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1. Introduction

In Riemannian geometry the theory of homogeneous spaces is a very in-
teresting subject. Many geometers investigate homogeneous submanifolds in a
complex projective space $CP_{n}$ and get many fruitful results. $CP_{n}$ has good
geometric structures. One of them is a Kahler structure. These structures induce
many geometric structures on submanifolds. For example, almost contact metric
structures on real hypersurfaces are induced from the K\"ahler structure of $CP_{n}$ .
These structures are very useful to investigate geometries of real hypersurfaces.
On the other hand, $CP_{n}$ has the Hopf fibration whose total space is the odd-
dimensional unit sphere $S^{2n+1}$ . Its projection is a Riemannian submersion. The
fundamental equations of Riemannian submersions are investigated by O’Neill
[9]. The Hopf fibration is a useful tool when we study geometries of submanifolds
in $CP_{n}$ . Through the Hopf fibration informations of submanifolds in $CP_{n}$ can be
translated into informations of submanifolds in $S^{2n+1}$ and vice versa. Using this
method, R. Takagi [11] classified homogeneous real hypersurfaces in $CP_{n}$ . By his
theorem they are classified into 5 types of Riemannian submanifolds, say of type
$(A)-(E)$ (see \S 2 Theorem T).

The homogeneity of a Riemannian manifold can be studied by means of the
existence of a so called homogeneous structure tensor (cf. [1] and [14]). So it is
natural to expect that on each homogeneous manifold a homogeneous structure
tensor will contain geometric informations about this space. Therefore it is an
important problem to determine homogeneous structure tensors on homogeneous
spaces. In the paper [6] the author gives a homogeneous structure on a homo-
geneous real hypersurface of type (A) (cf. \S 4). Using this tensor, we know that
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a real hypersurface of type (A) is naturally reductive. Further, in the paper [7] the
author determines all naturally reductive homogeneous real hypersurfaces in $CP_{n}$ .

Our aim in this paper is twofold. One of our purposes is to determine a
homogeneous structure on a real hypersurface of type (B). This is expressed by
using its almost contact metric stmcture and the shape operator. The result is as
follows.

THEOREM 4.1. The following tensor $T^{B}$ defines an invariant homogeneous
structure on a homogeneous real hypersurface $M$ of type (B)

(4.1) $ T_{X}^{B}Y=\frac{\alpha}{2}\eta(X)\phi Y+\eta(Y)\phi AX-g(\phi AX, Y)\xi$ .

Here $(\phi, \xi, \eta, g)$ is an almost contact metric structure on $M$ and $\alpha$ is the principal
curvature in the direction of $\xi$ (for details see \S 2).

Another purpose of this paper is to investigate relations between homoge-
neous structures of submanifolds in $CP_{n}$ and $S^{2n+1}$ . Here we prove

THEOREM 3.1. Let $T$ be an invariant homogeneous structure of a real
hypersurface $M$ on which $\xi$ is principal in $CP_{n}$ . Then the lift hypersurface $M^{\prime}$ in a
unit sphere $S^{2n+1}$ is $/ocally$ homogeneous and the $fol/0\dagger\not\in\prime ing$ tensor $T^{\prime}$ defines a
homogeneous structure of $M^{\prime}$ .

(3.1)
$T_{X}^{\prime}Y=(T_{\pi(X)}\pi(Y))^{*}-g^{\prime}(X, V)(\phi\pi(Y))^{*}-g^{\prime}(Y, \nabla)(\phi\pi(X))^{*}+g(\phi\pi(X), \pi(Y))V$ .

Here $\pi$ is the map from $M$ ‘ to $M$ naturally induced by the Hopf fibration. $V$ and
$($ $)^{*}$ denote the vertical tangent vector of $M^{\prime}$ and the horizontal lift of a vector
(for details see \S 2).

Further, using these observations, we obtain homogeneous structures of
submanifolds in $S^{2n+1}$ which are some of homogeneous hypersurfaces given by
isotropy representations of compact Riemannian symmetric spaces of rank 2
(cf. [11]).

2. Preliminaries

In this section we explain preliminary results conceming Riemannian homo-
geneous structures, real hypersurfaces of a complex projective space and Hopf
fibrations.

First, we recall a criterion for homogeneity of a Riemannian manifold
obtained by Ambrose and Singer [1]. We start with
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DEFINITION 2.1. A connected Riemannian manifold $(M, g)$ is said to be
homogeneous if the group $I(M)$ of isometries acts transitively on $M$ .

On the other hand, local homogeneity is defined by

DEFINITION 2.2. A connected Riemannian manifold $(M, g)$ is said to be
locally homogeneous if, for each $p,$ $q\in M$ , there exists a neighborhood $U$ of $p$ , a
neighborhood $V$ of $q$ and a local isometry $\phi$ : $U\rightarrow V$ such that $\phi(p)=q$ .

In the paper [1], Ambrose and Singer give a criterion for homogeneity of a
Riemannian manifold:

THEOREM AS ([1]). A connected, comple $te$ and simply connected Riemannian

manifold $M$ is homogeneous if and only $lf$ there exists a tensor field $T$ of type $(1, 2)$

on $M$ such that

(i) $g(T_{X}Y, Z)+g(Y, T_{X}Z)=0$ ,

(ii) $(\nabla_{X}R)(Y, Z)=[T_{X}, R(Y, Z)]-R(T_{X}Y, Z)-R(Y, T_{X}Z)$ ,

(iii) $(\nabla_{X}T)_{Y}=[T_{X}, T_{Y}]-T_{T_{X}Y}$ ,

for $X,$ $Y,$ $Z\in \mathscr{X}(M)$ . Here $\nabla$ denotes the Levi Civita connection, $R$ is the Rie-
mannian curvature tensor of $M$ and $\mathscr{X}(M)$ is the Lie algebra of all $C^{\infty}$ vector fields
over $M$.

Furthermore, without the topological conditions of completeness and simply
connectedness, the three conditions $(i)-(iii)$ give a criterion for local homogeneity
of $M$ .

REMARK 2.3. If we put $\tilde{\nabla}$ $:=\nabla-T$ , then the conditions (i), (ii) and (iii) are
equivalent to $\tilde{\nabla}g=0,\tilde{\nabla}R=0$ and $\tilde{\nabla}T=0$ , respectively.

Secondly, we tum to some preliminaries conceming real hypersurfaces of a
complex projective space. Let $CP_{n}(4)$ be an n-dimensional complex projective
space with constant holomorphic sectional curvature 4 and let $J$ and $\overline{g}$ be its
complex structure and metric, respectively. Further, let $M$ be a connected
submanifold of $CP_{n}(4)$ with real codimension 1, simply called a real hypersurface
in the following. We denote by $g$ the induced Riemannian metric of $M$ and by $v$ a
local unit normal vector field of $M$ in $CP_{n}(4)$ .

The Gauss and Weingarten formulas are:

(2.1) $\overline{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)v$ ,

(2.2) $\overline{\nabla}_{X}v=-AX$ ,
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where V and $\nabla$ denote the Levi Civita connection on $CP_{n}(4)$ and $M$, respectively
and $A$ is the shape operator of $M$ in $CP_{n}(4)$ .

We define an almost contact metric structure $(\phi, \xi, \eta, g)$ of $M$ as usual. That
is,

$\xi=-Jv$ , $\eta(X)=g(X, \xi)$ , $\phi X=(JX)^{T}$ , for $X\in TM$ ,

where $TM$ denotes the tangent bundle of $M$ and $($ $)^{T}$ the tangential component
of a vector. These structure tensors satisfy the following relations:

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,
(2.3)

$g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$ , $X,$ $Y\in TM$ ,

where $I$ denotes the identity mapping of $TM$ .
From (2.1) we easily have

(2.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(2.5) $\nabla_{X}\xi=\phi AX$

for tangent vectors $X,$ $Y\in TM$ .
For a homogeneous structure we define

DEFINITION 2.4. A homogeneous structure tensor $T$ on a real hypersurface in
$CP_{n}$ is said to be invariant if all structure tensors $(\phi, \xi, \eta, g)$ are parallel with
respect to the connection $\tilde{\nabla}=\nabla-T$ .

In our case the Gauss and Codazzi equations of $M$ become

(2.6) $R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$ ,

(2.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .

Homogeneous real hypersurfaces of $CP_{n}(4)$ are completely classified. In [11]
R. Takagi obtained the following:

THEOREM $T$ ([11]). Let $M$ be a homogeneous real hypersurface of $CP_{n}(4)$ .
Then $M$ is locally congruent to one of the following spaces:

(A) a tube of radius $r$ over a totally geodesic $CP_{k}(4)(0\leq k\leq n-1)$ ,
$0<r<\pi/2$ ;

(B) a tube of radius $r$ over a complex quadric $Q_{n-1},0<r<\pi/4$ ;
(C) a tube of radius $r$ over $CP_{1}\times CP_{(n-1)/2},$ $n\geq 5$ is odd, $0<r<\pi/4$ ;
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(D) a tube of radius $r$ over a comp $lex$ Grassmann $G_{2,5}(C),$ $n=9,0<r<\pi/4$ ;
(E) a tube of radius $r$ over a Hermitian symmetric space $SO(10)/U(5)$ ,

$n=15,0<r<\pi/4$ .
Here $CP_{0}$ means a single point.

Homogeneous real hypersurfaces have other representations obtained by
using the Hopf fibrations. For later use, we only write such representations in the
case of real hypersurfaces of type (A) and type (B).

For real hypersurfaces of type (A) we have the following commutative
diagram:

$S^{2p+1}(r_{1})\times S^{2q+1}(r_{2})\rightarrow S^{2n+1}(1)$

(2.8)
$\pi_{M}\downarrow$

–

$ CP_{n}(4^{\prime})\downarrow\pi$

where $r_{1}^{2}+r_{2}^{2}=1$ and $p+q=n-1$ .
For real hypersurfaces of type (B), we have

$SO(2)\times SO(n+1)/Z_{2}\times SO(n-1)-$ $S^{2n+1}$

(2.9) $\pi\downarrow$ $\downarrow\pi^{\prime}$

$M$ $\rightarrow CP_{n}(4)$ ,

where $Z_{2}$ denotes the finite group of order 2. In both diagrams the map $\pi^{\prime}$ is the
Hopf fibration (cf. [8], [11], [13]).

About the decomposition of the tangent space into the eigenspaces of the
shape operator of a homogeneous real hypersurface, we know the following:

THEOREM 2.5([12]). The tangent space of the homogeneous real hypersurfaces
can be decomposed as follows:
for type (A): $TM=R\xi\oplus T_{X}\oplus T_{-1/x},$ $A\xi=(x-1/x)\xi,$ $x>0$ ;

for type (B): $TM=R\xi\oplus T_{x}\oplus T_{-1/x},$ $A\xi=(-4x/(x^{2}-1))\xi,$ $0<x<1$ ;

for lype (C), (D) and (E): $\left\{\begin{array}{l}TM=R\xi\oplus T_{X}\oplus T_{-l/x}\oplus T_{(x+1)/(l-x)}\oplus T_{(x-1)/(x+l)},\\A\xi=(-4x/(x^{2}-1))\xi,0<x<1,\end{array}\right.$

where $T_{\lambda}$ denotes the eigenspace of the shape operator with the principal curvature
$\lambda$ . Further, for type $(B)-(E)$ we have $\phi T_{X}=T_{-1/x}$ (cf. [5]).

In what follows we denote the principal curvature in the direction of the
vector $\xi$ by $\alpha$ , that is, $ A\xi=\alpha\xi$ . From Theorem 2.5 we have
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PROPOSITION 2.6. The shape operafor of a homogeneous real hypersurface of
type (B) satisfies the following relations:

(2.10) $\phi A+A\phi=-\frac{4}{\alpha}\phi$ ,

(2.11) $\phi(A^{2}+\frac{4}{\alpha}A-I)=0$ .

For the covariant derivative of the shape operator $A$ , we have:

PROPOSITION 2.7([3]). Let $M$ be a homogeneous real hypersurface of type (B).
Then the shape operator $A$ of $M$ satisfies
(2.12)

$(\nabla_{X}A)Y=-\frac{\alpha}{4}\{2\eta(X)(A\phi-\phi A)Y+\eta(Y)(A\phi-3\phi A)X+g((A\phi-3\phi A)X, Y)\xi\}$ .

Finally, we explain some fundamental equations of the Hopf fibration and
their submanifolds. For details see [9] and [10]. Let $\pi^{\prime}$ : $S^{2n+1}\rightarrow CP_{n}$ be the Hopf
fibration. Further, let $(J,\overline{g},\overline{\nabla})$ be the triple determined by the complex structure,
the Riemannian metric of constant holomorphic sectional curvature 4 and the
Levi Civita connection of $CP_{n}$ . Moreover, let $(\overline{g^{\prime}}, \overline{\nabla^{\prime}})$ be the pair formed by the
metric of constant sectional curvature 1 and the Levi Civita connection of $S^{2n+1}$ .
For a real hypersurface $M$ of $CP_{n}$ we have the following commutative diagram:

(2.13)

$(g^{\prime}, \nabla^{\prime})$

$M\pi\downarrow^{\prime}\underline{l^{\prime}}S^{2n+}(,1)\downarrow^{1}\pi(\overline{g^{\prime}}, \overline{\nabla^{\prime}})$

$(\phi, \xi, \eta, g, \nabla)M$ $\underline{l}CP_{n}(4)(J,\overline{g}, \overline{\nabla})$ .

Here $(\phi, \xi, \eta, g, \nabla)$ denotes the almost contact metric structure and the Levi Civita
connection of $M,$ $M^{\prime}$ is the inverse image of $M$ by $\pi$

‘ and $(g^{\prime}, \nabla^{\prime})$ denotes the pair
of the Riemannian metric and the Levi Civita connection of $M^{\prime}$ .

In the following, for a vector $X\in TCP_{n}$ (resp. $\in TM$ ) $\chi*$ denotes the
horizontal lift of $X$ in $TS^{2n+1}$ (resp. in $TM^{\prime}$ ). Further, for a $point_{-}^{-}\in S^{2n+1}$ (resp.
$\in M^{\prime})V--=-i_{-}^{-}$ denotes a vertical tangent vector $at_{-}^{-}\in S^{2n+1}$ (resp. $\in M^{\prime}$ ), where
$i$ is the complex structure of $C^{n+1}$ acting canonically on the unit sphere $ S^{2n+1}\subset$

$C^{n+1}$ . For $X\in TS^{2n+1}$ we have $\nabla_{X}^{\overline{\prime}}V=(-J\pi^{\prime}(X))^{*}$ , where $J$ and $($ $)^{*}$ denote the
complex structure of $CP_{n}$ and the horizontal lift of a vector, respectively and $\pi$

‘

also denotes the differential of $\pi$ ‘. Then the fundamental equations of the
submersions $\pi^{\prime}$ and $\pi$ are
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(2.14) $\nabla_{X^{*}}^{\overline{/}}Y^{*}=(\overline{\nabla}_{X}Y)^{*}+\overline{g}(JX, Y)V$ , $X,$ $Y\in TCP_{n}$ ,

(2.15) $\nabla_{X}^{\prime}$ . $Y^{*}=(\nabla_{X}Y)^{*}+g(\phi X, Y)V$ , $X,$ $Y\in TM$ .

For a unit normal vector field $v$ of $M$ in $CP_{n}$ the horizontal lift $v^{*}$ defines a
unit normal vector field of $M^{\prime}$ in $S^{2n+1}$ . From (2.14) we can easily get the
following relations between the shape operator $A^{\prime}$ of $M^{\prime}$ and the shape operator
$A$ of $M$ :

(2.16) $A^{\prime}X^{*}=(AX)^{*}-\eta(X)V$ .

Further, since $\nabla_{V}^{\overline{/}}v^{*}=\overline{\nabla^{\prime}}_{v}*V=(-Jv)^{*}=\xi^{*}$ , we have

(2.17) $A^{\prime}V=-\xi^{*}$

So we obtain

(2.18) $A^{\prime}Z=(A\pi(Z))^{*}-g(\pi(Z), \xi)V-g^{\prime}(Z, V)\xi^{*}$ , $Z\in TM^{\prime}$ ,

where the differential of $\pi$ is denoted by the same letter $\pi$ .
Using (2.15), we have

(2.19) $\pi(\nabla_{X}^{\prime}Z)=\nabla_{\pi(X)}\pi(Z)-g^{\prime}(V, Z)\phi\pi(X)-g^{\prime}(V, X)\phi\pi(Z)$ .

The covariant derivative of the shape operator $A^{\prime}$ of $M^{\prime}$ has the following
formula.

LEMMA 2.8([2]). Let $A^{\prime}$ be the shape operator of $M$ ‘ in $S^{2n+1}$ . Then we have

(2.20) $(\nabla_{X}^{\prime}A^{\prime})Y=\{(\nabla_{\pi(X)}A)\pi(Y)+\eta(\pi(Y))\phi\pi(X)+g(\phi\pi(X), \pi(Y))\xi\}^{*}$

$-g^{\prime}(X, V)\{(\phi A-A\phi)\pi(Y)\}^{*}-g^{\prime}(Y, V)\{(\phi A-A\phi)\pi(X)\}^{*}$

$-g(\pi(Y), (\phi A-A\phi)\pi(X))V$ .

PROOF. This follows from a straightforward calculation by using (2.18),
(2.19) and the definition of $\nabla^{\prime}A$ ‘ (for details see [2]). $\blacksquare$

3. Relations between Homogeneous Structures in the Hopf Fibration

In this section we obtain the relations between homogeneous structures of
real hypersurfaces in $CP_{n}(4)$ and the corresponding lifts hypersurfaces in $S^{2n+1}$ .

We have the following:
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THEOREM 3.1. Let $T$ be an invariant homogeneous structure on a real
hypersurface $M$ on which $\xi$ is principal in $CP_{n}$ . Then the lift hypersurface $M^{\prime}$ in a
unit sphere $S^{2n+1}$ is locally homogeneous and the following tensor $T^{\prime}$ defines a
homogeneous structure on $M^{\prime}$ :

(3.1)
$T_{X}^{\prime}Y=(T_{\pi(X)}\pi(Y))^{*}-g^{\prime}(X, V)(\phi\pi(Y))^{*}-g^{\prime}(Y, V)(\phi\pi(X))^{*}+g(\phi\pi(X), \pi(Y))V$ .

PROOF. We have to prove the conditions $(i)-(iii)$ of the Theorem AS.
First, we prove (i). By straightforward calculation we have

$g^{\prime}(T_{X}^{\prime}Y, Z)+g^{\prime}(Y, T_{X}^{\prime}Z)=g(T_{\pi(X)}\pi(Y), \pi(Z))+g(\pi(Y), T_{\pi(X)}\pi(Z))$ .

By our hypothesis the right-hand side of this equation vanishes. This prove (i).
Secondly, we prove (ii). For this purpose it suffices to prove $\nabla_{X}^{\prime}A^{\prime}=T_{X}^{\prime}A^{\prime}$ .

Using (2.5), (2.18) and (3.1), we obtain

$(T_{X}^{\prime}A^{\prime})Y=\{(T_{\pi(X)}A)\pi(Y)+\eta(\pi(Y))\phi\pi(X)+g(\phi\pi(X), \pi(Y))\xi\}^{*}$

$-g^{\prime}(X, V)\{(\phi A-A\phi)\pi(Y)\}^{*}-g^{\prime}(Y, V)\{(\phi A-A\phi)\pi(X)\}^{*}$

$-g(\pi(Y), (\phi A-A\phi)\pi(X))V$ .

Combining this with (2.20), we have

(3.2) $\nabla_{X}^{\prime}A^{\prime}-T_{X}^{\prime}A^{\prime}=(\tilde{\nabla}_{\pi(X)}A)^{*}$

By our assumption and (2.5) we have

(3.3) $T_{W}\xi=\phi AW$ , $W\in TM$ .

Taking the covariant differentiation of (3.3), we obtain

(3.4) $(\tilde{\nabla}_{\pi(X)}T)_{W}\xi+T_{W}(\tilde{\nabla}_{\pi(X)}\xi)=(\tilde{\nabla}_{\pi(X)}\phi)AW+\phi(\tilde{\nabla}_{\pi(X)}A)W$ .

Since $T,$ $\phi$ and $\xi$ are parallel with respect to the connection $\tilde{\nabla},$ $(3.4)$ reduces to

(3.5) $\phi(\tilde{\nabla}_{\pi(X)}A)W=0$ .

From (2.3) and (3.5) we have

(3.6) (V$\pi(X)A$ ) $ W=g((\tilde{\nabla}_{\pi(X)}A)\xi, W)\xi$ .

On the other hand we have the following:
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$(\tilde{\nabla}_{\pi(X)}A)\xi=\tilde{\nabla}_{\pi(X)}(\alpha\xi)-A(\tilde{\nabla}_{\pi(X)}\xi)$

$=\alpha\tilde{\nabla}_{\pi(X)}\xi$

$=0$ .

Here we use the fact that the principal curvature $\alpha$ in the direction $\xi$ is constant
(cf. [5] p. 533 Lemma 2.4).

So we have $\tilde{\nabla}_{\pi(X)}A=0$ . Combining this with (3.2) we have (ii).
Finally, we prove (iii). For this purpose we define the following two tensors

$\phi^{*}$ and $T^{*}:$

$\phi^{*}X=(\phi\pi(X))^{*}$ , $T_{X}^{*}Y=(T_{\pi(X)}\pi(Y))^{*}$ ,

where $X,$ $Y\in TM^{\prime}$ . To prove (iii) it suffices to verify that these tensors and $V$ are
parallel with respect to the connection $\tilde{\nabla}^{\prime}=\nabla^{\prime}-T$ ‘.

First, we prove $\tilde{\nabla}_{X}^{\prime}V=0$ . By the definition of $T^{\prime}$ we have $T_{X}^{\prime}V=$

$-(\phi\pi(X))^{*}$ . Since the right-hand side of this equals to $\nabla_{X}^{\prime}V$ (see [9]), we get the
assertion.

Next, we prove the parallelism of the tensor $\phi^{*}$ . Using (2.15) and (2.18), we
have

$(\nabla_{X}^{\prime}\phi^{*})Y=\nabla_{X}^{\prime}(\phi^{*}Y)-\phi^{*}(\nabla_{X}^{\prime}Y)$

$=\{(\nabla_{\pi(X)}\phi)\pi(Y)\}^{*}-g^{\prime}(Y, V)\pi(X)^{*}+g(\pi(X), \pi(Y))V$ .

On the other hand, we obtain

$(T_{X}^{\prime}\phi^{*})Y=T_{X}^{\prime}((\phi\pi(Y))^{*})-\phi^{*}(T_{X}^{\prime}Y)$

$=\{(T_{\pi(X)}\phi)\pi(Y)\}^{*}-g^{\prime}(Y, V)\pi(X)^{*}+g(\pi(X), \pi(Y))V$ .

So we get
$(\tilde{\nabla}_{X}^{\prime}\phi^{*})Y=(\nabla_{X}^{\prime}\phi^{*})Y-(T_{X}^{\prime}\phi^{*})Y=0$ .

Now, we prove $(\tilde{\nabla}_{X}^{\prime}T^{*})_{Y}Z=0$ . According to (2.15) and (2.18), we obtain the
following expression after a long and straightforward calculation.

$(\nabla_{X}^{\prime}T^{*})_{Y}Z=\nabla_{X}^{\prime}(T_{Y}^{*}Z)-T_{\nabla_{X}^{\prime}Y}^{*}Z-T_{Y}^{*}(\nabla_{X}^{\prime}Z)$

$=\{(\nabla_{\pi(X)}T)_{\pi(Y)}\pi(Z)\}^{*}$

$+g^{\prime}(X, V)\{T_{\pi(Y)}(\phi\pi(Z))+T_{\phi\pi(Y)}\pi(Z)-\phi T_{\pi(Y)}\pi(Z)\}^{*}$

$+g^{\prime}(Y, V)\{T_{\phi\pi(X)}\pi(Z)\}^{*}+g^{\prime}(Z, V)\{T_{\pi(Y)}(\phi\pi(Z))\}^{*}$

$+g(\phi\pi(X), T_{\pi(Y)}\pi(Z))V$ .
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On the other hand, we obtain

$(T_{X}^{\prime}T^{*})_{Y}Z=T_{X}^{\prime}T_{Y}^{*}Z-T_{T_{\chi}^{\prime}Y}^{*}Z-T_{Y}^{*}T_{X}^{\prime}Z$

$=\{(T_{\pi(X)}T)_{\pi(Y)}\pi(Z)\}^{*}$

$+g^{\prime}(X, V)\{T_{\pi(Y)}(\phi\pi(Z))+T_{\phi\pi(Y)}\pi(Z)-\phi T_{\pi(Y)}\pi(Z)\}^{*}$

$+g^{\prime}(Y, V)\{T_{\phi\pi(X)}\pi(Z)\}^{*}+g^{\prime}(Z, V)\{T_{\pi(Y)}(\phi\pi(Z))\}^{*}$

$+g(\phi\pi(X), T_{\pi(Y)}\pi(Z))V$ .

So we get

$(\tilde{\nabla}_{X}^{\prime}T^{*})_{Y}Z=(\nabla_{X}^{\prime}T^{*})_{Y}Z-(T_{X}^{\prime}T^{*})_{Y}Z$

$=\{(\tilde{\nabla}_{\pi(X)}T)_{\pi(Y)}\pi(Z)\}^{*}$

By the hypothesis the right-hand side of this vanishes. The theorem is now proved
by all the above arguments. $\blacksquare$

4. Homogeneous Structures on Real Hypersurfaces

In this section we obtain an invariant homogeneous structure on a homo-
geneous real hypersurface of type (B). After that we give homogeneous structures
of some type of homogeneous hypersurfaces in $S^{2n+1}$ .

First, we have the following:

THEOREM 4.1. The following tensor $T^{B}$ defines an invariant homogeneous
structure on a homogeneous real hypersurface $M$ of type (B)

(4.1) $ T_{X}^{B}Y=\frac{\alpha}{2}\eta(X)\phi Y+\eta(Y)\phi AX-g(\phi AX, Y)\xi$ .

Its explicit components are given by

(4.2) $\left\{\begin{array}{l}T_{e_{j}}^{B}e_{j}=T_{\phi e_{i}}^{B}\phi e_{j}=T_{\xi}^{B}\xi=0,\\T_{e_{l}^{B}}\xi=x\phi e_{i},T_{\phi e_{i}}^{B}\xi=\frac{1}{X}e_{i},\\T_{\xi}^{B}e_{i}=\frac{\alpha}{2}\phi e_{i},T_{\xi}^{B}\phi e_{i}=-\frac{\alpha}{2}e_{i}\\T_{e_{i}}^{B}\phi e_{j}=-x\delta_{ij}\xi,T_{\phi e_{l}}^{B}e_{j}=-\frac{1}{X}\delta_{i_{\dot{j}}}\xi,\end{array}\right.$
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where $e_{1},$ $\ldots$ , $e_{n-1},$ $\phi e_{1},$

$\ldots,$
$\phi e_{n-1},$ $\xi$ is a local field of orthonormal frames such that

$e_{1},$
$\ldots,$

$e_{n-1}$ (resp. $\phi e_{1},$

$\ldots,$
$\phi e_{n-}$ ) is an orthonormal basis of $T_{X}$ (resp. $T_{-1/x}$ ).

PROOF. In order to prove our theorem it suffices to prove the following four
equations:

(4.3) $\tilde{\nabla}_{X}g=0$ , $\tilde{\nabla}_{X}\xi=0$ , $\tilde{\nabla}_{X}\phi=0$ , $\tilde{\nabla}_{X}A=0$ ,

where $X\in TM$ and $\tilde{\nabla}=\nabla-T^{B}$ (see Remark 2.3).
First, we shall prove $\tilde{\nabla}_{X}g=0$ . By the definition of $T^{B}$ we have

$g(T_{X}^{B}Y, Z)+g(Y, T_{X}^{B}Z)=\frac{\alpha}{2}\eta(X)\{g(\phi Y, Z)+g(Y, \phi Z)\}$ ,

and the right-hand side of this equation vanishes, since $\emptyset$ is a skew-symmetric
transformation.

Secondly, we prove $\tilde{\nabla}_{X}\xi=0$ . By straightforward calculation we get

$ T_{X}^{B}\xi=\phi AX=\nabla_{X}\xi$ .

Here we use (2.5). So we have our assertion.
Thirdly, we prove $\tilde{\nabla}_{X}\phi=0$ . By a straightforward calculation we have

$(T_{X}^{B}\phi)Y=T_{X}^{B}(\phi Y)-\phi(T_{X}^{B}Y)$

$=\eta(Y)AX-g(AX, Y)\xi$ .

Compairing this with (2.4), we obtain

$\tilde{\nabla}_{X}\phi=0$ .

Finally, we prove $\tilde{\nabla}_{X}A=0$ . By a straightforward calculation we obtain

(4.4) $(T_{X}^{B}A)Y=T_{X}^{B}(AY)-A(T_{X}^{B}Y)$

$=\frac{\alpha}{2}\eta(X)(\phi A-A\phi)Y+\eta(Y)(\alpha\phi A-A\phi A)X$

$+g((\alpha\phi A-A\phi A)X, Y)\xi$ .

On the other hand, using (2.10) and (2.11), we have

(4.5) $\alpha\phi A-A\phi A=(-\frac{\alpha}{4})(A\phi-3\phi A)$ .

Substituting (4.5) into the right-hand side of (4.4), and using (2.12), we get
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$(T_{X}^{B}A)Y=(\nabla_{X}A)Y$ .

So we have the assertion.
According to (2.6) and (4.3), the metric $g$ , the curvature $R$ and the tensor $T^{B}$

on $M$ are all parallel with respect to the connection $\tilde{\nabla}=\nabla-T^{B}$ . These facts
prove our theorem. $\blacksquare$

Combining Theorem 3.1 and Theorem 4.1, we have

COROLLARY 4.2. The following tensor $T$ defines a homogeneous structure on
$S0(2)\times S0(n+1)/Z_{2}\times SO(n-1)$ .

$T_{X}Y=(T_{\pi(X)}^{B}\pi(Y))^{*}-g^{\prime}(X, V)(\phi\pi(Y))^{*}-g^{\prime}(Y, V)(\phi\pi(X))^{*}+g(\phi\pi(X), \pi(Y))V$ .

In the paper [6], the author proves the following.

THEOREM 4.3([6]). Let $M$ be a homogeneous real hypersurface of type (A).
Then

$ T_{X}^{A}Y=\eta(Y)\phi AX-\eta(X)\phi AY-g(\phi AX, Y)\xi$

defines a naturally reductive homogeneous structure of $M$.

Here $T$ is said to be naturally reductive if $T_{X}X=0$ is satisfied for any
tangent vector $X\in TM$ .

According to Theorem 3.1, Theorem 4.3 and the results of [6], we have

COROLLARY 4.4. For $S^{2p+1}(r_{1})\times S^{2q+1}(r_{2})(r_{1}^{2}+r_{2}^{2}=1)$ the following tensor
$T$ defines a homogeneous structure on it:

$T_{X}Y=(T_{\pi(X)}^{A}\pi(Y))^{*}-g^{\prime}(X, V)(\phi\pi(Y))^{*}-g^{\prime}(Y, V)(\phi\pi(X))^{*}+g(\phi\pi(X), \pi(Y))V$ .

REMARK 4.5. The above tensor $T^{B}$ is not naturally reductive because $T_{X}^{B}X$

does not vanish. Indeed, substituting $X=v_{\lambda}+\xi,$ $v_{X}\in T_{x}$ into (4.1), we get
$T_{X}^{B}X=(x(x^{2}-3))/(x^{2}-1)\phi v_{X}\neq 0$ , since $0<x<1$ (see Theorem 2.4). In the
paper [7] the author proves that the only naturally reductive homogeneous real
hypersurfaces in $CP_{n}$ are of type (A).
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