.

For
$$5 \le i \le 8$$
, $Q(\Phi_i) = Q(\sqrt{sq})$, where $s = (-1)^{(q-1)/2}$, and $A(\Phi_i, Q) \sim Q(\Phi_i)$.

Przygocki has observed

Proposition 14 ([21, (3.16)]). $A(\Phi_9, Q) \sim Q$.

21. The Hasse Invariants of $A(\theta_i, Q)$ $(1 \le i \le 8)$

We have $Q(\theta_i) = Q(\sqrt{sq})$ $(1 \le i \le 8)$, where $s = (-1)^{(q-1)/2}$. Let N, ψ and ψ' be as in §20. Then we have the following:

$$(\theta_1|N,\psi)_N = \begin{cases} q^2(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q^2(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\theta_2|N,\psi')_N = \begin{cases} q^2(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q^2(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\theta_3|N,\psi)_N = \begin{cases} q & \text{if } q \equiv 1 \pmod{4}, \\ 0 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\theta_3|N,\psi')_N = q & \text{if } q \equiv -1 \pmod{4},$$

$$(\theta_3|N,\psi')_N = q & \text{if } q \equiv -1 \pmod{4},$$

$$(\theta_4|N,\psi')_N = \begin{cases} q & \text{if } q \equiv 1 \pmod{4}, \\ 0 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(\theta_4|N,\psi)_N = q & \text{if } q \equiv -1 \pmod{4},$$

$$(-\theta_5|N,\psi)_N = \begin{cases} q^2(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q^2(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\theta_6|N,\psi')_N = \begin{cases} q^2(q+1)/2 & \text{if } q \equiv 1 \pmod{4}, \\ q^2(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\theta_6|N,\psi')_N = \begin{cases} q & \text{if } q \equiv 1 \pmod{4}, \\ q^2(q-1)/2 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\theta_7|N,\psi)_N = \begin{cases} q & \text{if } q \equiv 1 \pmod{4}, \\ 0 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\theta_8|N,\psi')_N = \begin{cases} q & \text{if } q \equiv 1 \pmod{4}, \\ 0 & \text{if } q \equiv -1 \pmod{4}, \end{cases}$$

$$(-\theta_8|N,\psi')_N = q & \text{if } q \equiv 1 \pmod{4},$$

$$(-\theta_8|N,\psi)_N = q & \text{if } q \equiv -1 \pmod{4},$$

$$(-\theta_8|N,\psi)_N = q & \text{if } q \equiv -1 \pmod{4}.$$

Thus, by the arguments similar to those in §20, we get:

PROPOSITION 15 (cf. [21, (3.17), (3.18), (3.19), (3.20)]). Suppose that $\chi = \theta_1, \theta_2, \theta_3$ or θ_4 . Then $Q(\chi) = Q(\sqrt{sq})$, where $s = (-1)^{(q-1)/2}$, and $A(\chi, Q) \sim Q(\chi)$. Suppose that $\chi = -\theta_5, -\theta_6, -\theta_7$ or $-\theta_8$. Then $K = Q(\chi) = Q(\sqrt{sq})$. Put $A = A(\chi, Q)$. Then, if q is square, we have $h_{\infty}(A) \equiv h_p(A) \equiv 1/2 \pmod{1}$ and $h_r(A) \equiv 0 \pmod{1}$ for each finite place $r \neq p$ of K = Q. If q is an odd power of $p \equiv 1 \pmod{4}$, then $h_v(A) \equiv 1/2 \pmod{1}$ for each real place v of $K = Q(\sqrt{p})$ and $h_v(A) \equiv 0 \pmod{1}$ for each finite place v of K. If q is an odd power of $p \equiv -1 \pmod{4}$, then $A \sim K = Q(\sqrt{-p})$.

22. The Hasse Invariants of $A(\theta_i, Q)$ $(9 \le i \le 13)$

Proposition 16 (cf. [21, (3.21), (3.23)]). For $9 \le i \le 13$, $A(\theta_i, Q) \sim Q$.

REMARK. The characters above are the unipotent characters of G, so Proposition 16 is well known (Benson and Curtis [2], Lusztig [10, (7.6)]).

References

- [1] Barry, M. J. J., Schur indices and ${}^{3}D_{4}(q^{3})$, q odd, J. Algebra 117 (1988), 522-524.
- [2] Benson, C. T., and Curtis, C. W., On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251-273.

- [3] Enomoto, H., The characters of the finite symplectic group Sp(4,q), $q=2^f$, Osaka J. Math. 9 (1972), 74–94.
- [4] Enomoto, H., and Ohmori, Z., The Schur indices of the irreducible characters of $G_2(2^n)$, Proceed. Japan Acad. **69** (1993), Ser. A., No. 9, 350–352.
- [5] Geck, M., The Schur indices of the cuspidal unipotent characters of the finite Chevalley groups $E_7(q)$, arXiv: math. RT/0306268 v1 18 Jun 2003.
- [6] Gow, R., Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
- [7] Gow, R., On the Schur indices of characters of finite classical groups, J. London Math. Soc. 24 (1981), 135-147.
- [8] Gow, R., Real representations of finite orthogonal and symplectic groups of odd characteristics, J. Algebra 96 (1985), 249–274.
- [9] Janusz, G. J., Simple components of Q[SL(2,q)], Commun. Algebra 1 (1974), 1-20.
- [10] Lusztig, G., Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976), 101-159.
- [11] Lusztig, G., A unipotent support for irreducible representations, Advances in Math. 94 (1992), 139–179.
- [12] Lusztig, G., Rationality properties of unipotent representations, J. Algebra 258 (2002), 1-22.
- [13] Ohmori, Z., On the Schur indices of GL(n,q) and SL(2n+1,q), J. Math. Soc. Japan 29 (1977), 693-707.
- [14] Ohmori, Z., On the Schur indices of reductive groups II, Quart. J. Math. Oxford (2), 32 (1981), 443-452.
- [15] Ohmori, Z., On the Schur indices of certain irreducible characters of reductive groups over finite fields, Osaka J. Math. 25 (1988), 149-159.
- [16] Ohmori, Z., Schur indices of the irreducible characters of some finite Chevalley groups of rank 2, I, Tokyo J. Math. 8 (1985), 133-150.
- [17] Ohmori, Z., On a Zelevinsky theorem and the Schur indices of the finite unitary groups, J. Math. Sci. Univ. Tokyo 4 (1997), 417-433.
- [18] Ohmori, J., On the Schur indices of characters of finite reductive groups in bad characteristic cases, Osaka J. Math. 40 (2003), 1011-1019.
- [19] Ohmori, J., On Feit's definition of the Schur index, To appear in Hokkaido Mathematical J.
- [20] Ohmori, J., Rationality of the cuspidal unipotent representations of $E_7(q)$ in a crystalline cohomology group, Preprint.
- [21] Przygocki, A., Schur indices of symplectic groups, Commun. Algebra 10 (1982), 279-310.
- [22] Srinivasan, B., The characters of the finite symplectic group Sp(4,q), Trans. Amer. Math. Soc. 131 (1968), 488-525.
- [23] Turull, A., The Schur indices of the irreducible characters of the special linear groups, J. Algebra 235 (2001), 275-314.
- [24] Weil, A., Basic Number Theory, 2nd ed., Springer-Verlag, 1973.
- [25] Yamada, H., The characters of $Sp_4(q)$, q odd, Preprint.
- [26] Yamada, T., The Schur subgroup of 2-adic field, J. Math. Soc. Japan 26 (1974), 168-179.
- [27] Yamada, T., The Schur subgroup of the Brauer group, Lecture Notes in Mathematics 397, Springer-Verlag, 1974.
- [28] Zelevinsky, A. V., Representations of finite classical groups—a Hopf algebra approach, Lecture Notes in Math. 869, Springer-Verlag, 1981.

Department of Mathematics Hokkaido University of Education Iwamizawa Campus Iwamizwa 068-8642, Hokkaido, Japan