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AN EQUIVALENT CONDITION FOR CONTINUOUS MAPS
OF A CLASS OF CONTINUA TO HAVE ZERO
TOPOLOGICAL ENTROPY

By

Jie Lo, Jincheng XionG! and Xiangdong YE*

Abstract. Extending the famous Bowen-Franks-Misiurewicz’s the-
orem concerning the topological entropy of continuous maps of an
interval we prove that continuous maps of a class of continua have
zero topological entropy if and only if the periods of all periodic
points are powers of 2.

§1. Introduction

All maps considered in this paper are continuous. According to the well-
known Bowen-Franks-Misiurewicz’s theorem, a map of the unit interval has zero
topological entropy if and only if the periods of all periodic points of the map are
powers of 2. In [12], the authors shown that the above result is still true when
replacing the unit interval by a Warsaw circle. Since Sarkovskii’s theorem holds
for maps of a hereditarily decomposable chainable continuum (HDCC) [3], it is
natural to ask whether Bowen-Franks-Misiurewicz’s theorem can be extended to
maps of this kind of continua. In this paper, we show that maps of a class of
HDCC have zero topological entropy if and only if the periods of all periodic
points are powers of 2. To be more precise we introduce some notations.

By a continuum we mean a connected compact metric space. A sub-
continuum is a subset of a continuum and it is a continuum itself. A continuum is
decomposable (indecomposable) if it can (cannot) be written as the union of two of
its proper subcontinua. A continuum is hereditarily decomposable if each of its
nondegenerate subcontinuum is decomposable. X is said to be chainable or arc-
like if for each given & > 0 there exists a continuous map f, from X onto [0, 1]
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such that diam(f;'(1)) < ¢ for each t€[0,1]. A continuum is Suslinean if each
collection of its pairwise disjoint nondegenerate subcontinua is countable.

Let X be a continuum and 4 = X be closed. Then there is a subcontinuum
Xo of X containing 4 such that no proper subcontinuum of Xy contains 4 ([6]),
and X, will be called irreducible with respect to A. Particularly, if X is irreducible
with respect to {a,b} with a # b e X, then X is called an irreducible continuum.

Let X be a continuum which is hereditarily decomposable irreducible with
respect to {a,b}. Then there is a map g : X — [0, 1] such that g(a) =0, g(b) =1
and g~'(¢) is a maximal nowhere dense subcontinuum for each e [0,1] ([2]).
The map g is called the Kuratowski function of X. g~'(t) is called a layer of X for
each r € [a,b]; g~'(0) and g~!(1) are called end layers of X and the others are
called interior layers. For any x,y e X, by [x, y] we denote the subcontinuum
irreducible with respect to {x, y}; and by (x, y) we denote [x, y] minus its end
layers. When X is chainable, [x, y] will be unique ([7]).

Let X be a HDCC and 2y = {X}. For an ordinal a =+ 1, 2, is the set
consisting of degenerate elements of % and the layers of the nondegenerate
clements of %, and for a limit ordinal «, 2, is the set consisting of the
intersections () p<x Dp, Where Dg e Dp. 9, will be called an o-th layer of X. By
2D we denote the set of nondegenerate elements of 2,, and by D,(x) we denote
the element of 2, containing x for each x € X. It was proved in [5] that there is a
countable ordinal 7 such that D,(x) = {x} for each x € X. The minimal such 7 is
said to be the Order of X and will be denoted by Order(X). Note that we write
2.(X) and 2P(X) instead of 2, and 2P respectively when emphasizing the
dependence of them on X.

Let C(X, X) be the collections of all continuous maps on a compact metric
space X and wy be the first limit ordinal. Moreover, let

Hop+1 = {X|X is a HDCC and satisfies Order(X) = wo,1,(a) and (b)}.

(a) for each ne N, 2M°(X) is finite.

(b) @&D (X) is countable and each of its element is homeomorphic to the
unit interval [0, 1].

and for each ordinal o < wy let
Hy = {X|X is a HDCC and satisfies Order(X) = a and the above (a)}.

MAIN RESULT. (Theorem 4.4). For each X € UangH #H, and f e C(X,X),

S has zero topological entropy if and only if the periods of all periodic points of f
are powers of 2.
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ReMARK. (i) If ¢ € C(I,I) is a piecewise monotone continuous map with
zero topological entropy then the inverse limit space (112{1 o} e, <wps1 a (10)).

(i) In fact, the “only if” part of the main result holds for any X which is a
HDCC (see theorem 4.4).

§2. Preliminary

According to [3], a total order “<” can be defined on a HDCC X such that
if a,b,ce X and a <c < b then ce€ [a,b]. The total order is not unique on X
(3], but in the following we will assume that a total order < on X was given.
Let A,Bc X. We say A < B(4 > B) if a<b(a>b) for any ae A and b € B;
say A=XBif a<B or aeB for any ae A (4 > B is defined similarly).

For f e C(X,X) we define f° = id and inductively f" = f o f" ! forne N.
An xe X is a periodic point of f of period n if f"(x)=x and f'(x) # x for
l1<i<n-—1. An xe X is a recurrent point of f if for any & > 0, there exists
ne N such that d(f"(x),x) < ¢, where d is a metric of X. An xe X is a non-
wandering point of f if for any non-empty neighbourhood U of x there exists
ne N such that f"(U)NU # . The collections of periodic points, recurrent
points and non-wandering points of f will be denoted by P(f), R(f) and Q(f)
respectively.

For xe X, O(x,f) = {x,f(x),fz(x),...} is called the orbit of x under f.
The set of accumulation points of O(x, f), denoted by w(x,f), is called
w-limit set of x under f. Note that we use A4 ’. B to denote f(A4) > B, where
feC(X,X) and 4,B< X.

We use A(f) to denote the topological entropy of f e C(X,X) (for the
definition and the basic properties of topological entropy see or [8]). Let
% = I17,{0, 1}. For a = (i), B= (Bify- ) €, d(a, B) = E2,(27) - o — B
is a metric on X, and the sum o + 8 = (g1g> - - -) is defined by: if a; + f; < 2 then
gr=o0+p;; if aj+p; =2 then g, =a; +f; —2 and we carry 1 to the next
position, and so on. Let J : ¥ — X be defined by d(a) = a + (100---) for 2 € . It
is easy to prove that w(a,d) = X for any « € £ and J has zero topological entropy.
We shall call (£,0) an adding machine (see [8]).

We need some known theorems and simple lemmas for the proof of the main
result.

THEOREM A. Let I be a closed interval and f : I — I be continuous. Then f
has zero topological entropy if and only if the periods of all periodic points of f are
powers of 2.
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See [1], [4], [1I] and for the proof of Theorem A.

THEOREM B. Let Y be a hereditarily decomposable chainable continuum and
let X be a subcontinuum of Y. If m <a n, f is a continuous map of X into Y and f
has a periodic point of period n, then f has a periodic point of period m.

Here, “<1” means Sarkovskii’s order on the set of all natural numbers.
See for the proof of Theorem B.

THEOREM C. Let X be a compact metric space and f € C(X,X). Then
h(f) = suPye r(s) h(f ooz, 1))-

Theorem C is a simple corollary of Variational Principle (see [8]). See [Lemmal
2.1 and Lemma 2.4 of [3] for the proofs of the Lemma 2.1 and

respectively.

LEMMA 2.1. Let X and Y be HDCC, f: X — Y be a continuous surjection,
A, B be the end layers of X and C be an end layer of Y. If there is an ae A
such that f(a)e C and f(X — (AUB))NC = &, then f(4A) > C.

LEMMA 2.2. Let X and Y be HDCC, f : X — Y be a continuous surjection,
A, B be the end layers of X and ae A, be B, ce Y. If ce (f(a), f(b)), then either
there exists t € (a,b) such that f(t) =c or [f(a), f(b)] = f(A)N f(B).

LeEMMA 2.3 [9]. Let X be a compact metric space, T € C(X,X) and (Z,0) be
the adding machine. If there is a continuous surjection ¢: X — X, such that
poT =609 and A= {0neX: Card(p~'(x)) = 2} is countable, then h(T) = 0.

LEMMA 24. Let X be a HDCC and f € C(X,X). If there is a periodic point
of [ of period 3 then there exist disjoint nondegenerate subcontinua Jy,J, and
ge{f, 1%} such that g*(J\)Ng*(J2) > J; U Js.

See [3, p. 184] for the proof of Lemma 2.4l

LEMMA 2.5. Let I be a connected subset of the real line and f : 1 — I be

continuous. Then (1) R(f) = P(f); and (ii) If the periods of all periodic points of
f are powers of 2 then w(x, f) is a compact set for any x € P(f).
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The claim (i) in the above Lemma is a known result (see [1] for a proof), and
(ii) was proved in when I = (0,1] and the method can be applied to prove
the Lemma when 7 = (0,1).

§3. Some Elementary Properties

To prove the main result, we will supply several lemmas in this section.

LEMMA 3.1. Let X be a HDCC and g : X — [0,1] be a Kuratowski function
of X. If there are a,b e [0,1] such that for any te (a,b),g”'(t) is a degenerate
element of 2\(X), then gl () :97'((a, b)) — (a,b) is a homeomorphism.
Moreover, if L is a path connected component of X then L is homeomorphic to a
connected subset of the real line.

PROOF. It is easy to check that g|,-1., ) is @ continuous bijection and an
open map. Hence gl -1, 4, : 97 ((a,5)) — (a,b) is a homeomorphism.

Let L be a path connected component of X, then the subcontinuum L of X is
a HDCC ([6]). Assume g:L — [0,1] be a Kuratowski function of L. Then for
each 7€ (0,1), g7!(¢) is a degenerate element of L by the path connectivity of L.
Thus L — (g71(0)Ug~'(1)) is homeomorphic to (0,1). Therefore, L is homeo-
morphic to one of (0,1], [0,1] and (0,1). O

LEMMA 3.2. Let Xe Hy (a <wy+ 1) and &Ly be the collection of path
connected components of \ 2P — 2P, (k € NU{0}). Then for any C € ¥y,
UQO(UE,-)UC is an open subset of X.

PrOOF. It is clear that ( J%) = X — (J2]'° is open in X. For any C; € %],
there is a Dy € 2¥? such that C; = D,. By considering the Kuratowski function
of D;, we have that B; = D, — C; is closed in D;, and thus B is closed in X.

Since ( J2{'P is the union of finitely many of pairwise disjoint subcontinua,
there is an open neighbourhood W of D; in X such that W N (U@fVD -Dy)=¢.
Hence (| J%0)UD; = (| J%o)UW is open in X, and

(UZo)UCr = (UZLo)UD)) — By
is open in X.
Suppose ULO(Ugi)UCkJrI is open in X for any Ciyi € Lry1. By a dis-
cussion similar to the above, it is easy to check that U::)I(U,?,-) U Cr42 is open

in X for any Cyyy € Lrir. l
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LemMMA 3.3. Suppose that X € #, (2 < wo+1). Then (i) X is the union of
finitely many of nondegenerate path connected components of X when « € N; (ii) X
is the union of countably many of nondegenerate path connected components of X
and a totally disconnected set when o € {wy,wo + 1}.

Proor. It follows directly from the definition of 3, (x < wp + 1). O

LEMMA 3.4. Assume X € #, (e <wo+ 1), f e C(X,X) and the periods of
all periodic points of f are powers 2. Let W be a subcontinuum of X, Dy < D,
< -+ =< D, be all nondegenerate layers of W, C, < C; <--- < C, be all path
connected components of W — Ui":O D; and G; be the path connected components
of W with G;> C; (i=1,2,...,n.). If there exist ae Dy and b e D, such that

[f(a), f(b)] = W, then
p:{,2,...,n} = {1,2,...,n} (p()=j & f(C)c<G)

is a permutation.

Proor. Since the periods of all periodic points of f are powers of 2, f(Dg)N
f(D,) # W. By Lemma 2.2, for any xe W — (DoUD,) there exists te W —
(Do U D,) such that f(f) =x. Let x; € C, and ty e W — (DoUD,) with f(t;) =
x1. Then there exists an g-neighborhood U,(x)) of x; in W with U, (x;) = C; and
a d-neighborhood Vj;(t)) of #; in W such that f(V5(#1)) = Ug(xy). Since Uinlei is
nowhere dense in W, there exists ¢ € V5(t;) N ({J,_,Ci) such that f(¢]) € U,(x1)
c Ci. Assume t] € Cjy). Then f(Cjqy) = Gi. By the same argument we get that
there are j(i) such that f(Cj;) < G; for i=2,3,...,n.

If there are j(i) # j'(i) such that f(Cj;)Uf(Cy) < Gi, then f(W)=
f(U,C) € U,Gi= W, as f(C;) is path connected and Gx U G; is not if k # 1.
This contradicts the assumption that f([a,b]) > W. Thus if f(Cj;)U f(Cjy)) =
G; then j(i) = j'(i). That is, p~! is a permutation, so is p. O

In the rest of the paper, for each ordinal « < wy + 1 and each X € 5, let

&i=%(X)={L:L is a path connected component of \J2"° — | J2}\}

i+1f>

(3.1)

where 0 < i < min{a,wo} and 2 is the set consisting of all nondegenerate i-th
layers of X. Furthermore, let

L = Uiy Zi (3.2)
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LEMMA 3.5. Assume X € #, (a € {wo,wo+ 1}), f € C(X,X) and the periods
of all periodic points of [ are powers of 2. If x € R(f) such that (i) w(x,f) is
infinite; (ii) w(x, /)N(JL)=¢; (i) DB w(x,f) for each De@goD, then
f(W) =W, where W < X is the subcontinuum irreducible with respect to w(x, f).

PrOOF. It is obvious that f(W) > W, so we need only to prove that f(W)
c W. Let Dy <Dy <---<D, be all nondegenerate layers of W, C; < C,
< .-- < C, be all path connected components of W — U?:o D; and G; be the
path connected components of W with G; > C; (i =1,2,...,n.). Thus Uin:O D; >

w(x, f) since w(x, £)N (L) = @.

CLamM. There are me N, ae Dy and be D, such that f"(a)e Dy and
f7(b) € D,.

Since D; (0 <i <n) are disjoint and closed subset in X and x € R(f), for
any given ap € DoNw(x, f) there is an mye N such that f™(ag) € Dy. Fur-
thermore, for any be D,NO(x, f) there are m,r € N such that m = rmy and
ST (b)e D, as be R(f) = R(f™). If f™(ap) € Dy, then obviously the Claim is
true. If f™(ag) ¢ Dy, then there exists 2 < s <r such that f""(ap) € W — Dy.
Let s be the minimum integer with f*™(ag) € W — Dy. As Dy is an end layer
of W, f™ (Do) = [f™(a0), f™™(a0)] = Do, and hence f™(Do) = /™ (Do) = Do.
Thus, there is an a € Dy such that f™(a) € Dy. This ends the proof of Claim.

Replacing f in by f™, we have that

p:{1,2,...,n} = {1,2,...,n} (p()=j & [f"(C)<G))

is a permutation, ie., |, f"(C) = |J._,Gi. Hence f™(W) =fm(U7:1C,-) =
Ui, /™(C) = Ui, Gi = W since f™ is a closed map. Thus, we have that W <
fW)c fA(W)c --- <« f"(W) < W. That is, f(W)=W.

O

§4. The Proof of Main Result

In this section we will prove the main result of the paper. In order to
show that for any x € R(f) A(fly, ) =0 providing X € #, (e <wo+1), f€
C(X, X) and the periods of all periodic points of f are powers 2, we will consider
two cases:

Case 1. xeR(f), O(x, /)N (&) # &, where & is defined by [3.2).

Case 2. xeR(f), O(x, /)N &) =g.
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LemMA 4.1. Assume that X e\, _, . #x f€C(X,X) and the periods
of all periodic points of f are powers of 2. Then for each x € R(f) with O(x, )N

Proor. If O(x, f) is finite, it is clear that w(x, f) is periodic orbit and
h(flwx, 5)) =0. Hence we assume that O(x, f) is infinite. Let k =min{ne
NU{0}: O(x, N JZn) # B} and Coe L, with O(x,f)NCo # J. Let C
be the path connected component of X containing Cp. As xe€ R(f) and
U!:OI(UK,-) UC, is open in X (Lemma 3.2), there exists me N such that
fm(C) = C.

Since C is homeomorphic to a connected subset of the real line (Lemma 3.1),
the periods of all periodic points of f™|- are powers of 2 and O(x, f)N Cp =
R(f™|¢) = P(f™|c) (Lemma 2.5). Then for any ye O(x, f)N Co we have that
w(y, f™) is a compact subset of C by Lemma 2.3. Let J = [a,b] be the sub-
continuum of X irreducible with respect to w(y, f™). Then J is a compact subset
of C. Let r: C — J be the retraction defined by: |, ,; = id; r(x) = a when xe C
and x < a; r(x) = b when x e C and x > b. It is clear that ro ™|, e C(J,J) and
that P(ro f™|;) = P(f). Thus, the periods of all periodic points of ro f™|, are
powers of 2. By Theorem A we have that A(ro f™|;) = 0. Hence h(f"|,, rm) =
h(r o f ™ sow(y.rorml,)) < B(rof™];) = 0.

As f"(f'(C)) = f'(C), by a similar argument we can show that
h(f™\ o ri(y.rm) =0 for each 1 <i<m—1. Hence

1 m 1 m
h(Mo.n) = B o) = 57 max A g1y, pm) = 0- O

mo<i<m-l1

LEMMA 4.2. Let X € #, (x€ {wp,wo+1}), f € C(X,X) and the periods of
all periodic points of f be powers of 2. For any given x € R(f), if O(x,f)N
(UZ) =& and x < f(x), then there are closed subsets My and M) of X such
that: (i) My < My; (i) My > w(x, f2) and M, > o(f(x), f?).

PrOOF. Let W be the subcontinuum irreducible with respect to w(x.f),
Dy < D| < --- < D, be all nondegenerate layers of W, C; < C, < --- < C, be all
path connected components of W — U?:o D; and G; be the path connected
components of W with G; > C; (i=1,2,...,n.). It is easy to check that G; <
(D;_, UC;UD;). By [Lemma 3.3,

p:{1,2,....,n} = {1,2,...,n} (p(i)=j& f(C) <G

is a permutation. We complete the proof by considering the following two cases.
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Case 1. n=1. Let My =Dy and M; = D;. Then (i) holds. Since w(x, f)N
=g, f(MiNw(x, f)) c MiUM; (i # j€{0,1}). In order to show (ii), we
need only to prove that f(M;Now(x,f))NM; = for i=0,1. Assume that
f(MyNaw(x, f))N My # &. Note that f(Cy) = C; and f(W) = W. Then, by
Lemma 2.1, f(My) N f2(M;) > MyU M. It contradicts to our assumption that
the periods of all periodic points of f are powers of 2. This proves that
Ff(MyNo(x,f))NMy= . By the same reasoning S(MiNaw(x, )M, = .
Hence the Lemma is true if n=1.

CASE 2. n > 1. By the minimum property of w(x, f), p(1) > 1 and p(n) < n.
Let / = max{i|p(k) > k when k < i} and r = min{i|p(k) < k when k >i}. It is
obvious that either /+1=ror /+1<r.

Suscase 2.1. I+ 1=r. Let 45,4y = C/NCpyy. It is obvious that D; o
Ap i1 # . Firstly, we show that f(A[J_H) < A+ and 45 No(x, f) = .
If there exists xe 4;,;1 such that f(x) < 4,41, then there exists an open
neighborhood U of x in W such that f(U) < A4;,+;. Hence, by the nowhere
density of A4; ;1 in W, there exists x’ € C; such that f(x’) < 4; 4. It implies that
p(l) <1, a contradiction. Similarly, f(x) > A4;;+1 dose not hold for any xe
Aji41. By the minimum property of w(x, f), w(x, f)NA; 111 = .

Secondly, we show that p(/—i)=r+i and p(r+i)=1—i (0<i<I) and
n=2l. Let 4;;4) = cin é,’+1 (0<i<n-—1). Since f(41141) (—;p(l) N Gp(1+1),
we have / < p(r) < p(I) <r, i.e., p(r) =1 and p(!) = r. Suppose that for 0 < i <
k <1 we have p(/—i)=r+i and p(r+1i)=1/—i. Then, on one hand, r + k <
p(l —k — 1) by p being a permutation; on the other hand, p(/ -k - 1) <r+k+
1 by the fact that f(Ci_x—1 )N f(Ci—x) > f(Ai—k-1,1-k) # &. Hence p(l —k —1)
=r+ k + 1. Similarly, we have that p(r + k + 1) = r — k — 1. Note the facts that
p is a permutation, / = Card{C;|p(i) > 1} and n— 1= Card{C;|p(i) < r}. Then
I<n—1<I thatis, n =2l

Finally, we give the structure of Mo and M. If 4, = Dy, let My = | ),_, D;
and M) = |, D;. Then it is easy to check that (i) and (ii) hold. If 4; ;.1 # Dy,
since w(x, f) and A; ;41 are disjoint closed subsets, there exists an open set U
in W such that U > 4; ;41 and UNw(x, f) = &. Set D} = D; — (UU Cy41) and
D/ =D;— (UUC;). Then My :=(|J,.,D)UD; and M;:= (|, D:;)UD] are
the subsets we need.

i<l

SUBCASE 2.2. /+1<r. Let V= U:;IIHC We will first show that f (V)

<V and o(x, )NV = &. In fact, since V is connected, p(/+1) </+ 1 and
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p(r—1)=r—1,wehave p({I+1,1+2,....,r=1}) o {I+1,1+2,...,r—1}. As
p is a permutation, p({/+ 1,1+2,...,r— 1HD={+11+2,...,r—1},
hence f(V) < V. By the minimum property of w(x,f), w(x, f)NV = . Let
My=1]J,.,Di and M) =|),,,Di. Then (i) holds. In order to show (ii), it is
sufficient to prove that:

{1, } L {r,r+1,...,n}. (4.1

Since p is a permutation and p(/) >1[, then p(l)=>r. As f(C)Nf(V)>
f(A;141) # &, we have p(l) <r, and hence p(/)=r. Similarly, p(r) =1I. By
an induction argument similar to paragraph 2 in Subcase 2.1, we can show
that p(/—i)=r+i and p(r+i)=1—-i (0 <i <), that is, holds. a

LEMMA 4.3. Let X € #, (e e {wo,w0 +1}), feC(X,X) and the periods
of all periodic points of f be powers of 2. If xe€ R(f) and O(x, f)N (&) =
then for each se N and i\, iy,...,is€{0,1} there exist closed subset M,;,...; of
X such that

l) w(f (x) fzs) < Ml|lz 159 Where k - ll + 122 + + iszs_l.

(
(i) Miy.;, < M, . = or M. > M, where i +Z =1.
(

I itiyei?

111) 1112"".,? ) Mlllz '+l UM

iiyeise”

(iv) For any y = (iiir---) €Z, (),5, Miyip.i, is contained in some element of
th-wq layer of X, that is, there exists A€ 9, such that ﬂ M; c A.

“12...[5

s>1

PROOF. As for each se N, w(x, f) = U,f _01 o(f*(x), f*), (i)-(iii) are direct

consequence of [Lemma 4.2 In order to prove (iv), it is sufficient to show that if
for an me N there exists D € 2)\° such that (), Mj;,..;, = D then there exists

e NP, such that (Vs»1 Miir-i, = D'. Suppose, for some me NU{0}, M; <
D e 2NP and M; ¢ D' for any D' € 2]'P,. Then there exists k € IV such that the
number of nondegenerate layers of D is less than 2%. By the way that M, is
obtained (see [Lemma 4.2), we know that the number of nondegenerate layers of
D which intersect M, is less than 2%~!. Inductively, for each 1 < j <k the
number of nondegenerate layers of D which intersect M, ..; is less than 2k+1-,
Hence M., intersects only one nondegenerate layer of D, i.e., there exists D’ €
2ND, such that M; < D'. Hence () =D O

12Tk s>1 1112 I

THEOREM 4.4. For each X €| ),_, . #x and f € C(X,X), h(f) =0 if and
only if the periods of all periodic points of f are powers of 2.
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Proor. Suppose f has a periodic point whose period is not a power of 2. By
theorem B, there exists m € NV, such that /™ has a periodic point of period 3. By
there are disjoint nondegenerate subcontinua J; and J, of X, and
ge{f™, f*, >} such that J,UJ, < g2(J;)Ng?(J2), and topological entropy
h(g?) = log2, hence h(f) > 0. Thus, if h(f) = 0 then the periods of all periodic
points of f are powers of 2.

Now we suppose that the periods of all periodic points of f are powers 2 and
want to prove that 4(f) = 0. By theorem C, we need only to prove that for any
x € R(f), h(fla)(xf )=0. If O(x,f)N(JZ) # 2, then h(fla)(x n) =0 by
[Lemma 4.1. Hence we assume O(x, /)N (/&) =& and w(x, f) is an infinite
set. By [Lemma 4.3, for each se N and i,i,,...,i;€ {0,1} there exists a closed
subset Mj,;,..;, of X with properties listed in the Lemma. Define ¢ : w(x, f) — Z
such that ¢(y) =y if ye (o, My, and y = (i1iz---).

It is easy to check that ¢ is a continuous surjection and satisfies that
o(f(y)) =d(p(y)). By (iv) of Lemma 4.3, (w(x,f),flywx,r)) is topologically
conjugate to the adding machine (Z,9) if Order(X) = wo, or (w(x,f), flue. 1))
is semi-conjugate to the adding machine (X,0) if Order(X) =wo+ 1. As 2P is
countable, by lemma 2.3, A(f, s)) =0. O

Let 7 = [0,1] and ¢ € C(I,I). The inverse limit space liE{I ,@} is the subspace
of TI2,1 defined by

}ﬂ{l’ o} ={x=(x1x2---) e I2,I: p(xi11) = x;,i € N}.

The following corollary shows that the class of HDCC is a larger class in
some sense.

COROLLARY 4.5. Let o€ C(I,I) be a piecewise monotone continuous map
with zero topological entropy and M = <lirp_{l, o}. If fe C(M,M) then h(f) =
if and only if the periods of all periodic points of f are powers of 2.

Proor. By [10], M e |J,_, .1 O

In the end, we would like to ask the following quesﬁon: on which hereditarily
decomposable chainable continua the Bowen-Franks-Misiurewicz’s theorem
holds? Our conjecture is:

CONJECTURE. Assume that X is a Suslinean chainable continuum and f €
C(X,X). Then A(f) = 0 if and only if the periods of all periodic points of f are
powers of 2.
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