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ZERO-DIMENSIONAL SUBSETS OF HYPERSPACES

By

Alejandro ILLANES

Abstract. Let $X$ be a metric continuum, let $2^{X}$ be the hyperspace of
all the nonempty closed subsets of $X$ and let $C(X)$ be the hyperspace
of subcontinua of $X$. In this paper we prove:

THEOREM 1. If $\mathscr{H}$ is $a$ O-dimensional subset of $2^{X}$ , then $2^{X}-\mathscr{H}$

is connected.

THEOREM 2. If $\mathscr{H}$ is a closed O-dimensional subset of $C(X)$

such that $C(X)-\{A\}$ is arcwise connected for each $A\in \mathscr{H}$ , then
$C(X)-\mathscr{H}$ is arcwise connected.

Theorem 2 answers a question by Sam B. Nadler, Jr.

Introduction

Throughout this paper $X$ denotes a nondegenerate continuum, i.e., a compact
connected metric space, with metric $d$ . Let $2^{X}$ be the hyperspace of nonempty
closed subsets of $X$, with the Hausdorff metric $H$, and let $C(X)$ be the hyperspace
of subcontinua of $X$.

J. Krazinkiewicz proved in [5] that if $\mathscr{H}$ is a O-dimensional subset of $C(X)$ ,
then $C(X)-\mathscr{H}$ is connected. In this paper we use Krasinkiewicz’ result to prove
the following theorem:

THEOREM 1. If $\mathscr{H}$ is $a$ O-dimensional subset of $2^{X}$ , then $2^{X}-\mathscr{H}$ is connected.

On the other hand, in Krasinkiewicz’ Theorem the word “connected” can not
be replaced by “arcwise connected”. Even if $X$ is the sin(l/x)-continuum and $A$ is
the limit segment, then $C(X)-\{A\}$ is not arcwise connected. In [7, Question
11.17], Nadler asked the following question: if $\mathscr{H}$ is a compact O-dimensional
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subset of $C(X)$ and if $C(X)-\{A\}$ is arcwise connected for each $A\in \mathscr{H}$ , does it
follow that $C(X)-\mathscr{H}$ is arcwise connected? This question has been affirmatively
answered for the following particular cases:

-if $\mathscr{H}$ has two elements (Nadler and Quinn, [8, Lemma 2.4]),
-if $\mathscr{H}$ is finite (Ward, [9])
-if $\mathscr{H}$ is numerable (Illanes, [3], this result was rediscovered by Hosokawa

in [1]).
Furthermore, in [3], the author showed that any two elements of $C(X)-\mathscr{H}$

can be joined by an arc which intersects $\mathscr{H}$ only a finite number of times.
In this paper we finally solve the general question by proving the following

theorem.

THEOREM 2. If $\mathscr{H}$ is a closed O-dimensional subset of $C(X)$ such that
$C(X)-\{A\}$ is arcwise connected for each $A\in \mathscr{H}$ , then $C(X)-\mathscr{H}$ is arcwise
connected.

Proof of Theorem 1

Throughout this section $\mathscr{H}$ will denote a O-dimensional subset of $2^{X}$ . By
Krasinkiewicz’ result in [5], $C(X)-\mathscr{H}$ is connected. Let $\mathscr{L}$ be the component of
$2^{X}-\mathscr{H}$ which contains $C(X)-\mathscr{H}$ .

In order to prove that $2^{\chi}-\mathscr{H}$ is connected, it is enough to prove that $\mathscr{L}$ is
dense in $2^{X}$ . Since the subset of $2^{X}$ which consists of all the nonempty finite
subsets of $X$ is dense in $2^{X}$ , we only need to prove the following claim:

Claim. For each finite subset $F=\{p1, \ldots,p_{m}\}$ of $X$ and for each $\epsilon>0$ ,
there exists an element $L\in \mathscr{L}$ such that $ H(F, L)<\epsilon$ .

Let $F=\{p_{1}, \ldots,p_{m}\}$ and $\epsilon>0$ .
Take an order arc $\gamma$ from a fixed one-point set $\{p_{0}\}$ to $X$ (see [7, 1.2] for the

definition of order arc). Since $\mathscr{H}$ is O-dimensional, there exists an element
$M\in\gamma-\mathscr{H}\subset C(X)-\mathscr{H}$ such that $H(M, X)<\epsilon/2$ and $M$ is nondegenerate.
Choose points $q\iota,$

$\ldots,$
$q_{m}\in M$ such that $d(p_{i}, q_{j})<\epsilon/2$ for each $i\in\{1, \ldots, m\}$ .

Let $\{U_{n}\}_{n=1}^{\infty}$ be a sequence of proper open subsets of $M$ such that $q1\in U_{n}$ for
every $n\geq 1$ , $U_{1}\supset c1(U_{2})\supset U_{2}\supset c1(U_{3})\supset U_{3}\supset\ldots,$ $c1(U_{n})\rightarrow\{q_{1}\}$ (conver-
gence in $2^{X}$ ) and $M\neq c1(U_{1})\subset\{q\in X:d(q, q1)<\epsilon/2\}$ .

Let $L_{0}=\{q1, \ldots, q_{m}\}\cup(Bd_{M}(U_{1})\cup Bd_{M}(U_{2})\cup Bd_{M}(U_{3})\cup\ldots)$ . Clearly,
$L_{0}\in 2^{X}$ . Fix a nondegenerate subcontinuum $D$ of $U_{1}-c1(U_{2})$ . Then the set
$\{L_{0}\cup\{x\}\in 2^{X} : x\in D\}$ is a nondegenerate subcontinuum of $2^{X}$ . Since $\mathscr{H}$ is
O-dimensional, there exists a point $x_{0}\in D$ such that $L_{0}\cup\{x_{0}\}\not\in \mathscr{H}$ .
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Define $L=L_{0}\cup\{x_{0}\}$ . Then $L\in 2^{X}-\mathscr{H}$ and $ H(F, L)<\epsilon$ .
We will show that $L\in \mathscr{L}$ .
For each $n\geq 1$ , let $A_{n}=M-U_{n}\subset M-c1(U_{n+1})$ . Take an order arc $\gamma_{n}$ from

$A_{n}$ to $M$. Since $M-c1(U_{n+1})$ is an open subset of $M$, there exists a (non-
degenerate) subarc $\sigma_{n}$ of $\gamma_{n}$ such that each of its elements is contained in
$M-c1(U_{n+1})$ and $A_{n}\in\sigma_{n}$ . Consider the set $\theta_{n}=\{L\cup K:K\in\sigma_{n}\}$ . It is easy to
show that $\theta_{n}$ is a (nondegenerate) order arc from $L\cup A_{n}$ to some element in $2^{x}$ .
Since $\mathscr{H}$ is O-dimensional, we can choose an element $B_{n}=L\cup K_{n}\in\theta_{n}-\mathscr{H}$ ,
where $K_{n}\in\sigma_{n}$ . Notice that $A_{n}\subset K_{n}\subset A_{n+1}$ .

Next, we will check that every component of $B_{n}$ intersects $L$ . Let $C$ be a
component of $B_{n}$ . Since the subarc of $\theta_{n}$ which joins $L\cup A_{n}$ and $B_{n}$ is an order
arc, then (see [7, 1.8]), $ C\cap(L\cup A_{n})\neq\emptyset$ . If $ C\cap L=\emptyset$ , we can take an element
$x\in C\cap A_{n}$ . Let $C_{1}$ be the component of $A_{n}$ which contains $x$ . Thus $C_{1}\subset C$ , and
by ([7, 20.2]), $\emptyset\neq C_{1}\cap Bd_{M}(U_{n})\subset C\cap L$ . This contradiction completes the
proof that $ C\cap L\neq\emptyset$ .

As a consequence of the claim of the paragraph above, we obtain that every
component of $B_{n+1}$ intersects $B_{n}$ .

Let $B_{0}=L$ . Notice that $B_{n-1}$ is a proper subset of $B_{n}$ for every $n\geq 1$ . By
[7, 1,8], there exists a map $\beta_{n}$ : $[0,1]\rightarrow 2^{M}$ such that $\beta_{n}(O)=B_{n-1},$ $\beta_{n}(1)=B_{n}$ ,
and if $0\leq s<t\leq 1$ , then $\beta_{n}(s)$ is a proper subset of $\beta_{n}(t)$ .

For each $n\geq 1$ , let $\alpha_{n}$ : $[0,1]\rightarrow 2^{X}$ be a map such that $\alpha_{n}(O)=Bd_{M}(U_{n+2})$ ,
$\alpha_{n}(1)=M$ and if $0\leq s<t\leq 1$ , then $\alpha_{n}(s)$ is a proper subset of $\alpha_{n}(t)$ . Since
$Bd_{M}(U_{n+2})\subset U_{n+1}-c1(U_{n+3})$ , there exists $t_{n}>0$ such that $\alpha_{n}(t_{n})\subset U_{n+1}-$

$c1(U_{n+3})$ .
Let $\varphi_{n}$ : $[0,1]\times[0,1]\rightarrow 2^{M}$ be given by $\varphi_{n}(s, t)=\alpha_{n}(st_{n})\cup\beta_{n}(t)$ . It is easy

to check that $\varphi_{n}$ is continuous, one-to-one, $\varphi_{n}(O, 1)=B_{n}$ and $\varphi_{n}(0,0)=B_{n-1}$ . Let
$\mathscr{G}_{n}=\varphi_{n}([0,1]\times[O, 1])$ . Then $\mathscr{G}_{n}$ is a 2-cell. By [2, Theorem IV 4], $\mathscr{G}_{n}-\mathscr{H}$ is
connected and contains $B_{n-1}$ and $B_{n}$ .

Let $\mathscr{G}=\cup\{\mathscr{G}_{n} : n\geq 1\}$ . Then $\mathscr{G}$ is a connected subset of $2^{X}-\mathscr{H}$ and
contains the element $B_{0}=L$ . On the other hand, since $A_{n}\rightarrow M$ , and
$A_{n}\subset B_{n}\subset M$ for each $n\geq 1$ , we conclude that $B_{n}\rightarrow M$ and $M\in c1_{2^{X}}(\mathscr{G})$ . This
implies that $\mathscr{G}\subset \mathscr{L}$ . Therefore, $L\in \mathscr{L}$ . This completes the proof of the claim and
thus the proof of Theorem 1. $\blacksquare$

Proof of Theorem 2

Throughout this section $\mathscr{H}$ will denote a closed O-dimensional subset of $C(X)$

such that $C(X)-\{A\}$ is arcwise connected for each $A\in \mathscr{H}$ .
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LEMMA 1. If $A,$ $B\in C(X)-\mathscr{H},$ $A\cap B\neq\emptyset,$ $ A-B\neq\emptyset$ and $ B-A\neq\emptyset$ ,
then $A$ and $B$ can be joined by an arc in $C(X)-\mathscr{H}$ .

PROOF. Fix a component $C$ of $A\cap B$ . Then $C$ is a proper subcontinuum of
both $A$ and $B$ . Let $\alpha,\beta:[O, 1]\rightarrow A\cup B$ be maps such that $\alpha(0)=C=\beta(O)$ ,
$\alpha(1)=A,$ $\beta(1)=B$ and $s<t$ implies that $\alpha(s)$ (resp., $\beta(s)$ ) is a proper sub-
continuum of $\alpha(t)$ (resp., $\beta(t)$ ) (see [Nd78, 1.8]). Let $\mathscr{C}=[O, 1]\times[O, 1]$ . Define
$\varphi$ : $\mathscr{C}\rightarrow C(A\cup B)$ by:

$\varphi(s, t)=\alpha(s)\cup\beta(t)$ .

Clearly, $\varphi$ is continuous, $\varphi(1,0)=A$ and $\varphi(0,1)=B$ . If $D$ is a component of
$\varphi^{-1}(\mathscr{H})$ , then $\varphi(D)$ is a connected subset of $\mathscr{H}$ . Thus $\varphi(D)$ has exactly one
element. Therefore, $D$ is a component of $\varphi^{-1}(E)$ for some $E\in \mathscr{H}$ .

Since $\varphi(1,0)$ and $\varphi(0,1)\not\in \mathscr{H}$ and $\mathscr{H}$ is compact, there exists $0<r<1/2$
such that $\{([1-r, 1]\times[O, r])\cup([O, r]\times[1-r, 1])\}\cap\varphi^{-1}(\mathscr{H})=\emptyset$ .

Let $G_{1}=([O, 1-r]\times\{O\})\cup(\{O\}\times[0,1-r])$ and $ G_{2}=(\{1\}\times[r, 1])\cup$

$([r, 1]\times\{1\})$ . Let $G=G_{1}\cup G_{2}\cup\varphi^{-1}(\mathscr{H})$ . Then $G$ is a compact subset of $\mathscr{C}$ .
We will see that no component of $\varphi^{-1}(\mathscr{H})$ intersects both $G_{1}$ and $G_{2}$ .

Suppose, to the contrary, that there exists a component $D$ of $\varphi^{-1}(\mathscr{H})$ such that
$ D\cap G_{1}\neq\emptyset$ and $ D\cap G_{2}\neq\emptyset$ . Then there exists an element $E\in \mathscr{H}$ such that $D$ is
a component of $\varphi^{-1}(E)$ . Let $z=(s, t)\in D\cap G_{1}$ and $|(=(u, v)\in D\cap G_{2}$ . Then
$\alpha(s)\cup\beta(t)=\varphi(z)=\varphi(w)=\alpha(u)\cup\beta(v)$ . Notice that $s=0$ or $t=0$ . If $s=0$ , then
$\varphi(z)\subset B$ . This implies that $\alpha(u)\subset A\cap B$ . Hence $\alpha(u)=C$ . Thus $u=0$ . This is a
contradiction since $w\in G_{2}$ . A similar contradiction can be obtained assuming that
$t=0$ . Therefore, no component of $\varphi^{-1}(\mathscr{H})$ intersects both $G_{1}$ and $G_{2}$ .

We are ready to apply the Cut Wire Theorem ([7, 20.6]) to the compact space
$\varphi^{-1}(\mathscr{H})$ and the closed sets $\varphi^{-1}(\mathscr{H})\cap G_{1}$ and $\varphi^{-1}(\mathscr{H})\cap G_{2}$ . Thus there exist two
disjoint closed sets $H_{1},$ $H_{2}$ in $\mathscr{C}$ such that $\varphi^{-1}(\mathscr{H})=H_{1}\cup H_{2},$ $\varphi^{-1}(\mathscr{H})\cap G_{1}\subset H_{1}$

and $\varphi^{-1}(\mathscr{H})\cap G_{2}\subset H_{2}$ . Define $L_{1}=G_{1}\cup H_{1}$ and $L_{2}=G_{2}\cup H_{2}$ . Then $L_{\mathfrak{l}}$ and $L_{2}$

are disjoint closed subsets of $\mathscr{C}$ . Thus there exist two disjoint open subsets $U_{1}$ and
$U_{2}$ of $\mathscr{C}$ such that $L_{1}\subset U_{1}$ and $L_{2}\subset U_{2}$ .

Let $U$ be the component of $U_{1}$ which contains $G_{1}$ and let $M$ be the com-
ponent of $\mathscr{C}-U$ which contains $G_{2}$ . It is easy to prove that $\mathscr{C}-M$ is connected.
Since $\mathscr{C}$ is locally connected $M$ is closed in $\mathscr{C}$ and $Bd_{\varphi}(M)\subset Bd_{\delta}\subset(U)\subset Bd_{\mathscr{C}}(U_{1})$ .
Let $L=Bd\subset g(M)$ . Then $ L\cap(L_{1}\cup L_{2})=\emptyset$ . Since $G_{1}\subset \mathscr{C}-M,$ $L$ separates $G_{1}$

and $G_{2}$ in $\mathscr{C}$ . Since $\mathscr{C}$ is unicoherent ([6, Thm. 2 II, \S 57, Ch. VIII]), $L$ is a
subcontinuum of $\mathscr{C}$ .

Since $[0, r]\times[1-r, 1]$ is a connected subset of $\mathscr{C}$ that intersects both $G_{1}$
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and $G_{2}$ , we obtain this set intersects $L$ . Similarly $L$ intersects $[1-r, 1]\times[O, r]$ .
Then the set $L_{0}=L\cup([1-r, 1]\times[O, r])\cup([0, r]\times[1-r, 1])$ is a subcontinuum of
$\mathscr{C}-\varphi^{-1}(\mathscr{H})$ . Since $\mathscr{C}$ is locally connected, there exists an open connected (and
then arcwise connected) subset $V$ of $\mathscr{C}$ such that $L_{0}\subset V\subset \mathscr{C}-\varphi^{-1}(\mathscr{H})$ . Let $\lambda$ be
an arc in $V$ joining $(1,0)$ and $(0,1)$ . Therefore, $\varphi(\lambda)$ is a path in $C(X)-\mathscr{H}$

joining $A$ and B. $\blacksquare$

LEMMA 2. If $A,$ $B\in C(X)-\mathscr{H}$ and $A\subset B\neq A$ , then $A$ and $B$ can be joined
by an arc in $C(X)-\mathscr{H}$ .

PROOF. By [7, 1.8], there is an order arc from $A$ to $B$ . That is, there is a
map $\alpha$ : $[0,1]\rightarrow C(B)$ such that $\alpha(0)=A,$ $\alpha(1)=B$ and if $s<t$ , then $\alpha(s)$ is a
proper subcontinuum of $\alpha(t)$ . Let $\mathscr{G}=\alpha^{-1}(\mathscr{H})$ .

First, we will show that for any $t\in \mathscr{G}$ , there exists $\epsilon_{t}>0$ such that
$(t-\epsilon_{t}, t+\epsilon_{t})\subset(0,1)$ and for every $s\in(t-\epsilon_{t}, t)-\mathscr{G}$ and every $r\in(t, t+\epsilon_{t})-\mathscr{G}$ ,
$\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$ .

Since $\alpha(t)\in \mathscr{H},$ $C(X)-\{\alpha(t)\}$ is arcwise connected. Then there exists a
one-to-one map $\beta$ : $[0,1]\rightarrow C(X)-\{\alpha(t)\}$ such that $\beta(0)=A$ and $\beta(1)=B$ . Let
$ u=\max${ $v\in[0,1];\beta(w)\subset\alpha(t)$ for each $w\in[0,$ $v]$ }. Then $\beta(u)$ is a proper
subcontinuum of $\alpha(t)$ . Since $\beta$ is continuous, there exists $z\in(u, 1)$ such that
the continuum $C=\cup\{\beta(w):u\leq w\leq z\}$ does not contain $\alpha(t)$ . Since $\mathscr{H}$ is
O-dimensional, we may assume that $C\not\in \mathscr{H}$ . By the definition of $u,$ $C$ is not
contained in $\alpha(t)$ .

We consider two cases:

CASE 1. $\alpha(t)$ is indecomposable.
By [7, 1.52.1 (2)], $\beta(u)$ is contained in the composant of $\alpha(t)$ which con-

tains $A$ . Then there exists a proper subcontinuum $D$ of $\alpha(t)$ such that
$D\cap A\neq\emptyset\neq D\cap\beta(u)$ . Growing $D$ by using an order arc from $D$ to $\alpha(t)$ , we may
assume that $D$ is not contained in $C$ and $D\not\in \mathscr{H}$ . Let $\epsilon_{t}>0$ be such that
$(t-\epsilon_{t}, t+\epsilon_{t})\subset(O, 1),$ $\alpha(t-\epsilon_{t})$ is not contained in $D,$ $\alpha(t-\epsilon_{t})$ is not contained in
$C$ and $\alpha(t+\epsilon_{t})$ does not contain $C$.

In order to show that $\epsilon_{t}$ has the required properties, let $s\in(t-\epsilon_{t}, t)-\mathscr{G}$ and
$r\in(t, t+\epsilon_{t})-\mathscr{G}$ . Then $\alpha(s)\cap D\neq\emptyset$ and $\alpha(s)-D\neq\emptyset$ .

If $ D-\alpha(s)\neq\emptyset$ , then we may apply Lemma 1 to the pairs $\alpha(s)$ and $D;D$

and $C;C$ and $\alpha(r)$ , and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in
$C(X)-\mathscr{H}$ .
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If $D\subset\alpha(s)$ , then we may apply Lemma 1 to the pairs $\alpha(s)$ and $C;C$

and $\alpha(r)$ , and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in
$C(X)-\mathscr{H}$ .

CASE 2. $\alpha(t)$ is decomposable.
In this case $\alpha(t)=E\cup F$ , where $E$ and $F$ are proper subcontinua of $\alpha(t)$ . We

may assume that $E,$ $F\not\in \mathscr{H}$ and $E-C\neq\emptyset\neq F-C$ .
Let $\epsilon_{t}>0$ be such that $(t-\epsilon_{t}, t+\epsilon_{t})\subset(O, 1),$ $\alpha(t-\epsilon_{t})$ is not contained in any

of the sets $C,$ $E$ and $F$, and $C$ is not contained in $\alpha(t+\epsilon_{t})$ .
Let $s\in(t-\epsilon_{t}, t)-\mathscr{G}$ and $r\in(t, t+\epsilon_{t})-\mathscr{G}$ . Then $\alpha(s)$ is not contained in any

of the sets $E,$ $F$ and $C$. Since $\alpha(s)$ is a proper subcontinuum of $\alpha(t),$ $ E-\alpha(s)\neq\emptyset$

or $ F-\alpha(s)\neq\emptyset$ . Suppose, for example, that $E$ is not contained in $\alpha(s)$ .
If $ E\cap C\neq\emptyset$ , then we may apply Lemma 1 to the pairs $\alpha(s)$ and $E;E$ and

$C;C$ and $\alpha(r)$ , and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in
$C(X)-\mathscr{H}$ .

If $ F\cap C\neq\emptyset$ , then we may apply Lemma 1 to the pairs $\alpha(s)$ and $E;E$ and $F$;
$F$ and $C;C$ and $\alpha(r)$ , and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in
$c(X)-\mathscr{H}$ .

This completes the proof of the existence of $\epsilon_{t}$ .

Now we are ready to prove Lemma 2.
Let $t\in \mathscr{G}$ and let $\epsilon_{t}>0$ be as before. We claim that if $s,$ $r\in(t-\epsilon_{t}, t+\epsilon_{t})-\mathscr{G}$ ,

then $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$ . Indeed, if $t$ is between $s$

and $r$ , this claim follows from the choice of $\epsilon_{t}$ , and if, for example, $s,$ $r<t$ , then
fix $r_{1}\in(t, t+\epsilon_{t})-\mathscr{G}$ . By the choice of $\epsilon_{t}$ , both pairs $\alpha(s),$ $\alpha(r_{1})$ and $\alpha(r),$ $\alpha(r_{1})$ can
be joined by an arc in $C(X)-\mathscr{H}$ . Thus, $\alpha(r),$ $\alpha(s)$ can be joined by an arc in
$C(X)-\mathscr{H}$ .

Given a number $t\in[O, 1]-\mathscr{G}$ , there exists $\epsilon_{t}>0$ such that $(t-\epsilon_{t}, t+\epsilon_{t})\cap$

$\mathscr{G}=\emptyset$ . In this case, if $s,$ $r\in(t-\epsilon_{t}, t+\epsilon_{t})\cap[O, 1]$ , then $\alpha(s)$ and $\alpha(r)$ can be joined
by an arc in $C(X)-\mathscr{H}$ .

For the open cover $\{(t-\epsilon_{t}, t+\epsilon_{t}):t\in[O, 1]\}$ , there exists $\delta>0$ such that if
$s,$ $r\in[O, 1]$ and $|s-r|<\delta$ , then $s,$ $r\in(t-\epsilon_{t}, t+\epsilon_{t})$ for some $t\in[0,1]$ .

Choose a partition $0=t_{0}<t_{1}<\cdots<t_{m}=1$ such that $ t_{j}-t_{i-1}<\delta$ and
$t_{i}\not\in \mathscr{G}$ for each $i=1,2,$ $\ldots,$

$m$ .
Thus, for each $i\in 1,2,$

$\ldots,$ $m,$ $\alpha(t_{i-1})$ and $\alpha(\iota_{j})$ can be joined by an arc in
$C(X)-\mathscr{H}$ . Therefore, $A$ and $B$ can be joined by an arc in $C(X)-\mathscr{H}$ . $\blacksquare$

PROOF OF THEOREM 2. We consider two cases:



Zero-dimensional subsets of hyperspaces 255

CASE 1. $X$ is indecomposable.
In this case $C(X)-\{X\}$ is not arcwise connected (see [7, 1.51]). Then

$X\not\in \mathscr{H}$ . Given an element $A\in C(X)-(\mathscr{H}\cup\{X\})$ , by Lemma 2, $A$ and $X$ can be
connected by an arc in $C(X)-\mathscr{H}$ .

CASE 2. $X$ is decomposable.
Let $X=E\cup F$ , where $E$ and $F$ are proper subcontinua of $X$. Since $\mathscr{H}$ is

O-dimensional, we may assume that $E,$ $F\not\in \mathscr{H}$ . Given an element $A\in C(X)-$

$(\mathscr{H}\cup\{X\})$ , taking an order arc from $A$ to $X$, we can find an element
$B\in C(X)-\mathscr{H}$ , such that $A$ is a proper subcontinuum of $B,$ $B\neq X,$ $ B-E\neq\emptyset$

and $ B-F\neq\emptyset$ . Notice that $ E-B\neq\emptyset$ or $ F-B\neq\emptyset$ . Suppose, for example,
that $ E-B\neq\emptyset$ . By Lemma 1, the pairs $E,$ $B$ and $E,$ $F$ can be joined by an arc
in $C(X)-\mathscr{H}$ , and by Lemma 2, $A$ and $B$ can be joined by an arc in $C(X)-\mathscr{H}$ .
Then $A$ can be joined to both $E$ and $F$ in $C(X)-\mathscr{H}$ . In the case that $X\not\in \mathscr{H}$ , by
Lemma 2, $X$ can be joined to both $E$ and $F$ in $C(X)-\mathscr{H}$ . This completes the
proof that $C(X)-\mathscr{H}$ is arcwise connected. $\blacksquare$
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