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1. Introduction

The legendary problem of Josephus and the forty Jews and the problem of
fifteen Christians and fifteen Tarks, and also some variants thereof, are widely
well known (cf. [1], [6], [10], [11], [14]) and have been discussed and generalized
mathematically by several authors (cf. e.g. [2], [3], [4], [5], [8]).

These problems, in a rather general form, may well be formulated thus: Let $n$

and $m$ be given positive integers; we arrange $n$ distinct points, named 1,2, . . . , $n$ ,
in a circle in the natural order (the points adjacent to 1 being 2 and $n$ if $n>2$)
and delete, starting from the point 1, every mth point in tum until all the points
are removed. The problem is to determine the kth point $a_{m}(k, n)$ (sometimes
called the kth Josephus number) to be deleted when $n,$ $m$ and $k(1\leqq k\leqq n)$ are
assigned. It is plain that

$1\leqq a_{m}(k, n)\leqq n$

and

$a_{m}(1,n)\equiv m$ $(mod n)$ .

Consequently, if the validity is assumed of the congmence

(1) $a_{m}(k+1,n+1)\equiv m+a_{m}(k, n)(mod n+1)$ $(1 \leqq k\leqq n)$ ,

then one can recursively determine all the numbers $a_{m}(k, n)$ .
A simple proof of the congmence relation (1) which is due substantially to

P. G. Tait [13], was given by R. A. Rankin [8] (see also [4]); however, it should
be noted that the basic congmence (1) was practically known to Seki Takakazu
$(1642?-1708)$ in [12] and to Leonhard Euler (1707-1783) in [3] as well. On the
basis of (1) Rankin [8] has established an algorithm for determining the last
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Josephus number $d_{m}(n)=a_{m}(n, n)$ for $n>m\geqq 2$ and obtained in the special case
of $m=2$ an explicit formula for $d_{m}(n)$ , namely

(2) $d_{2}(n)=2n+1-2^{l+1}$ for $2^{j}\leqq n<2^{i+1}$ .

Rankin [8] also gives in the case of $m=3$ a second algorithm which he called
a short form is in general not quite correct, and a few of the counterexamples
found are: $n=12,13,18,19,20,27,28,29,30,31,32,45,46,47,48,49$ , and 50. It
should be noticed here that A. M. Odlyzko and H. S. Wilf [7] have also treated
the special case of $k=n$ and given a compact formula for $m=3$ (cf. \S 5 below)
as well as the simple result (2) for $m=2$ . It might be noted further that general
solutions $a_{m}(k, n)(1\leqq k\leqq n)$ for the Josephus problem in the extended form
had already been found by H. Schubert [11] and by E. Busche [2]; their solu-
tions which coincide with each other for $k=n$ , may be described in terms of
certain sequences of integers that are defined recursively by a recurrence rela-
tion (see \S 3 below). Another recursive solution was given by F. $Jak6bczyk[5]$ to
the generalized Josephus problem, together with a solution to the problem con-
verse to the original, that is, the problem to decide the number $k(1\leqq k\leqq n)$

such that $a_{m}(k, n)=l$ when $l(1\leqq l\leqq n)$ is specified in advance; we note that
a simpler solution to this converse problem had also been provided by Busche
[2] substantially on the basis of the congmence relation (1). Some other types
of (modified) converse problems are discussed in W. W. Rouse Ball and H. S.
M. Coxeter [10] and in W. J. Robinson [9]. Furthermore, still another solution
based again upon the relation (1) to the extended Josephus problem has been
fumished by L. Halbeisen and N. Hungerb\"uhler [4] and, according to their claim,
the result obtained by them is not a recursive one; however, in their solution,
which depends partly on an unproved hypothesis, the Josephus numbers $a_{m}(k, n)$

involve a cmcial constant $\alpha$ that depends on $m,$ $n$ and $k$ and is defined, when
$m>2$ , by an infinite series the coefficients of whose terms are to be determined
obviously recursively.

Our principal aim in this article is twofold. Firstly, we shall provide an
altemative proof for the classical results due to Schubert and to Busche men-
tioned above (\S 3); our proof is, we believe, simpler and more transparent than
the original (cf. [2]). Secondly, without any unproven hypothesis, we describe in
a somewhat modified form a new algorithm of Halbeisen and Hungerb\"uhler’s
[4] to decide the Josephus numbers $a_{m}(k, n)(1\leqq k\leqq n)$ , by reducing it to its
apparently primitive order that has been found independently by the present
writer (\S 4); we note that the underlying ideas in here go back to the idea due
in substance to L. Euler [3] who had a clear conception of its importance.
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In an appendix (\S 7, the final section) will be briefly reviewed the concem of
Seki Takakazu’s with the generalized Josephus problem.
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2. Preliminaries

For the sake of completeness we here reproduce a proof of Tait’s con-
gruence relation (1), as given by Rankin [8]. Let $m$ be a fixed positive integer and
$n$ an arbitrary positive integer. Let there be given at first $n$ points, 1,2, . . . , $n$ , in
a circle, so that the neighbor of the points 2 and $n$ is the point 1, if $n>2$ . We
now place another point $n+1$ between $n$ and 1, and we begin anew numbering
the points with the point $b+1$ , where $b$ is determined so as to satisfy

$b\equiv-m(mod n+1)$ , $0\leqq b<n+1$ .

Let $b(k, n+1)$ be the kth point to be removed in this novel situation. We find

$b(1,n+1)=n+1$ , $b(k+1, n+1)=a_{m}(k, n)$ $(1 \leqq k\leqq n)$ ,

and it is easy to see that

$b(k+1, n+1)-b\equiv a_{m}(k+1, n+1)$ $(mod n+1)$ ,

and the relation (1) foHows at once.
It will sometimes be convenient to define $a_{m}(0, n)=0$ . Thus the numbers

$a_{m}(k,n)(1\leqq k\leqq n)$ are completely determined in principle by the congruence
relation (1).

Now the simple solution by Busche to the converse Josephus problem can
be described in the following manner. Let $n$ and $l(1\leqq l\leqq n)$ be given. We put
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$A(O, n)=l$ . Suppose $A(i,n-i)$ is defined for an $i(0\leqq l<n)$ . If $A(i, n-i)>0$ ,

then we determine $A(i+1, n-i-1)$ by the conditions

$A(i+1, n-i-1)\equiv A(i, n-i)-m$ $(mod n-i)$

and

$0\leqq A(i+1, n-i-1)<n-l$ .

If $A(i+1, n-i-1)=0$ then $k=i+1$ and $a_{m}(k,n)=l$ , as a consequence of
(1). By repeating this procedure if $A(i+1, n-i-1)>0$ , we can eventually find
a unique value of $k(1\leqq k\leqq n)$ for which $a_{m}(k, n)=l$ .

EXAMPLE. For $m=10,$ $n=30,$ $l=14$ we find $k=15$ :

$i$ : $0$ 1 2 3 4 5 6 7 8 9
$n-i$ : 30 29 28 27 26 25 24 23 22 21

$A(i, n-i)$ : 14 42313 319 92313 3

$i$ : 10 1112 13 14 15
$n-i$ : 20 19 18 17 16 15

$A(i, n-i)$ : 14 4 13 3 10 $0$

Now, in order to describe classical solutions by Schubert and by Busche of
the generalized Josephus problem, we have to introduce certain infinite sequences
$N_{i}$ , called modulation sequences, of integers. Let $m\geqq 2$ be again a fixed integer.
A modulation sequence is the sequence of positive integers $N_{j}=N_{j}(m, t)(i=$

$1,2,$
$\ldots$ ) defined recursively by

(3) $N_{1}>0$ , $N_{i+1}=\frac{m(N_{i}+t)}{m-1}$ $(i\geqq 1)$ ,

where $t$ is a fixed nonnegative integer. Here, and in what follows, we denote by
$\lceil x\rceil$ (resp. by $\lfloor x\rfloor$ ) the least (resp. the greatest) integer not less than (resp. not
greater than) the real number $x$ . It is easily seen that $N_{i+1}>N_{i}$ for $i\geqq 1$ . We
have $N_{i}\not\equiv 1(mod m)$ for all $i>1$ , since the inequality

$\frac{m(N+t)}{m-1}\leqq mK+1<\frac{m(N+t)}{m-1}+1$

is equivalent to $0<m(N+t)-m(m-1)K\leqq m-1$ , but this is impossible, if $N$

and $K$ are integral.
The modulation sequence of Schubert’s is the sequence $N_{i}=N_{i}(m, 0)(i=$
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1,2, $\ldots$ ) with $N_{1}=m(n-k)+1$ , and the modulation sequence of Busche’s is
$N/=N_{i}(m, n-k)(i=1,2, \ldots)$ with $N_{1}=1$ . We shall show that

(4) $N_{i}-N_{i}^{\prime}=m(n-k)$ for all $i\geqq 1$ .

In fact, the assertion (4) is obvious for $i=1$ . Suppose now that (4) holds true for
an $i\geqq 1$ . We have then

$N_{i+1}^{\prime}+m(n-k)=\lceil\frac{m(N_{i}^{\prime}+n-k)}{m-1}\rceil+m(n-k)$

$=$ $\frac{m(N_{i}^{\prime}+m(n-k))}{m-1}=N_{i+1}$ ,

which proves the relation (4) by induction.
The modulation sequences of Schubert’s and of Busche’s coincide with each

other, if $k=n$ .

Now, explicit upper and lower bounds for the terms $N_{i}$ of Schubert’s
modulation sequence (so that for the terms $N[$ of Busche’s sequence also) can be
found without difficulty. In fact, if we write actually, with $N_{1}=m(n-k)+1$ ,

$N_{i+1}=\frac{mN_{i}+\sigma_{i}}{m-1}$ $(i\geqq 1)$ ,

then $0\leqq\sigma_{t}\leqq m-2$ and $\sigma_{j}=0$ if and only if $m-1|N_{i}$ . Just as in [4] we define
an analytic function of $z$

$f(z)$ $:=N_{1}z+\sum_{i=1}^{\infty}\frac{\sigma_{i}}{m-1}z^{i+1}$ ,

the convergence radius of the power series on the right being at least 1. We may
apply mutatis mutandis the argument of [4; pp. 310-311], even in a manner much
simpler than in there, to show that the limit

(5) $\theta:=\lim_{i\rightarrow\infty}N_{i}\cdot(1-\frac{1}{m})^{i}=f(1-\frac{1}{m})$

exists, and further that

$0\leqq\theta(\frac{m}{m-1})^{j}-N_{i}\leqq m-2$ $(i\geqq 1)$ ,

where both of the inequality signs are strict if $m>2$ . Note that $\theta$ is a positive
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constant depending on $m,$ $n$ and $k$ . Thus, if in particular $m=2$ , then $\theta=n-$

$k+(1/2)$ and we have

$N_{i}=(n-k)2^{i}+2^{i-1}$ $(i\geqq 1)$ ,

which can also be shown easily by induction on $i$ , and if $m=3$ then we have

$N_{i}=$ $\theta(\frac{3}{2})^{i}$ $(i\geqq 1)$ .

We note that, if $m>2$ then the sequence

$\sigma_{j}=(m-1)N_{i+1}-mN_{i}$ $(i=1,2, \ldots)$

is not (ultimately) periodic. Suppose the contrary; then there must exist positive
integers $i_{0}$ and $p$ such that $\sigma_{i+p}=\sigma_{j}$ for all $i\geqq i_{0}$ . We have for $i\geqq i_{0}$

$0=\sigma_{i+p}-\sigma_{i}=(m-1)(N_{i+p+1}-N_{i+1})-m(N_{i+p}-N_{i})$

and, therefore, for all $j\geqq 1$

$N_{i+p+j}-N_{i+j}=(\frac{m}{m-1})^{j}(N_{i+p}-N_{i})$ ,

which is clearly impossible, since $N_{i+p}-N_{j}>0$ .
The constant $\theta$ is effectively computable.

REMARK. It will be of some interest to observe that the sequence

$w_{j}$
$:=\frac{\theta}{3}(\frac{3}{2})^{i}$ $(i=1,2, \ldots)$ ,

where $\theta$ is defined by (5) with $m=3,$ $N_{1}>0$ being chosen arbitrarily, is not
uniformly distributed modulo one, because otherwise the sequence of integers
$N_{i}=\lfloor 3w_{i}\rfloor(i=1,2, \ldots)$ would be uniformly distributed modulo 3 in the sense
of I. Niven, but this is not the case, since we know that $N_{i}\not\equiv 1(mod 3)$ for all
$i>1$ , as has been noticed above. Compare: I. Niven, Uniform distribution of
sequences of integers, Trans. Amer. Math. Soc., 98 (1961) 52-61.

3. Classical Solutions

Here we survey the leading traits of solutions by H. Schubert and by E.
Busche of the generalized Josephus problem (cf. [2]). Let $n$ and $m$ be again
two positive integers, $m\geqq 2$ . Solutions will be fumished when formulas for the
Josephus numbers $a_{m}(k, n)(1\leqq k\leqq n)$ are explicitly given.
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(i) H Schubert’s formula. Let $N_{i}(i=1,2, \ldots)$ be the modulation sequence of
Schubert’s. Then, if $N_{i}<mn+1<N_{i+1}$ , or equivalently if $N_{i-1}\leqq(m-1)n<N_{i}$

(with $N_{0}=0$), we have

$a_{m}(k,n)=mn+1-N_{i}$ .

(ii) E. Busche’s formula. Let $N_{i}^{\prime}(i=1,2, \ldots)$ be the modulation sequence of
Busche’s. Then, if $N[<mk+1<N_{i+1}^{\prime}$ , we have

$a_{m}(k, n)=mk+1-N_{i}^{\prime}$ .

Computations needed for the determination of $a_{m}(k, n)$ are practically similar
in these formulas, but the numerals that appear will be in genaral slightly shorter
in Busche’s method than in Schubert’s. The formulas (i) and (ii) coincide for
$k=n$ , and Rankin’s formula (2) for $d_{2}(n)$ is their special case of $m=2,$ $k=n$ .

Since the formulas (i) and (ii) are mutually equivalent in view of (4), we shall
give a proof only for (i).

In order to establish the validity of Schubert’s solution (i) it will suffice to
show that, if we define

$f(k,n)$ $:=mn+1-N_{i}$ $(1 \leqq k\leqq n)$ ,

observing $0<f(k, n)\leqq n$ , where $N_{i}<mn+1<N_{i+1}$ , then $f(k, n)$ satisfies the
conditions

(6) $f(1, n)=a_{m}(1, n)$

and

(7) $f(k+1, n+1)\equiv m+f(k, n)$ $(mod n+1)$

for all $n$ and $k(1\leqq k\leqq n)$ .
Note that the modulation sequence $N_{i}(i=1,2, \ldots)$ depends only on the

difference $n-k$ and not on the values of $n$ and $k$ separately, if $m$ is once fixed;
thus, the modulation sequence for $n+1,$ $k+1$ is the same as the one for $n,$

$k$ .
The largest integer $n$ for which $mn+1-N_{i}\leqq n$ is given by $n=n_{1}=\lfloor(N_{i}-1)/$

$(m-1)\rfloor$ , whereas the largest integer $n$ for which $mn+1<N_{i+1}$ is found to be
$ n=n_{2}=\lfloor(N_{i+1}-1)/m\rfloor$ ; here, we have $n_{1}=n_{2}$ , since the both sides are equal to

$\left\{\begin{array}{l}\frac{N_{i}}{m-1}-1\\\lfloor\frac{N_{i}}{m-1}\rfloor\end{array}\right.$ $ifm-1\mathcal{X}ifm-1|N_{N_{i}^{i}},.and$
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We first prove (7). Now, if

$N_{i}<mn+1<m(n+1)+1<N_{i+1}$ ,

then
$f(k+1,n+1)=m(n+1)+1-N_{i}=m+f(k, n)$

and (7) is obvious. If

$N_{i}<mn+1<N_{i+1}\leqq N_{j}<m(n+1)+1<N_{j+1}$ $(j\geqq i+1)$ ,

then we have $ n=\lfloor(N_{v}-1)/m\rfloor$ for each $v$ with $i+1\leqq v\leqq j$ and, therefore,

$m-1|N_{v-1}$ implies $n=\frac{mN_{v-1}-(m-1)}{m(m-1)}=\frac{N_{v-1}}{m-1}-1$ ,

and

$m-1\parallel N_{v-1}$ implies $n=\frac{1}{m}\frac{mN_{v-1}}{m-1}$ $=\frac{N_{v-1}}{m-1}$ ,

where use is made of the relation

$N_{v}=\left\{\begin{array}{l}\frac{mN_{v-l}}{m-1}\\\lfloor\frac{mN_{v-1}}{m-1}\rfloor+1\end{array}\right.$ $ifm-1\parallel ifm-1|N_{N_{v-1}^{v-1}},$

.

It follows that we have

$N_{v}-N_{v-1}=n+1$ $(i+1\leqq v\leqq j)$ ,

and hence

$f(k+1,n+1)-f(k,n)=m-(N_{j}-N_{i})$

$=m-\sum_{v=i+1}^{j}(N_{v}-N_{v-1})$

$=m-(j-i)(n+1)$ ,

which proves (7).
We now proceed to prove (6) by distinguishing the cases according as $n\geqq m$

or $n<m$ .
Case 1: $n\geqq m$ . It is plain that $a_{m}(1,n)=m$ . We have to show that for some

(unique) $i\geqq 1$

$N_{i}<mn+1<N_{i+1}$ and $f(1,n)=mn+1-N_{i}=m$ .
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We have $N_{1}=m(n-1)+1$ by definition and

$N_{2}\geqq\frac{mN_{1}}{m-1}=m(n-1)+n+\frac{n}{m-1}>mn+1$ ,

so that $i=1$ and $f(1, n)=mn+1-N_{1}=m$ .
Case 2: $n<m$ . Write $ m=\lambda n+\mu$ with integers $\lambda,\mu$ such that $\lambda\geqq 1,0<$

$\mu\leqq n$ . We have then $ a_{m}(1, n)=\mu$ . We show that for some $i\geqq 1$ one has $N_{i}<$

$mn+1<N_{i+1}$ and

$ mn+1-N_{i}=\mu$ , or $N_{i}=m(n-1)+\lambda n+1$ .

1) If $\lambda=\mu=1$ , then $m-1=n$ , and we find

$m-1|N_{1}=(m-1)(n-1)+n$ ,

$N_{2}=\frac{mN_{1}}{m-1}=m(n-1)+n+\frac{n}{m-1}=mn$ ,

and

$N_{3}=\frac{mN_{2}}{m-1}=mn+n+1$ .

Thus we have $i=2$ and $ f(1, n)=mn+1-N_{2}=1=\mu$ .
2) If $\lambda=1,$ $\mu>1$ , then $m=n+\mu,$ $m-1,\gamma N_{1}$ and

$N_{2}=\lceil\frac{mN_{1}}{m-1}\rceil=m(n-1)+n+1$ ,

$N_{3}\geqq mn+\frac{2n}{2n-1}>mn+1$ ,

so that $i=2$ and $ f(1, n)=mn+1-N_{2}=\mu$ .
3) If $\lambda\geqq 2$ then $m-1\geqq\lambda n,$ $m-1\parallel N_{1}$ , and

$N_{2}=\lceil\frac{mN_{1}}{m-1}\rceil=m(n-1)+n+1=(m-1)(n-1)+2n$ .

Suppose now that for some $v,$ $ 2\leqq v<\lambda$ , one has

$N_{v}=m(n-1)+(v-1)n+1=(m-1)(n-1)+vn$ .

Then $m-1\parallel N_{v}$ and so

$N_{v+1}=\frac{mN_{v}}{m-1}$ $=m(n-1)+vn+1$

$=(m-1)(n-1)+(v+1)n$ .
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It follows that

$N_{\lambda}=m(n-1)+(\lambda-1)n+1=(m-1)(n-1)+\lambda n$ .

Hence, if $\mu>1$ then $m-1>\lambda n$ and

$N_{\lambda+1}=m(n-1)+\lambda n+1=(m-1)(n-1)+(\lambda+1)n$ ,

and if $\mu=1$ then $m-1=\lambda n$ and

$N_{\lambda+1}=\frac{mN_{\lambda}}{m-1}=m(n-1)+\lambda n+1$ ;

in either case one has

$N_{\lambda+2}\geqq m(n-1)+(\lambda+1)n+\frac{(\lambda+1)n}{m-1}$

$>mn+n-\mu+1\geqq mn+1$ ,

whence $i=\lambda+1$ and $ f(1,n)=mn+1-N_{\lambda+1}=\mu$ .
We thus have proved (6) and, in view of (7) and (1), our proof of Schubert’s

formula (i), and of Busche’s formula (ii) as well, is now complete.

EXAMPLE. For $m=10,$ $n=30,$ $k=15$ we have $mn+1=301,$ $mk+1=$
$151$ , and

$i$ : 1 2 3 4 5 6 7 8
$N_{i}$ : 151 168 187 208 232 258 287 319

$N_{i}^{\prime}$ : 1 18 37 58 82 108 137 169

Thus $a_{10}(15,30)=301-287=151-137=14$ .

4. A New Solution

Our new algorithm for determining the Josephus numbers $ a_{m}(k, n)(1\leqq$

$k\leqq n)$ , where $m\geqq 2$ , will be formulated in terms of two sequences $n_{i}$ and $c_{l}$

$(i=1,2, \ldots)$ , the definitions of which are as follows. We define three sequences
of positive integers $n_{j},$ $c_{i}$ and $c_{i}^{*}(i=1,2, \ldots)$ by taking $n_{1},$ $c_{1}$ and $c_{1}^{*}$ that satisfy
the conditions

$n_{1}>0$ , $0<c_{1}=c_{1}^{*}\leqq n_{1}+1$ ,

and setting recursively for $j\geqq 1$

(8) $n_{l+1}=\frac{m(n_{i}+1)-c_{i}}{m-1}$
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(9) $c_{i^{*}+1}=c_{j}+(m-1)(n_{i+1}+1)-m(n_{j}+1)$ ,

(10) $c_{i+1}\equiv c_{i^{*}+1}(mod n_{i+1}+1)$ , $0<c_{i+1}\leqq n_{i+1}+1$ .

We have $n_{i+1}>n_{l}$ for all $i\geqq 1$ . In fact, if $c_{i}=n_{j}+1$ then $n_{i+1}=n_{i}+1$ and,
if $c_{l}\leqq n_{j}$ then

$n_{i+1}>\frac{m(n_{i}+1)-n_{i}}{m-1}-1=n_{j}+\frac{1}{m-1}$ .

It follows from (8) and (9) that $0<c_{i+1}^{*}\leqq m-1$ ; therefore, we have, by (10),
$c_{i}=c_{i}^{*}$ for all $i$ for which $n_{j}+1\geqq m-1$ or $n_{j}\geqq m-2$ , apart from $i=1$ .

For the special case of $m=2$ we have, with $n_{1}=c_{1}=1$ ,

$n_{j}=2^{j}-1$ , $c_{j}=1$ for all $j\geqq 1$ ,

as can readily be shown by induction on $i$ .
Let $m\geqq 2$ be arbitrary. It is easily seen that, if we define the sequence $n_{i}$ with

$n_{1}=1$ (so that $c_{1}=1$ or 2), then we have

$n_{j}=i$ for $1\leqq i<m$ ,

and $n_{m}=m$ provided $c_{m-1}>1$ .
Let $m\geqq 2$ be again an arbitrary fixed integer. Our formula for the numbers

$a_{m}(k, n)(1\leqq k\leqq n)$ will now be described thus: let us constmct the sequences $n_{j}$

and $c_{l}(i=1,2, \ldots)$ with

$n_{1}=n-k$ , $c_{1}=a_{m}(1, n_{1}+1)$ if $1\leqq k<n$ ,

and
$n_{1}=1$ , $c_{1}=a_{m}(2,2)$ if $k=n$ ,

and by relations (8), (9) and (10). We have then

(11) $a_{m}(k, n)=c_{j}+m(n-n_{j}-1)$

if $n_{j}<n\leqq n_{i+1}$ .
Note that

$a_{m}(1, n_{1}+1)\equiv m$ $(mod n_{1}+1)$

and
$a_{m}(2,2)=d_{m}(2)=1$ or 2

according as $m$ is even or odd.
The validity of our formula (11) follows from the validity of Schubert’s

formula (i) and from Lemmas 1 and 2 below.
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LEMMA 1. To every $i\geqq 1$ there corresponds a unique $j=j(i)\geqq 1$ such that

(12) $m(n_{i}+1)+1-c_{i}=N_{j}$ .

Moreover, we always have $j(i+1)>j(i)$ , and $j(i+1)=j(i)+1\iota fc_{i+1}=c_{i^{*}+1}$ , or
a fortiori if $n_{i}\geqq m-3$ .

PROOF. For $i=1$ relation (12) is obvious from Schubert’s formula (i), since
$c_{1}=a_{m}(k_{1}, n_{1}+1)$ with $k_{1}=1$ or 2 according as $1\leqq k<n$ or $k=n$ .

It is a matter of simple computations to see that, if $i\geqq 1,1\leqq n\leqq m-2$ and
$c_{i}=a_{m}(k_{i},n_{j}+1)$ , then we have $n_{i+1}=n_{i}+1$ and

$c_{i^{*}+1}=c_{j}+(m-1)(n_{i+1}+1)-m(n_{i}+1)$

$\equiv c_{j}+m$ $(mod n_{i+1}+1)$

and therefore, by (10) and (1), $c_{i+1}=a_{m}(k_{i+1}, n_{i+1}+1)$ , where $k_{i+1}=k_{j}+1$ . It
follows from this that

$m(n_{i+1}+1)+1-c_{i+1}=N_{j}$

with some unique $j=j(i+1)$ .
Suppose now that $n_{i}\geqq m-3$ and (12) holds tme; then we have $c_{i+1}=c_{i+1}^{*}$

and, by (9) and (8),

$m(n_{i+1}+1)+1-c_{i+1}=N_{j}+n_{i+1}+1=N_{j+1}$ ,

where

$n_{i+1}+1=\frac{m(n_{i}+1)-c_{i}}{m-1}+1=\frac{N_{j}}{m-1}$

Thus, we have $j(i+1)=j(i)+1$ provided $n_{i}\geqq m-3$ . Existence of $j(i)$ for
all $i\geqq 1$ now follows by induction.

We have, by writing $j=j(i)$ and $j^{\prime}=j(i+1)$ for simplicity’s sake,

$N_{j^{\prime}}-N_{j}=m(n_{i+1}-n_{i})-(c_{i+1}-c_{i})>0$ ,

since $n_{i+1}-n_{i}\geqq 1$ and $|c_{i+1}-c_{j}|\leqq m-1$ . This means that $j^{\prime}>j$ . If in here
$c_{i+1}=c_{i+1}^{*}$ then we find

$N_{j^{\prime}}-N_{j}=n_{i+1}+1=\frac{N_{j}}{m-1}=N_{j+1}-N_{j}$ .

Hence we have $j^{\prime}=j+1$ , as asserted.
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LEMMA 2. Suppose that the equality (12) holds true. Then, an integer $n$ sat-

isfies the inequality

(13) $n_{i}<n\leqq n_{i+1}$

$lf$ and on $ly$ if it satisfies
(14) $N_{j}<mn+1<N_{j+1}$ .

$PR\infty F$ . Suppose that $n$ satisfies (14). Since we have $j(i+1)\geqq j+1$ by
Lemma 1, it follows from (14) that

$n_{j}+\frac{m-c_{i}}{m}<n<n_{i+1}+\frac{m-c_{i+1}}{m}$

where $0<c_{i}\leqq m$ ($c_{i}=m$ may happen only for $i=1$ ) and $0<c_{i+1}\leqq m-1$ , and
we have (13).

Conversely, suppose now that $n$ satisfies (13). If $n_{j}\leqq m-3$ then $n=n_{i+1}=$

$n_{j}+1$ , and
$N_{j}=m(n_{i}+1)+1-c_{i}<mn+1$ ,

whereas, since $c_{i}\leqq n_{j}+1$ , we have

$N_{j+1}=N_{j}+\lceil\frac{N_{j}}{m-1}\rceil=N_{j}+n_{i}+2>mn+1$ ;

and if $n_{j}\geqq m-2$ then $j(i+1)=j+1$ by Lemma 1, and we obtain (14) from the
inequality

$mn_{i}+1<mn+1\leqq mn_{i+1}+1$ ,

since we have $mn_{i}+1+m\leqq mn+1$ and $m-c_{i}<m,$ $m-c_{i+1}>0$ .
Thus, our proof of the formula (11) is now complete.

EXAMPLE. For $m=10,$ $n=30,$ $k=15$ , we have $n_{1}=15,$ $c_{1}=a_{10}(1,16)=$

$10$ and:
$i$ : 1 2 3 4 5 6 7 8

$n_{i}$ : 15 16 18 20 23 25 28 31
$c_{t^{;}}$ 10 3 4 3 9 3 4 2

Hence $a_{10}(15,30)=4+10(30-28-1)=14$ .
A consequence of Lemmas 1 and 2 is that the number of iteration steps

required in our algorithm to determine the value of $a_{m}(k, n)$ is in general slightly
less than the number of corresponding steps in Schubert’s or Busche’s algorithm.
For instance, for the case of $k=n,$ $m\geqq 2$ , we have
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$ m(n_{1}+1)+1-c_{1}=2m-\epsilon$ ,

where $\epsilon=0$ or 1 according as $m$ is even or odd, and it is not difficult to see that
$N_{i}=i$ for $1\leqq i\leqq m$ . Moreover, we have $N_{m+j}=m+2j$ for $1\leqq j\leqq(m-\epsilon)/2$ ;
indeed, if $N_{m+v}=m+2v$ for some $v,$ $0\leqq v\leqq(m-\epsilon)/2-1$ , then

$N_{m+v+1}=\frac{mN_{m+v}}{m-1}$

$=\frac{m(m+2v)+m-1-\tau}{m-1}$

$=m+2v+2$ ,

where $0<\tau=2v+1\leqq m-1$ . Thus we find $ N_{L}=2m-\epsilon$ , where $L=(3m-\epsilon)/2$ .
As a matter of course one may carry out, on the basis of the relation (1), a

direct proof of (11) substantially in the same manner as, but in a way somewhat
easier than, in the proof of Schubert’s formula (i) for $a_{m}(k, n)(1\leqq k\leqq n)$ , as
given in \S 3 above, noticing that $n_{i+1}$ is the largest positive integer $n$ for which
holds the inequality

$c_{j}+m(n-n_{i}-1)\leqq n$ .

We omit the details, however.

5. A Special Case

Here we shall briefly review the Josephus problem for $k=n$ , namely the
problem to determine the last number to be removed, $d_{m}(n)=a_{m}(n,n)$ , where we
assume as before that $m\geqq 2$ . Since $d_{m}(1)=1$ for all $m$ , we may suppose in what
follows that $n>1$ .

Starting with $n_{1}=1$ and $c_{1}=d_{m}(2)$ , that is, $c_{1}=1$ or 2 according as $m$ is
even or odd, we construct the sequences $n_{j}$ and $c_{j}$ (and $c_{i}^{*}$ ) $(i=1,2, \ldots)$ using the
relations (8), (9) and (10). It follows from the general formula (11), with $k=n$ ,
that if $n_{i}<n\leqq n_{i+1}(i\geqq 1)$ then

(15) $d_{m}(n)=c_{j}+m(n-n_{j}-1)$ .

As was observed in \S 4, if $m=2$ and $n_{1}=c_{1}=1$ , we have $n_{i}=2^{i}-1$ and
$c_{i}=1$ for all $i>1$ . Since then the inequality $n_{j}<n\leqq n_{i+1}$ is equivalent to $ 2^{j}\leqq$

$n<2^{i+1}$ , we thus obtain again Rankin’s formula (2).
It should be also noted that, for $m\geqq 2$ , our construction shows that $n_{i}=i$

for $1\leqq i<m$ and, therefore, $c_{j}=d_{m}(i+1)$ for those values of $i$ . Since we have
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$d_{m}(m)\geqq 2$ if $m\geqq 3$ , it follows that $n_{m}=m$ and $c_{m-1}=d_{m}(m)$ for $m\geqq 3$ . Hence,
if $m\geqq 3$ and if the value of the number $d_{m}(m)$ is available beforehand, we may
start just as in Rankin [8] the sequences $n_{i}$ and $c_{j}$ with $n_{1}=m$ and $c_{1}=d_{m}(m+1)$

$=d_{m}(m)-1$ , in so far as we concem with the case of $n>m\geqq 3$ .
The formula for $d_{m}(n)$ for $m=3$ found in [7] is

$d_{3}(n)=3n+1-$ $C(\frac{3}{2})^{D}$

where $C=1.62227$ 050288476731595695098289932411. . . and $D=D(n)=$
$\lceil\log_{3/2}((2n+1)/C)\rceil$ ; this is naturally a result of Schubert’s (or equivalently of
Busche’s) type and, in view of our analysis in \S 2 above, a similar, concise for-
mula can also be provided for any Josephus number $a_{m}(k, n)(1\leqq k\leqq n)$ in the
case of $m=3$ .

Here is a short table of $d_{m}(m)(1\leqq m\leqq 60)$ .

$m$ : 1 2 3 4 5 6 7 8 9 10
$d_{m}(m)$ : 1 1 2 2 2 4 5 4 8 8

$m$ : 1112 13 14 15 16 17 18 19 20
$d_{m}(m)$ : 7 11 8 13 41112 812 2

$m$ : 21 22 23 24 25 26 27 28 29 30
$d_{m}(m)$ : 13 7 22 2 8 13 26 4 26 29

$m$ : 31 32 33 34 35 36 37 38 39 40
$d_{m}(m)$ : 17 27 26 7 33 20 16 22 29 4

$m$ : 41 42 43 44 45 46 47 48 49 50
$d_{m}(m)$ : 13 22 25 14 22 37 18 46 42 46

$m$ : 51 52 53 54 55 56 57 58 59 60
$d_{m}(m)$ : 9 4112 7 26 42 24 5 44 53

REMARK. It will be of some interest to note that several entries of the
above table of $d_{m}(m)$ , namely the ones for $m=2,3,4,5$ , and 6: are found among
other numerals in the table given by L. Euler [3], who also discovered, moreover,
the significance of our sequences $n_{i}$ and $c_{i}$ (or, of something equivalent to them);
however, the sequences numerically presented by him in the special case of $m=9$
would seem to contain, by contamination, errors from a certain point onwards,
but the table of his as a whole is properly understandable.
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6. mustrations

We present in the following some numerical examples mostly treated by
Rankin [8], by Jak\’obczyk [5], by Busche [2] and by Halbeisen and Hungerb\"uhler
[4]. All the results obtained by newly applying our method agree, of course, with
those of these authors’. The writer is much obliged to Dr H. Mikawa for the
numerical computations relevant to examples 9) and 10) below.

1) To compute $d_{3}(41)$ . Here $m=3,$ $n=41$ . We know $d_{3}(3)=2$ , so that
$n_{1}=3,$ $c_{1}=1$ :

$t$ : 1 2 3 4 5 6 7 8
$n_{i}$ : 3 5 8 13 20 30 46 69
$c_{i}$ : 1 1 1 2 2 1 2 1

Hence $d_{3}(41)=1+3(41-30-1)=31$ .
2) To compute $d_{3}(53)$ . Here $m=3,$ $n=53$ . Using the table given in 1)

above, we find $d_{3}(53)=2+3(53-46-1)=20$ .
3) To determine $d_{6}(117)$ . Here $m=6,$ $n=117$ , and $d_{6}(6)=4;n_{1}=6,$ $c_{1}=3$ .

We have
$i$ ; 1 2 3 . . 15 16 17

$n_{j}$ : 6 7 9 . . . 88 106 127
$c_{j}$ : 3 1 3 . . . 2 3 1

and $d_{6}(117)=3+6(117-106-1)=63$ .
4) To compute $a_{6}(46,117)$ . Here $m=6,$ $n=117,$ $k=46$ , and $n_{1}=71,$ $c_{1}=$

$a_{6}(1,72)=6$ . We find
$i$ : 1 2 3 4

$n_{j}$ : 71 85 102 123
$c_{i}$ : 6 4 3 5

whence $a_{6}(46,117)=3+6(117-102-1)=87$ .
5) To compute $a_{6}(66,117)$ . Here $m=6,$ $n=117,$ $k=66$ ; and so $n_{1}=51$ ,

$c_{1}=a_{6}(1,52)=6$ :
$i$ : 1 2 3 4 5 6

$n_{i}$ : 51 61 73 88 106 127
$c_{i}$ : 6 4 2 3 4 2

Thus $a_{6}(66,117)=4+6(117-106-1)=64$ .
6) To determine $a_{6}(116,117)$ . We have $m=6,$ $n=117,$ $k=116$ , so that

$n_{1}=1,$ $c_{1}=a_{6}(1,2)=2$ :
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$i$ : 1 2 3 . . . 20 21 22
$n_{i}$ : 1 2 3 . . . 86 103 124
$c_{j}$ : 2 2 4 .. . 4 2 3

and we get $a_{6}(116,117)=2+6(117-103-1)=80$ .
7) To compute $a_{9}(10,11)$ . For $m=9,$ $n=11,$ $k=10$ we have $n_{1}=1,$ $c_{1}=$

$a_{9}(1,2)=1$ , and we find $a_{9}(10,11)=4$ since

$i$ : 1234567891011
$n_{i}$ : 1234567891011
$c_{j}$ : 112146776 4 1

8) To determine $a_{9}(9,11)$ . We are given $m=9,$ $n=11,$ $k=9$ ; in here $n_{1}=2$ ,
$c_{1}=a_{9}(1,3)=3$ :

$i$ ; 12345678 9
$n_{i}$ : 2345678911
$c_{j}$ : 34361221 7

Hence $a_{9}(9,11)=1+9(11-9-1)=10$ .
9) To determine $a_{m}(k,n)$ for $m=7,$ $n=R_{23},$ $k=n-2001$ , where, and in the

next example 10), $R_{23}=11111111111111111111111$ is the so-called repunit prime
of 23 digits. We have $n_{1}=2001,$ $c_{1}=a_{7}(1,2002)=7$ , and eventually find $n_{280}<$

$n<n_{281}$ and $c_{280}=5$ , where $n_{280}=9538759184899654873314$ . Thus

$a_{7}(k,n)=5+7(n-n_{280}-1)$

$=11006463483480193664577$ .

10) To compute $d_{m}(n)$ for $m=7,$ $n=R_{23}$ . Here $n_{1}=7,$ $c_{1}=4$ , and we find
$n_{316}<n<n_{317}$ and $c_{316}=2$ , where $n_{316}=9711936891836718664167$ , so that

$d_{7}(n)=2+7(n-n_{316}-1)$

$=9794219534920747128603$ .

7. Appendix

Let us consider again the generalized Josephus problem with parameters
$n\geqq 1$ and $m\geqq 2$ and, denoting by $a_{m}(k, n)(k\geqq 1)$ as before the kth member to
be removed, we write $d_{m}(n)=a_{m}(n, n)$ . For a fixed $m$ Seki Takakazu [12] called a
natural number $n$ a limitative number $(iE\beta\hslash \mathfrak{X})$ if one has $d_{m}(n+1)=1$ , that is,
the number 1 is the last member to be deleted in this situation.
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We define two sequences of integers $N_{i}$ and $\sigma_{j}$ by putting

$N_{1}=1$ , $ N_{i+1}=r\frac{mN_{i}}{m-1}\rceil$ $(i\geqq 1)$

and

$\sigma_{i}=(m-1)N_{i+1}-mN_{i}$ , $0\leqq\sigma_{i}\leqq m-2$ $(i\geqq 1)$ .

If $N_{i}=(m-1)K_{i}-\sigma_{i}(i\leqq j\leqq i+1)$ then $N_{i+1}=mK_{i}-\sigma_{i}$ and

$\sigma_{i+1}-\sigma_{j}=(m-1)K_{i+1}-mK_{i}$ ;

thus, $d_{m}(K_{i})=1$ when and only when $\sigma_{j}=0$ , so that if $K_{i}\geqq 2$ then $K_{i}-1$ is a
limitative number for $m$ and vice versa.

A short table of limitative numbers for $m(2\leqq m\leqq 10)$ , with five entries
for each of these $m\prime s$ , was given by Seki in [12], the computation of whom was
carried out only by directly applying the fundamental congmence relation (1).
Later on, Takebe Katahiro (1664-1739) of the Seki school slightly extended the
table of limitative numbers of Seki’s, but there seems to be some errors in his
calculation.

It is almost apparent that Seki had an idea that the following hypothesis
would be true:

HYPOTHESIS. For every fixed $m\geqq 2$ there exist infinitely many limitative
numbers $n$ .

This hypothesis holds true for $m=2$ and 3 at the least. In fact, for $m=2$ we
find $d_{2}(2^{j})=1(i\geqq 1)$ , and all of the numbers $2^{i}-1(i=1,2,3, \ldots)$ are limita-
tive, and any limitative number for $m=2$ has this form, that is, a form of a
power of two minus one. For the case of $m=3$ we have

$2N_{i+1}-3N_{i}=\sigma_{j}$ , $\sigma_{j}=0,1(i\geqq 1)$ ;

if $\sigma_{j}\neq 0$ for all sufficiently large $i$, then we would have for some $i_{0}\geqq 1\sigma_{i}=1$ for
all $i\geqq i_{0}$ , which is impossible as was noticed before (cf. \S 2 above). Thus, there
are infinitely many limitative numbers in this case, $m=3$ . For $m\geqq 4$ these simple
arguments will fail to prove (or disprove) our hypothesis above. As a matter of
fact, for odd $m>3$ the existence even of a single limitative number is quite
unclear, whereas for even $m$ the number 1 is always a limitative number.

Here we shall give a table of limitative numbers for $m$ up to 60, with ten
entries for each of $m$ .
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Limitative Numbers
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49

51
52
53
54
55
56
57
58
59
60

*The sequences of limitative numbers for $m=36$ and 47 fairly rapidly increase and so will be given
here separately:

$m=36:1,2,3$ ,54519, 235911, 1694972, 2184101, 7981011,31735572, 100730052;
$m=47$ :2,4,166, 1745,2164,273565,468341,675061, 1402505,1936444.

REMARK. It is a matter of simple calculation to verify that we have

$d_{m}(3)=1$ if and only if $m\equiv 0$ or 5 $(mod 6)$ ;

$d_{m}(4)=1$ if and only if $m\equiv 0,2$ or 3 $(mod 12)$ ;

$d_{m}(5)=1$ if and only if $m\equiv 0,4,8,15,18$ , 19,22,29,33,37,47 or 50 (mod60);

and

$d_{m}(6)=1$ if and only if $m\equiv 0,3,5,14,16$ ,18,21,23,32 or 34 (mod60).

Thus, we may conclude that 19/30 (ca. $63.3^{0}/0$) of odd integers $m\geqq 3$ admit at
least one limitative number $n$ satisfying $2\leqq n\leqq 5$ and 7/10 (70%) of even integers
$m\geqq 2$ admit one or more limitative numbers $n$ with $2\leqq n\leqq 5$ .

As is observed in Rankin [8] it will be worth noticing that we have for every
fixed $n\geqq 1$

$d_{r}(n)=d_{s}(n)$

whenever $r\equiv s(mod M),$ $M$ being the least common multiple of the integers
1, 2, . . . , $n$ .
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