ON EXPONENTIAL SUMS OVER PRIMES IN ARITHMETIC PROGRESSIONS

By
Hiroshi Mikawa

1. Introduction

I. M. Vinogradov's proof of the ternary Goldbach problem is based upon bounds for the exponential sum

$$
\begin{equation*}
\sum_{n \leq x} \Lambda(n) e(\alpha n) \tag{1}
\end{equation*}
$$

with a wide uniformity in real α, where Λ is the von Mangoldt function and, for real $\theta, e(\theta)=\exp (2 \pi i \theta)$. By using a combinatrial identity, R. C. Vaughan presented an elegant simple argument on it, see [2], for instance.
J.-r. Chen's theorem on the binary Goldbach problem is built upon the linear sieve and the mean prime number theorem, vide [5]. According to H. Iwaniec [6], the Rosser's weight of the linear sieve has the well-factorable property. An arithmetic function λ is called "well-factorable of level D ", if for any $D_{1}, D_{2} \geq 1$, $D=D_{1} D_{2}$, there exist two functions λ_{1} and λ_{2} supporting in $\left(0, D_{1}\right]$ and $\left(0, D_{2}\right.$] respectively such that $\left|\lambda_{1}\right| \leq 1,\left|\lambda_{2}\right| \leq 1$ and $\lambda=\lambda_{1} * \lambda_{2}$. Also the mean prime number theorem has been surprisingly developed by E. Fouvry and H. Iwaniec [4], E. Fouvry [3] and E. Bombieri, J.-B. Friedlander and H. Iwaniec [1]. In [1] they established a non-trivial bound of the averaging sum

$$
\begin{equation*}
\sum_{(d, c)=1} \lambda(d)\left(\sum_{\substack{n \leq x \\ n \equiv c(\bmod d)}} \Lambda(n)-\frac{x}{\varphi(d)}\right) \tag{2}
\end{equation*}
$$

for any fixed integer $c \neq 0$ and for any well-factorable function λ of level $D=x^{4 / 7-\varepsilon}, \varepsilon>0$.

Recently D. I. Tolev mixed the ternary problem with the binary problem, and was led to a blend of (1) and (2):

[^0]\[

$$
\begin{equation*}
\sum_{\substack{d \leq D \\(d . c)=1}} \gamma(d) \sum_{\substack{n \leq x \\ n \equiv c(\bmod d)}} \Lambda(n) e(\alpha n) \tag{3}
\end{equation*}
$$

\]

In [8] he successfully estimated (3) with a wide uniformity in α, providing that $\gamma \ll 1$ and $D=x^{1 / 3}(\log x)^{-B}$ where $B>0$ is some constant. As the sequence γ is regarded as sieving weights, it is of some interest to extend the level of distribution D in (3). Thus the purpose of this paper is to show that, if γ is wellfactorable, then the above exponent $1 / 3$ may be replaced by $4 / 9$.

Theorem. Suppose that $|\alpha-a / q| \leq q^{-2}$ with $(a, q)=1$. Let $c \neq 0$ be an integer. Let $B>0$ be given. Then, for any well-factorable function λ of level $D=x^{4 / 9}(\log x)^{-B}$, we have that

$$
\sum_{(d . c)=1} \lambda(d) \sum_{\substack{n \leq x \\ n \equiv c(\bmod d)}} \Lambda(n) e(\alpha n) \ll x^{7 / 8}\left(x q^{-1}+x(\log x)^{-4 B}+q\right)^{1 / 8}(\log x)^{13}
$$

where the implied constant depends only on B.
This assertion would be applicable to the problems of [7, 8, 9] and capable to make a modest improvement upon these results. As well as [8], our argument is elementary.

The notation of this paper is standard in Number Theory. Although the symbol $\|\cdot\|$ is used in two different meanings, there would be no confusion. For real $\theta,\|\theta\|$ is the distance from θ to the nearest integer. For sequence $a=(a(n))$, $\|a\|$ stands for the l^{2}-norm. $n \sim N$ means that $N<n \leq c N$ with some constant $0<c \leq 2$. We use the abbreviation $L=\log x$.

I would like to thank Professor Doytchin Ivanov Tolev for calling my attention to this problem. I would also like to thank M. Sc. Temenoujka Peneva Peneva for encouragement and helpful discussion.

2. Proof of Theorem

We may assume that $q \leq x$, for otherwise our assertion is trivial. We choose the parameters of the well-factorable property as $D_{1}=x^{1 / 3} L^{-B}$ and $D_{2}=x^{1 / 9}$, so that $D=D_{1} D_{2}=x^{4 / 9} L^{-B}$. By a dyadic decomposition of summation ranges, it is sufficient to show that

$$
\begin{equation*}
P:=\sum_{\substack{m \sim M \\(m, c)=1}} \sum_{\substack{n \sim N \\ n, c)=1}} f(m) g(n) \sum_{\substack{k \leq x \\ k \equiv c(\bmod m n)}} \Lambda(k) e(\alpha k) \ll x^{7 / 8}\left(x q^{-1}+x L^{-4 B}+q\right)^{1 / 8} L^{11} \tag{4}
\end{equation*}
$$

uniformly for

$$
\begin{equation*}
1 \ll M \ll x^{1 / 3} L^{-B}, \quad 1 \ll N \ll x^{1 / 9} ; \quad f \ll 1, g \ll 1 . \tag{5}
\end{equation*}
$$

We next decompose Λ by means of the combinatrial identity of R. C. Vaughan. We take the parameters in [2, §24] as $U=V=x^{1 / 3}$. Then Λ is written as the sum of Λ_{0} and $\Lambda_{i j}$'s, $1 \leq i, j \leq 2$, where

$$
\Lambda_{0}(k)= \begin{cases}\Lambda(k) & k \leq x^{1 / 3} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\Lambda_{1 j}(k)=\sum_{\substack{t h=k \\ t \leq x^{1 / 3}}} a_{j}(t) l_{j}(h) ; \quad \Lambda_{2 j}(k)=\sum_{\substack{t h=k \\ x^{1 / 3}<t, h \leq x^{2 / 3}}} b_{j}(t) d_{j}(h)
$$

with $a_{1}(n)=b_{1}(n) \ll \log n, a_{2}(n) \ll 1, l_{1}(n)=d_{1}(n)=1, l_{2}(n)=\log n, b_{2}(n) \ll \Lambda(n)$ and $d_{2}(n) \ll \tau(n)$.

The contribution of Λ_{0} to P is at most

$$
\sum_{m \sim M} \sum_{n \sim N} L\left(\frac{x^{1 / 3}}{m n}+1\right) \ll\left(x^{1 / 3}+M N\right) L \ll x^{1 / 2}
$$

Let $Q_{i j}$ be the partial sum of P corresponding to $\Lambda_{i j}, 1 \leq i, j \leq 2$. Then

$$
\begin{equation*}
P \ll x^{1 / 2}+\sum_{i=1,2} \sum_{j=1,2}\left|Q_{i j}\right| . \tag{6}
\end{equation*}
$$

We first consider the "type I " sum $Q_{1 j}, j=1,2$. Since $l_{1}(h)=1$, we see that

$$
Q_{11} \ll \sum_{\substack{m \sim M \\(m, c)=1}} \sum_{\substack{n \sim N \\(n, c)=1}} \sum_{t \leq x^{1 / 3}}\left|a_{1}(t)\right|\left|\sum_{\substack{t h \leq x \\ t h \equiv c(\bmod m n)}} e(\alpha t h)\right| .
$$

The above congruence is soluble if and only if $(t, m n)=1$, and equivalent to $h \equiv r(\bmod m n)$ with some r. Writing $h=r+m n k$, we change the variable h for k. Then k runs through some interval of length $\leq x(t m n)^{-1}$. Here we note that $t m n \ll x^{1 / 3} M N \ll x$ or $x(t m n)^{-1} \gg 1$. Hence we have that

$$
\begin{align*}
Q_{11} & \ll L \sum_{m} \sum_{n} \sum_{t}\left|\sum_{k} e(\alpha t m n k)\right| \tag{7}\\
& \ll L \sum_{\substack{m \sim M \\
(m, c t)=1}} \sum_{\substack{n \sim N \\
(n, c t)=1}} \sum_{t \leq x^{1 / 3}} \min \left(\frac{x}{t m n}, \frac{1}{\|\alpha t m n\|}\right) \\
& \ll L \sum_{k<M N x^{1 / 3}} \tau_{3}(k) \min \left(\frac{x}{k}, \frac{1}{\|\alpha k\|}\right)
\end{align*}
$$

$$
\begin{aligned}
& \ll L\left(\sum_{k} \tau_{3}(k)^{2} \frac{x}{k}\right)^{1 / 2}\left(\sum_{k} \min \left(\frac{x}{k}, \frac{1}{\|\alpha k\|}\right)\right)^{1 / 2} \\
& \ll L\left(x L^{9}\right)^{1 / 2}\left(\left(x q^{-1}+M N x^{1 / 3}+q\right) L\right)^{1 / 2} \\
& \ll x^{1 / 2}\left(x q^{-1}+M N x^{1 / 3}+q\right)^{1 / 2} L^{6}
\end{aligned}
$$

by Cauchy's inequality and $[2, \S 25,(3)]$. The estimation of Q_{12} is similar.
We proceed to the "type II" sum $Q_{2 j}, j=1,2$. Put

$$
\begin{aligned}
R & =R(M, N, U, V ; f, g, r, s) \\
& =\sum_{\substack{m \sim M \\
(m, c)=1}} \sum_{\substack{n \sim N \\
(n, c)=1}} f(m) g(n) \sum_{\substack{u \sim U}} \sum_{\substack{v \sim V \\
u v \leq x \\
u v \equiv c(\bmod m n)}} r(u) s(v) e(\alpha u v) .
\end{aligned}
$$

By a dyadic decomposition of summation ranges, we find that

$$
\begin{equation*}
\left|Q_{21}\right|+\left|Q_{22}\right| \ll L^{2} \sup |R| \tag{8}
\end{equation*}
$$

where the supremum is taken over all parameters M, N, U, V and all sequences f, g, r, s satisfying (5) and

$$
\begin{equation*}
x^{1 / 3} \ll U, \quad V \ll x^{2 / 3} ; \quad r(k) \ll \log k, \quad s(k) \ll \tau(k) . \tag{9}
\end{equation*}
$$

In the next section we shall show that

$$
\begin{equation*}
|R|^{2} \ll\|r\|^{2}\|s\|^{2} x^{3 / 4}\left(x q^{-1}+x L^{-4 B}+q\right)^{1 / 4} L^{13} \tag{10}
\end{equation*}
$$

uniformly. We here note that, by symmetry, we may assume

$$
\begin{equation*}
V \ll U . \tag{11}
\end{equation*}
$$

Therefore, since $\|r\|^{2}\|s\|^{2} \ll x L^{5}$, (4) follows from (6), (7), (8) and (10). Our proof of Theorem is thus reduced to the estimation (10) for R under the conditions (5), (9) and (11).

3. Type II Sum

In order to show (10), we first arrange R in the following three ways:

$$
\sum_{u}\left|\sum_{m} \sum_{n} \sum_{v}\right| ; \quad \sum_{u} \sum_{m}\left|\sum_{n} \sum_{v}\right| ; \quad \sum_{u} \sum_{m} \sum_{n}\left|\sum_{v}\right| .
$$

We then examine each of these, and compare the three resulting bounds for R.

We begin by taking the second way. It follows from Cauchy's inequality that

$$
\begin{align*}
|R|^{2} & \leq\|r\|^{2} M \sum_{u \sim U} \sum_{\substack{m \sim M \\
(m, c)=1}}\left|\sum_{\substack{n \sim N \\
(n, c)=1}} g(n) \sum_{\substack{v \sim V \\
u \leq x \\
u v \equiv c(\bmod m n)}} s(v) e(\alpha u v)\right|^{2} \tag{12}\\
& =\|r\|^{2} M S, \text { say. }
\end{align*}
$$

We expand the square is S and bring the sum over u inside to obtain

$$
S=\sum_{\substack{m \sim M \\(m, c)=1}} \sum_{\substack{n_{1} \sim N \\\left(n_{1}, c\right)=1}} \sum_{\substack{n_{2} \sim N \\\left(n_{2}, c\right)=1}} g\left(n_{1}\right) \overline{g\left(n_{2}\right)} \sum_{v_{1} \sim V} \sum_{v_{2} \sim V} s\left(v_{1}\right) \overline{s\left(v_{2}\right)} \sum_{\substack{u_{1} \sim \sim_{v} \\ u_{1} \leq x \\ \equiv c\left(\bmod m n_{1}\right) \\ u_{2} \equiv c(\bmod \operatorname{mn} 2)}} e\left(\alpha u\left(v_{1}-v_{2}\right)\right) .
$$

The above simultaneous congruences are soluble if and only if $\left(v_{1}, m n_{1}\right)=$ $\left(v_{2}, m n_{2}\right)=1$ and $v_{1} \equiv v_{2}\left(\bmod m\left(n_{1}, n_{2}\right)\right)$, and reduce to the single equation $u \equiv b\left(\bmod m\left[n_{1}, n_{2}\right]\right)$ with some b. Writing $v_{1}=v_{2}+m\left(n_{1}, n_{2}\right) k$ and $u=b+$ $m\left[n_{1}, n_{2}\right] l$, we change the variables $\left(v_{1}, v_{2}, u\right)$ for (k, v, l). Then we see that

$$
\begin{equation*}
\left|m\left(n_{1}, n_{2}\right) k\right|=\left|v_{1}-v_{2}\right| \leq V, \tag{13}
\end{equation*}
$$

and that l runs through some interval of length $\leq U\left(m\left[n_{1}, n_{2}\right]\right)^{-1}$. Also

$$
\begin{aligned}
u\left(v_{1}-v_{2}\right) & =\left(b+m\left[n_{1}, n_{2}\right] l\right) m\left(n_{1}, n_{2}\right) k \\
& =b m\left(n_{1}, n_{2}\right) k+m^{2} n_{1} n_{2} k l
\end{aligned}
$$

Hence we have that

$$
S \ll \sum_{m} \sum_{n_{1}} \sum_{n_{2}} \sum_{k} \sum_{v}\left|s\left(v+m\left(n_{1}, n_{2}\right) k\right)\right||s(v)|\left|\sum_{l} e\left(\alpha m^{2} n_{1} n_{2} k l\right)\right| .
$$

The terms with $k=0$ contribute

$$
\begin{align*}
\sum_{m} \sum_{n_{1}} \sum_{n_{2}}\|s\|^{2} \sum_{l} 1 & \ll\|s\|^{2} \sum_{m \sim M} \sum_{n_{1} \sim N} \sum_{n_{2} \sim N}\left(\frac{U}{m\left[n_{1}, n_{2}\right]}+1\right) \tag{14}\\
& \ll\|s\|^{2}\left(U L^{3}+M N^{2}\right) .
\end{align*}
$$

As for the terms with $k \neq 0$, we may assume $k>0$. Put $n_{1} n_{2} k=j$. Then, by (13), the condition on j becomes

$$
0<m j=m n_{1} n_{2} k=\left[n_{1}, n_{2}\right] m\left(n_{1}, n_{2}\right) k \ll N^{2} V .
$$

Also the trivial bound for the sum over l is

$$
\ll \frac{U}{m\left[n_{1}, n_{2}\right]}+1=\frac{U m\left(n_{1}, n_{2}\right) k}{m^{2} n_{1} n_{2} k}+1 \ll \frac{U V}{m^{2} j}+1 \ll \frac{x}{m^{2} j}+1
$$

Moreover the sum over v is $O\left(\|s\|^{2}\right)$ because of $a b \ll a^{2}+b^{2}$. Hence the sum under consideration is bounded by

$$
\begin{align*}
& \sum_{m} \sum_{j} \tau_{3}(j)\|s\|^{2}\left|\sum_{l} e\left(\alpha m^{2} j l\right)\right| \tag{15}\\
\ll & \|s\|^{2} \sum_{m \sim M} \sum_{m j \ll N^{2} V} \tau_{3}(j) \min \left(\frac{x}{m^{2} j}+1, \frac{1}{\left\|\alpha m^{2} j\right\|}\right) .
\end{align*}
$$

Here we note that $\min (a+1, b) \leq \min (a, b)+1$. Thus, substituting (14) and (15) into (12), we have that

$$
\begin{align*}
& |R|^{2} \ll\|r\|^{2}\|s\|^{2} \tag{16}\\
& \cdot\left\{M \sum_{m \sim M} \sum_{m j \ll N^{2} V} \tau_{3}(j) \min \left(\frac{x}{m^{2} j}, \frac{1}{\left\|\alpha m^{2} j\right\|}\right)+M U L^{3}+M^{2} N^{2}+M N^{2} V L^{3}\right\} .
\end{align*}
$$

Now, in the above double sum, we split up the summation range for j. We then appeal to

Lemma. For $0<M, J \leq x$, we have that

$$
\begin{aligned}
G & :=M \sum_{m \sim M} \sum_{j \sim J} \tau_{3}(j) \min \left(\frac{x}{m^{2} j}, \frac{1}{\left\|x m^{2} j\right\|}\right) \\
& \ll M^{2} J L^{3}+x^{3 / 4}\left(x q^{-1}+x M^{-1}+q\right)^{1 / 4} L^{8} .
\end{aligned}
$$

We put our proof of this lemma off until the next section. Therefore, through the second way, we reach the following estimation.

$$
\begin{align*}
|R|^{2} & \ll\|r\|^{2}\|s\|^{2} L^{9}\left\{x^{3 / 4}\left(x q^{-1}+x M^{-1}+q\right)^{1 / 4}+M U+M^{2} N^{2}+M N^{2} V\right\} \tag{17}\\
& =\|r\|^{2}\|s\|^{2} L^{9} Y, \text { say. }
\end{align*}
$$

Next, turning back to the begining, we take the third way. In place of the form $\sum_{u} \sum_{m}\left|\sum_{n} \sum_{v}\right|$, our starting point is now $\sum_{u} \sum_{m} \sum_{n}\left|\sum_{v}\right|$. Then, by the similar argument as above, we get the similar bound to (16), in which the pair of parameters (M, N) is replaced by $(M N, 1)$. We thus have that
(18)

$$
\begin{aligned}
|R|^{2} & \ll\|r\|^{2}\|s\|^{2} L^{3}\left\{M N \sum_{d \sim M N} \sum_{d j \ll V} \min \left(\frac{x}{d^{2} j}, \frac{1}{\left\|\alpha d^{2} j\right\|}\right)+M N U+M^{2} N^{2}+M N V\right\} \\
& \ll\|r\|^{2}\|s\|^{2} L^{12}\left\{x^{3 / 4}\left(x q^{-1}+x(M N)^{-1}+q\right)^{1 / 4}+M N U+M^{2} N^{2}+M N V\right\} \\
& =\|r\|^{2}\|s\|^{2} L^{12} Z, \text { say }
\end{aligned}
$$

by Lemma again.
Finally we take the first way. Restarting from $\sum_{u}\left|\sum_{m} \sum_{n} \sum_{v}\right|$, we argue as before. We then have the similar estimation to (16), replacing (M, N) by $(1, M N)$. Hence we see that

$$
|R|^{2} \ll\|r\|^{2}\|s\|^{2}\left\{\sum_{h \ll M^{2} N^{2} V} \tau_{5}(h) \min \left(\frac{x}{h}, \frac{1}{\|\alpha h\|}\right)+U L^{8}+M^{2} N^{2}+M^{2} N^{2} V\right\} .
$$

The square of the above sum over h is at most

$$
\sum_{k<M^{2} N^{2} V} \tau_{5}(k)^{2} \frac{x}{k} \sum_{h \ll M^{2} N^{2} V} \min \left(\frac{x}{h}, \frac{1}{\|\alpha h\|}\right) \ll x\left(x q^{-1}+M^{2} N^{2} V+q\right) L^{26},
$$

by Cauchy's inequality and $[2, \S 25,(3)]$. Hence, going through the first way, we get that

$$
\begin{align*}
|R|^{2} & \ll\|r\|^{2}\|s\|^{2} L^{13}\left\{x^{1 / 2}\left(x q^{-1}+M^{2} N^{2} V+q\right)^{1 / 2}+U+M^{2} N^{2}+M^{2} N^{2} V\right\} \tag{19}\\
& =\|r\|^{2}\|s\|^{2} L^{13} X, \text { say. }
\end{align*}
$$

In conjunction with (17), (18) and (19), we conclude that

$$
\begin{equation*}
|R|^{2} \ll\|r\|^{2}\|s\|^{2} L^{13} \min (X, Y, Z) . \tag{20}
\end{equation*}
$$

Now we recall the conditions (5), (9) and (11). It follows from (17) and (18) that

$$
\min (Y, Z) \ll x^{3 / 4}\left(x q^{-1}+x M^{-1}+q\right)^{1 / 4}+M^{2} N^{2}+\min \left(M U+M N^{2} V, M N U\right)
$$

since $\min (a+b, a+c)=a+\min (b, c), N \gg 1$ and $V \ll U$. The above last term is

$$
\begin{aligned}
& \leq M U+\min \left(M N^{2} V, M N U\right) \\
& \leq M U+\left(M N^{2} V\right)^{1 / 2}(M N U)^{1 / 2} \\
& <M x^{2 / 3}+M N^{3 / 2} x^{1 / 2} \\
& <x L^{-B} .
\end{aligned}
$$

Here we used the inequality that $\min (a, b) \leq a^{s} b^{t}, s+t=1, s, t \geq 0$. Hence

$$
\begin{aligned}
\min (Y, Z) & \ll x^{3 / 4}\left(x q^{-1}+x L^{-4 B}+q\right)^{1 / 4}+x M^{-1 / 4} \\
& =W+x M^{-1 / 4}, \text { say } .
\end{aligned}
$$

Also, from (19), we see that

$$
X \ll W+x^{1 / 2}\left(M^{2} N^{2} V\right)^{1 / 2}+M^{2} N^{2} V
$$

because of $1 \leq q \leq x$. In consequence, it turns out that

$$
\begin{aligned}
\min (X, Y, Z) & =\min (X, \min (Y, Z)) \\
& \ll W+\min \left(x^{1 / 2}\left(M^{2} N^{2} V\right)^{1 / 2}+M^{2} N^{2} V, x M^{-1 / 4}\right) \\
& \ll W+\left(x^{1 / 2}\left(M^{2} N^{2} V\right)^{1 / 2}\right)^{1 / 5}\left(x M^{-1 / 4}\right)^{4 / 5}+\left(M^{2} N^{2} V\right)^{1 / 9}\left(x M^{-1 / 4}\right)^{8 / 9} \\
& \ll W+x^{9 / 10}\left(N^{2} V\right)^{1 / 10}+x^{8 / 9}\left(N^{2} V\right)^{1 / 9} \\
& \ll W
\end{aligned}
$$

since $N^{2} V \ll x^{8 / 9}$.
Substituting this into (20), we get the required bound (5) for R. Therefore we have Theorem, except for the verification of Lemma.

4. Proof of Lemma

It remains to estimate G. To this end, we employ a well-known Fourier series: For $H>2$,

$$
\min \left(H,\|\theta\|^{-1}\right)=\sum_{h \in Z} w_{h} e(\theta h)
$$

where

$$
w_{h}=w_{h}(H) \ll \min \left(\log H, \frac{H}{|h|}, \frac{H^{2}}{h^{2}}\right)
$$

Put $H=x\left(M^{2} J\right)^{-1}$. Unless $H>2$, we trivially have that

$$
G \ll M \sum_{m \sim M} \sum_{j \sim J} \tau_{3}(j) \ll M^{2} J L^{2}
$$

So we may use the above expansion to obtain

$$
\min \left(H, \frac{1}{\left\|\alpha m^{2} j\right\|}\right)=O(L)+\sum_{0<|h| \leq H^{2}} w_{h} e\left(\alpha m^{2} j h\right) .
$$

Substituting this into G, we see that

$$
\begin{align*}
G & \ll M^{2} J L^{3}+M \sum_{0<|h| \leq H^{2}}\left|w_{h}\right| \sum_{j \sim J} \tau_{3}(j)\left|\sum_{m \sim M} e\left(\alpha m^{2} j h\right)\right| \tag{21}\\
& =M^{2} J L^{3}+F, \text { say } .
\end{align*}
$$

Here we consider

$$
\left|\sum_{m \sim M} e\left(\alpha m^{2} j h\right)\right|^{2}=\sum_{m_{1} \sim M} \sum_{m_{2} \sim M} e\left(\alpha\left(m_{1}^{2}-m_{2}^{2}\right) j h\right) .
$$

We write $m_{1}-m_{2}=g$, so that $|g| \leq M$ and $m_{1}^{2}-m_{2}^{2}=2 m_{2} g+g^{2}$. The above sum is then bounded by

$$
\begin{align*}
& \ll \sum_{m \sim M} 1+\sum_{g \leq M}\left|\sum_{m \sim M} e(\alpha 2 m g j h)\right| \tag{22}\\
& \ll M+\sum_{g \leq 2 M} \min \left(M, \frac{1}{\|\alpha g j h\|}\right) .
\end{align*}
$$

Hence it follows from (21), Cauchy's inequality and (22) that

$$
\begin{align*}
F^{2} & \ll M^{2} \sum_{k \leq H^{2}}\left|w_{k}\right| \sum_{l \sim J} \tau_{3}(l)^{2} \sum_{h \leq H^{2}}\left|w_{h}\right| \sum_{j \sim J}\left|\sum_{m \sim M} e\left(\alpha m^{2} j h\right)\right|^{2} \tag{23}\\
& \ll M^{2} H J L^{9}\left\{H J M L+\sum_{h \leq H^{2}} \min \left(\log H, \frac{H}{h}\right) \sum_{j \sim J} \sum_{g \leq 2 M} \min \left(M, \frac{1}{\|\alpha g j h\|}\right)\right\} \\
& =x L^{9}\left\{\frac{x}{M} L+E\right\}, \text { say. }
\end{align*}
$$

We proceed to E. Dividing the interval $\left(0, H^{2}\right]$ into the subintervals $(0, H]$ and $\left(H 2^{k-1}, H 2^{k}\right], 1 \leq k \ll L$, we find that

$$
\begin{equation*}
E \ll L \max _{1 \leq T \ll H} \frac{1}{T} \sum_{h \leq 2 H T} \sum_{j \sim J} \sum_{g \leq 2 M} \min \left(M, \frac{1}{\|\alpha g j h\|}\right) \tag{24}
\end{equation*}
$$

Put $l=g j h$. Then $l \ll M J H T \ll(x / M) T$ or $M \ll x T / l$. Hence, by Cauchy's
inequality and $[2, \S 25,(3)]$, the triple sum in (24) is at most

$$
\begin{aligned}
& \sum_{l<(x / M) T} \tau_{3}(l) \min \left(M, \frac{1}{\|\alpha l\|}\right) \\
& \ll\left(\sum_{l \ll(x / M) T} \tau_{3}(l)^{2} M\right)^{1 / 2}\left(\sum_{l \ll(x / M) T} \min \left(\frac{x T}{l}, \frac{1}{\|\alpha l\|}\right)\right)^{1 / 2} \\
& \ll T x^{1 / 2}\left(\frac{x}{q}+\frac{x}{M}+\frac{q}{T}\right)^{1 / 2} L^{5} .
\end{aligned}
$$

We therefore have that

$$
E \ll x^{1 / 2}\left(\frac{x}{q}+\frac{x}{M}+q\right)^{1 / 2} L^{6}
$$

Combining this with (23) and (21), we get the required bound for G.
This completes our proof of Theorem.

References

[1] E. Bombieri, J.-B. Friedlander and H. Iwaniec. Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), 203-251.
[2] H. Davenport. Multiplicative Number Theory (2nd ed. rev. by H. L. Montgomery). SpringerVerlag, 1980.
[3] E. Fouvry. Autour du théorème de Bombieri-Vinogradov. Acta Math. 152 (1984), 219-244.
[4] E. Fouvry and H. Iwaniec. Primes in arithmetic progressions. Acta Arith. 42 (1983), 307-320.
[5] H. Halberstam and H.-E. Richert. Sieve Methods. Academic Press, 1974.
[6] H. Iwaniec. A new form of the error term in the linear sieve. Acta Arith. 37 (1980), 307-320.
[7] T. P. Peneva. On the ternary Goldbach problem with primes p_{i}, such that $p_{i}+2$ are almostprimes. (preprint).
[8] D. I. Tolev. Arithmetic progressions of prime-almost-prime twins. Acta Arith. 88 (1999), 67-98.
[9] D. I. Tolev. Representations of large integers as sums of two primes of special type. (preprint).

> Institute of Mathematics University of Tsukuba Tsukuba 305-8571
> Japan mikawa@math.tsukuba.ac.jp

[^0]: Received October 8, 1999

