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AN EQUIVALENT CONDITION FOR CONTINUOUS MAPS
OF A CLASS OF CONTINUA TO HAVE ZERO

TOPOLOGICAL ENTROPY

By

Jie L\"U\dagger , Jincheng XIONG\ddagger and Xiangdong YE*

Abstract. Extending the famous Bowen-Franks-Misiurewicz’s the-
orem conceming the topological entropy of continuous maps of an
interval we prove that continuous maps of a class of continua have
zero topological entropy if and only if the periods of all periodic
points are powers of 2.

\S 1. Introduction

All maps considered in this paper are continuous. According to the well-
known Bowen-Franks-Misiurewicz’s theorem, a map of the unit interval has zero
topological entropy if and only if the periods of all periodic points of the map are
powers of 2. In [12], the authors shown that the above result is still true when
replacing the unit interval by a Warsaw circle. Since Sarkovskii’s theorem holds
for maps of a hereditarily decomposable chainable continuum (HDCC) [3], it is
natural to ask whether Bowen-Franks-Misiurewicz’s theorem can be extended to
maps of this kind of continua. In this paper, we show that maps of a class of
HDCC have zero topological entropy if and only if the periods of all periodic
points are powers of 2. To be more precise we introduce some notations.

By a continuum we mean a connected compact metric space. A sub-
continuum is a subset of a continuum and it is a continuum itself. A continuum is
decomposable (indecomposable) if it can (cannot) be written as the union of two of
its proper subcontinua. A continuum is hereditarily decomposable if each of its
nondegenerate subcontinuum is decomposable. $X$ is said to be chainable or arc-
like if for each given $\epsilon>0$ there exists a continuous map $f_{\epsilon}$ from $X$ onto $[0,1]$
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such that diam $(f_{\epsilon}^{-1}(t))<\epsilon$ for each $t\in[0,1]$ . A continuum is Suslinean if each
collection of its pairwise disjoint nondegenerate subcontinua is countable.

Let $X$ be a continuum and $A\subset X$ be closed. Then there is a subcontinuum
$X_{0}$ of $X$ containing $A$ such that no proper subcontinuum of $X_{0}$ contains $A$ ([6]),
and $X_{0}$ will be called irreducible with respect to $A$ . Particularly, if $X$ is irreducible
with respect to $\{a, b\}$ with $a\neq b\in X$ , then $X$ is called an irreducible continuum.

Let $X$ be a continuum which is hereditarily decomposable irreducible with
respect to $\{a, b\}$ . Then there is a map $g:X\rightarrow[0,1]$ such that $g(a)=0,$ $g(b)=1$

and $g^{-1}(\iota)$ is a maximal nowhere dense subcontinuum for each $t\in[0,1]$ ([2]).
The map $g$ is called the Kuratowski function of X. $g^{-1}(t)$ is called a layer of $X$ for
each $t\in[a, b];g^{-1}(0)$ and $g^{-1}(1)$ are called end layers of $X$ and the others are
called interior layers. For any $x,$ $y\in X$ , by $[x, y]$ we denote the subcontinuum
irreducible with respect to $\{x, y\}$ ; and by $(x, y)$ we denote $[x, y]$ minus its end
layers. When $X$ is chainable, $[x, y]$ will be unique ([7]).

Let $X$ be a HDCC and $\mathscr{D}_{0}=\{X\}$ . For an ordinal $\alpha=\beta+1,$ $\mathscr{D}_{\alpha}$ is the set
consisting of degenerate elements of $\mathscr{D}_{\beta}$ and the layers of the nondegenerate
elements of $\mathscr{D}_{\beta}$ , and for a limit ordinal $\alpha,$

$\mathscr{D}_{\alpha}$ is the set consisting of the
intersections $\bigcap_{\beta<\alpha}D_{\beta}$ , where $D_{\beta}\in \mathscr{D}_{\beta}$ . $\mathscr{D}_{\alpha}$ will be called an $\alpha$-th layer of $X$. By
$\mathscr{D}_{\alpha}^{ND}$ we denote the set of nondegenerate elements of $\mathscr{D}_{\alpha}$ , and by $D_{\alpha}(x)$ we denote
the element of $\mathscr{D}_{\alpha}$ containing $x$ for each $x\in X$ . It was proved in [5] that there is a
countable ordinal $\tau$ such that $D_{\tau}(x)=\{x\}$ for each $x\in X$ . The minimal such $\tau$ is
said to be the Order of $X$ and will be denoted by Order(X). Note that we write
$\mathscr{D}_{\alpha}(X)$ and $\mathscr{D}_{\alpha}^{ND}(X)$ instead of $\mathscr{D}_{\alpha}$ and $\mathscr{D}_{\alpha}^{ND}$ respectively when emphasizing the
dependence of them on $X$.

Let $C(X, X)$ be the collections of all continuous maps on a compact metric
space $X$ and $\omega_{0}$ be the first limit ordinal. Moreover, let

$\mathscr{H}_{\omega_{0}+1}=$ { $X|X$ is a HDCC and $satisf\check{\iota}esOrder(X)=\omega_{0+1},$ $(a)$ and $(b)$ }.

(a) for each $n\in N,$ $\mathscr{D}_{n}^{ND}(X)$ is finite.
(b) $\mathscr{D}_{\omega}^{N_{0}D}(X)$ is countable and each of its element is homeomorphic to the

unit interval $[0,1]$ .

and for each ordinal $\alpha\leq\omega_{0}$ let

$\mathscr{H}_{\alpha}=$ { $X|X$ is a HDCC and satisfies Order(X) $=\alpha$ and the above $(a)$ }.

MAIN RESULT. (Theorem 4.4). For each $X\in\bigcup_{\alpha\leq\omega_{0}+1}\mathscr{H}_{\alpha}$ and $f\in C(X, X)$ ,
$f$ has zero topological entropy if and only if the periods of all periodic points off
are powers of 2.
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REMARK. (i) If $\varphi\in C(I, I)$ is a piecewise monotone continuous map with
zero topological entropy then the inverse limit space $\lim_{\leftarrow}\{I, \varphi\}\in\bigcup_{\alpha\leq\omega_{0}+1}\mathscr{H}_{\alpha}$ ([10]).

(ii) In fact, the “only if” part of the main result holds for any $X$ which is a
HDCC (see theorem 4.4).

\S 2. Preliminary

According to [3], a total order $‘‘\prec$ can be defined on a HDCC $X$ such that
if $a,$ $b,$ $c\in X$ and $a\prec c\prec b$ then $c\in[a, b]$ . The total order is not unique on $X$

([3]), but in the following we will assume that a total order $\prec$ on $X$ was given.
Let $A,$ $B\subset X$ . We say $A\prec B(A\succ B)$ if $a\prec b(a\succ b)$ for any $a\in A$ and $b\in B$ ;
say $A\preceq B$ if $a\prec B$ or $a\in B$ for any $a\in A$ ($A\succeq B$ is defined similarly).

For $f\in C(X, X)$ we define $f^{0}=id$ and inductively $f^{n}=f\circ f^{n-1}$ for $n\in N$ .
An $x\in X$ is a periodic point of $f$ of period $n$ if $f^{n}(x)=x$ and $f^{j}(x)\neq x$ for
$1\leq i\leq n-1$ . An $x\in X$ is a recurrent point of $f$ if for any $\epsilon>0$ , there exists
$n\in N$ such that $ d(f^{n}(x), x)<\epsilon$ , where $d$ is a metric of $X$. An $x\in X$ is a non-
wandering point of $f$ if for any non-empty neighbourhood $U$ of $x$ there exists
$n\in N$ such that $ f^{n}(U)\cap U\neq\emptyset$ . The collections of periodic points, recurrent
points and non-wandering points of $f$ will be denoted by $P(f),$ $R(f)$ and $\Omega(f)$

respectively.
For $x\in X,$ $O(x, f)=\{x, f(x), f^{2}(x), \ldots\}$ is called the orbit of $x$ under $f$

The set of accumulation points of $O(x,f)$ , denoted by $\omega(x,f)$ , is called
$\omega$-limit set of $x$ under $f$ Note that we use $A\rightarrow fB$ to denote $f(A)\supset B$, where
$f\in C(X, X)$ and $A,$ $B\subset X$ .

We use $h(f)$ to denote the topological entropy of $f\in C(X, X)$ (for the
definition and the basic properties of topological entropy see [1] or [8]). Let
$\Sigma=\Pi_{i=1}^{\infty}\{0,1\}$ . For $\alpha=(\alpha_{1}\alpha_{2}\cdots),$ $\beta=(\beta_{1}\beta_{2}\cdots)\in\Sigma,$ $d(\alpha,\beta)=\Sigma_{i=1}^{\infty}(2^{-i})\cdot|\alpha_{j}-\beta_{j}|$

is a metric on $\Sigma$ , and the sum $\alpha+\beta=(g1g2 )$ is defined by: if $\alpha_{1}+\beta_{1}<2$ then
$gl=\alpha_{1}+\beta_{1}$ ; if $\alpha_{1}+\beta_{1}\geq 2$ then $gl=\alpha_{1}+\beta_{1}-2$ and we carry 1 to the next
position, and so on. Let $\delta$ : $\Sigma\rightarrow\Sigma$ be defined by $\delta(\alpha)=\alpha+(100\cdots)$ for $\alpha\in\Sigma$ . It
is easy to prove that $\omega(\alpha,\delta)=\Sigma$ for any $\alpha\in\Sigma$ and $\delta$ has zero topological entropy.
We shall call $(\Sigma,\delta)$ an adding machine (see [8]).

We need some known theorems and simple lemmas for the proof of the main
result.

THEOREM A. Let I be a closed interval and $f:I\rightarrow I$ be continuous. Then $f$

has zero topological entropy $\iota f$ and on$lylf$ the periods of all periodic points off are
powers of 2.



542 Jie $L\ddot{U}$ , Jincheng XIONG and Xiangdong YE

See [1], [4], [11] and [13] for the proof of Theorem A.

THEOREM B. Let $Y$ be a hereditarily decomposable chainable continuum and
let $X$ be a subcontinuum of Y If $m<\supset n,$ $f$ is a continuous map of $X$ into $Y$ and $f$

has a periodic point of period $n$, then $f$ has a periodic point of period $m$ .

Here, “
$r$

” means Sarkovskii’s order on the set of all natural numbers.
See [3] for the proof of Theorem B.

THEOREM C. Let $X$ be a compact metric space and $f\in C(X, X)$ . Then
$h(f)=\sup_{x\in R(f)}h(f|_{\omega(x,f)})$ .

Theorem $C$ is a simple corollary of Variational Principle (see [8]). See Lemma
2.1 and Lemma 2.4 of [3] for the proofs of the Lemma 2.1 and Lemma 2.2
respectively.

LEMMA 2.1. Let $X$ and $Y$ be HDCC, $f:X\rightarrow Y$ be a continuous surjection,
$A,$ $B$ be the end layers of $X$ and $C$ be an end layer of Y If there is an $a\in A$

such that $f(a)\in C$ and $ f(X-(A\cup B))\cap C=\emptyset$ , then $f(A)\supset C$ .

LEMMA 2.2. Let $X$ and $Y$ be HDCC, $f:X\rightarrow Y$ be a continuous surjection,
$A,$ $B$ be the end layers of $X$ and $a\in A,$ $b\in B,$ $c\in Y.$ If $c\in(f(a),f(b))$ , then either
there exists $t\in(a, b)$ such that $f(t)=c$ or $[f(a), f(b)]\subset f(A)\cap f(B)$ .

LEMMA 2.3 [9]. Let $X$ be a compact metric space, $T\in C(X, X)$ and $(\Sigma,\delta)$ be
the adding machine. If there is a continuous surjection $\varphi$ : $ X\rightarrow\Sigma$ , such that
$\varphi\circ T=\delta\circ\varphi$ and $A=$ { $\alpha\in\Sigma$ : Card $(\varphi^{-1}(\alpha))\geq 2$ } is countable, then $h(T)=0$ .

LEMMA 2.4. Let $X$ be a HDCC and $f\in C(X, X)$ . If there is a periodic point

of $f$ of period 3 then there exist disjoint nondegenerate subcontinua $J_{1},$ $J_{2}$ and
$g\in\{f, f^{2}, f^{3}\}$ such that $g^{2}(J_{1})\cap g^{2}(J_{2})\supset J_{1}\cup J_{2}$ .

See [3, p. 184] for the proof of Lemma 2.4.

LEMMA 2.5. Let I be a connected subset of the real line and $f$ : $I\rightarrow I$ be
continuous. Then (i) $\overline{R(f)}=\overline{P(f)}$ ; and (ii) If the periods of all periodic points of
$f$ are powers of 2 then $\omega(x, f)$ is a compact set for any $x\in\overline{P(f)}$ .
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The claim (i) in the above Lemma is a known result (see [1] for a proof), and
(ii) was proved in [12] when $I=(0,1$ ] and the method can be applied to prove
the Lemma when $I=(0,1)$ .

\S 3. Some Elementary Properties

To prove the main result, we will supply several lemmas in this section.

LEMMA 3.1. Let $X$ be a HDCC and $g:X\rightarrow[0,1]$ be a Kuratowski function
of X If there are $a,$ $b\in[0,1]$ such that for any $t\in(a, b),$ $g^{-1}(t)$ is a degenerate
element of $\mathscr{D}_{1}(X)$ , then $g|_{g^{-1}((a,b))}$ : $g^{-1}((a, b))\rightarrow(a, b)$ is a homeomorphism.
Moreover, $lfL$ is a path connected component of $X$ then $L$ is homeomorphic to a
connected subset of the real line.

PROOF. It is easy to check that $g|_{g^{-1}((a,b))}$ is a continuous bijection and an
open map. Hence $g|_{g^{-1}((a,b))}$ : $g^{-1}((a, b))\rightarrow(a, b)$ is a homeomorphism.

Let $L$ be a path connected component of $X$, then the subcontinuum $\overline{L}$ of $X$ is
a HDCC ([6]). Assume $g$ : $\overline{L}\rightarrow[0,1]$ be a Kuratowski function of $\overline{L}$ . Then for
each $t\in(O, 1),$ $g^{-1}(t)$ is a degenerate element of $\overline{L}$ by the path connectivity of $L$ .
Thus $\overline{L}-(g^{-1}(0)\cup g^{-1}(1))$ is homeomorphic to $(0,1)$ . Therefore, $L$ is homeo-
morphic to one of $(0,1$ ], $[0,1]$ and $(0,1)$ . $\square $

LEMMA 3.2. Let $X\in \mathscr{H}_{\alpha}(\alpha\leq\omega_{0}+1)$ and $\mathscr{L}_{k}$ be the collection of path
connected components $of\cup \mathscr{D}_{k}^{ND}-\cup \mathscr{D}_{k+1}^{ND},$ $(k\in N\cup\{0\})$ . Then for any $C\in \mathscr{L}_{k+1}$ ,
$\bigcup_{i=0}^{k}(\cup \mathscr{L}_{j})\cup C$ is an open subset of $X$.

PROOF. It is clear that $\cup \mathscr{L}_{0}=X-\cup \mathscr{D}_{1}^{ND}$ is open in $X$. For any $C_{1}\in \mathscr{L}_{1}$ ,
there is a $D_{1}\in \mathscr{D}_{1}^{ND}$ such that $C_{1}\subset D_{1}$ . By considering the Kuratowski function
of $D_{1}$ , we have that $B_{1}=D_{1}-C_{1}$ is closed in $D_{1}$ , and thus $B_{1}$ is closed in $X$.

Since $\cup \mathscr{D}_{1}^{ND}$ is the union of finitely many of pairwise disjoint subcontinua,
there is an open neighbourhood $W$ of $D_{1}$ in $X$ such that $ W\cap(\cup \mathscr{D}_{1}^{ND}-D_{1})=\otimes$ .
Hence $(\cup \mathscr{L}_{0})\cup D_{1}=(\cup \mathscr{L}_{0})\cup W$ is open in $X$, and

$(\cup \mathscr{L}_{0})\cup C_{1}=((\cup \mathscr{L}_{0})\cup D_{1})-B_{1}$

is open in $X$.
Suppose $\bigcup_{i=0}^{k}(\cup \mathscr{L}_{i})\cup C_{k+1}$ is open in $X$ for any $C_{k+1}\in \mathscr{L}_{k+1}$ . By a dis-

cussion similar to the above, it is easy to check that $\bigcup_{i=0}^{k+1}(\cup \mathscr{L}_{i})\cup C_{k+2}$ is open
in $X$ for any $C_{k+2}\in \mathscr{L}_{k+2}$ . $\square $
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LEMMA 3.3. Suppose that $X\in \mathscr{H}_{\alpha}(\alpha\leq\omega_{0}+1)$ . Then (i) $X$ is the union of
finitely many of nondegenerate path connected components of $X$ when $\alpha\in N$ ; (ii) $X$

is the union of countably many of nondegenerate path connected components of $X$

and a totally disconnected set when $\alpha\in\{\omega_{0}, \omega_{0}+1\}$ .

PROOF. It follows directly from the definition of $\mathscr{H}_{\alpha}(\alpha\leq\omega_{0}+1)$ . $\square $

LEMMA 3.4. Assume $X\in \mathscr{H}_{\alpha}(\alpha\leq\omega_{0}+1),$ $f\in C(X, X)$ and the periods of
all periodic poin $ts$ of $f$ are powers 2. Let $W$ be a subcontinuum of $X,$ $D_{0}\prec D_{1}$

$\prec\cdots\prec D_{n}$ be all nondegenerate layers of $W,$ $C_{1}\prec C_{2}\prec\cdots\prec C_{n}$ be all path
connected components of $W-\bigcup_{i=0}^{n}D_{i}$ and $G_{j}$ be the path connected components

of $W$ with $G_{j}\supset C_{i}(i=1,2, \ldots, n.)$ . If there exist $a\in D_{0}$ and $b\in D_{n}$ such that
$[f(a),f(b)]=W$ , then

$p:\{1,2, \ldots, n\}\rightarrow\{1,2, \ldots, n\}$ $(p(i)=j\Leftrightarrow f(C_{l})\subset G_{j})$

is a permutation.

PROOF. Since the periods of all periodic points of $f$ are powers of 2, $ f(D_{0})\cap$

$f(D_{n})\not\supset W$ . By Lemma 2.2, for any $x\in W-(D_{0}\cup D_{n})$ there exists $t\in W-$

$(D_{0}\cup D_{n})$ such that $f(t)=x$ . Let $x_{1}\in C_{1}$ and $t_{1}\in W-(D_{0}\cup D_{n})$ with $f(t_{1})=$

$x_{1}$ . Then there exists an e-neighborhood $U_{\epsilon}(x_{1})$ of $x_{1}$ in $W$ with $U_{\epsilon}(x_{1})\subset C_{1}$ and
a $\delta$-neighborhood $V_{\delta}(t_{1})$ of $t_{1}$ in $W$ such that $f(V_{\delta}(t_{1}))\subset U_{\epsilon}(x_{1})$ . Since $\bigcup_{i^{n}=1}D_{i}$ is
nowhere dense in $W$, there exists $t_{1}^{\prime}\in V_{\delta}(t_{1})\cap(\bigcup_{i^{n}=1}C_{i})$ such that $f(t_{1}^{\prime})\in U_{\epsilon}(x_{1})$

$\subset C_{1}$ . Assume $t_{1}^{\prime}\in C_{j(1)}$ . Then $f(C_{j(1)})\subset G_{1}$ . By the same argument we get that
there are $j(i)$ such that $f(C_{j(i)})\subset G_{j}$ for $i=2,3,$

$\ldots,$
$n$ .

If there are $j(i)\neq j^{\prime}(i)$ such that $f(C_{j(i)})\cup f(C_{j^{\prime}(i)})\subset G_{j}$ , then $f(W)=$
$f\overline{(\bigcup_{i}C_{i})}\subsetneqq\overline{\bigcup_{i}G_{i}}=W$ , as $f(C_{j})$ is path connected and $G_{k}\cup G_{l}$ is not if $k\neq l$ .
This contradicts the assumption that $f([a, b])\supset W$ . Thus if $ f(C_{j(i)})\cup f(C_{j^{\prime}(i)})\subset$

$G_{i}$ then $j(i)=j^{\prime}(i)$ . That is, $p^{-1}$ is a permutation, so is $p$ . $\square $

In the rest of the paper, for each ordinal $\alpha\leq\omega_{0}+1$ and each $X\in \mathscr{H}_{\alpha}$ let

$\mathscr{L}_{j}=\mathscr{L}_{i}(X)=$ { $L:L$ is a path connected component of $\cup \mathscr{D}_{i^{ND}}-\cup \mathscr{D}_{i+1}^{ND}$ },
(3.1)

where $0\leq i<\min\{\alpha, \omega_{0}\}$ and $\mathscr{D}_{i^{ND}}$ is the set consisting of all nondegenerate i-th
layers of $X$. Furthermore, let

$\mathscr{L}=\bigcup_{i<\omega_{0}}\mathscr{L}_{i}$ (3.2)
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LEMMA 3.5. Assume $X\in \mathscr{H}_{\alpha}(\alpha\in\{\omega_{0}, \omega_{0}+1\}),$ $f\in C(X, X)$ and the periods

of all periodic poin $ts$ of $f$ are powers of 2. If $x\in R(f)$ such that (i) $\omega(x,f)$ is
infinite; (ii) $\omega(x,f)\cap(\cup \mathscr{L})=\emptyset$ ; (iii) $D\not\supset\omega(x,f)$ for each $D\in \mathscr{D}_{\omega}^{N_{0}D}$ , then
$f(W)=W$ , where $W\subset X$ is the subcontinuum irreducible with respect to $\omega(x,f)$ .

PROOF. It is obvious that $f(W)\supset W$ , so we need only to prove that $f(W)$

$\subset W$ . Let $D_{0}\prec D_{1}\prec\cdots\prec D_{n}$ be all nondegenerate layers of $W$, $C_{1}\prec C_{2}$

$\prec\cdots\prec C_{n}$ be all path connected components of $W-\bigcup_{i=0}^{n}D_{j}$ and $G_{j}$ be the
path connected components of $W$ with $G_{j}\supset C_{i}$ $(i=1,2, \ldots , n.)$ . Thus $\bigcup_{i^{n}=0}D_{j}\supset$

$\omega(x,f)$ since $\omega(x,f)\cap(\cup \mathscr{L})=\emptyset$ .

CLAIM. There are $m\in N,$ $a\in D_{0}$ and $b\in D_{n}$ such that $f^{m}(a)\in D_{0}$ and
$f^{m}(b)\in D_{n}$ .

Since $D_{i}(0\leq i\leq n)$ are disjoint and closed subset in $X$ and $x\in R(f)$ , for
any given $a_{0}\in D_{0}\cap\omega(x, f)$ there is an $m_{0}\in N$ such that $f^{m_{0}}(a_{0})\in D_{0}$ . Fur-
thermore, for any $b\in D_{n}\cap O(x, f)$ there are $m,$ $r\in N$ such that $m=rm_{0}$ and
$f^{m}(b)\in D_{n}$ as $b\in R(f)=R(f^{m_{0}})$ . If $f^{m}(a_{0})\in D_{0}$ , then obviously the Claim is
true. If $f^{m}(a_{0})\not\in D_{0}$ , then there exists $2\leq s\leq r$ such that $f^{sm_{0}}(a_{0})\in W-D_{0}$ .
Let $s$ be the minimum integer with $f^{sm_{0}}(a_{0})\in W-D_{0}$ . As $D_{0}$ is an end layer
of $W,$ $f^{m_{0}}(D_{0})\supset[f^{m_{0}}(a_{0}),f^{sm_{0}}(a_{0})]\supset D_{0}$ , and hence $f^{m}(D_{0})=f^{rm_{0}}(D_{0})\supset D_{0}$ .
Thus, there is an $a\in D_{0}$ such that $f^{m}(a)\in D_{0}$ . This ends the proof of Claim.

Replacing $f$ in Lemma 3.4 by $f^{m}$ , we have that

$p$ : $\{1, 2, \ldots, n\}\rightarrow\{1,2, \ldots, n\}$ $(p(i)=j\Leftrightarrow f^{m}(C_{i})\subset G_{j})$

is a permutation, i.e., $\bigcup_{i=1}^{n}f^{m}(C_{i})\subset\bigcup_{i=1}^{n}G_{i}$ . Hence $f^{m}(W)=f^{m}(\overline{\bigcup_{i=1}^{n}C_{i}})=$

$\bigcup_{i^{n}=1}\overline{f^{m}(C_{i})}\subset\bigcup_{i^{n}=1}\overline{G}_{j}\subset W$ since $f^{m}$ is a closed map. Thus, we have that $ W\subset$

$ f(W)\subset f^{2}(W)\subset\cdots\subset f^{m}(W)\subset$ W. That is, $f(W)=W.$ $\square $

\S 4. The Proof of Main Result

In this section we will prove the main result of the paper. In order to
show that for any $x\in R(f)h(f|_{\omega(x,f)})=0$ providing $X\in \mathscr{H}_{\alpha}(\alpha\leq\omega_{0}+1),$ $ f\in$

$C(X, X)$ and the periods of all periodic points of $f$ are powers 2, we will consider
two cases:

CASE 1. $x\in R(f),$ $ O(x, f)\cap(\cup \mathscr{L})\neq\emptyset$ , where $\mathscr{L}$ is defined by (3.2).

CASE 2. $x\in R(f),$ $O(x, f)\cap(\cup \mathscr{L})=\emptyset$ .
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LEMMA 4.1. Assume that $X\in\bigcup_{\alpha\leq\omega_{0+l}}\mathscr{H}_{\alpha},$ $f\in C(X, X)$ and the periods

of all periodic points of $f$ are powers of 2. Then for each $x\in R(f)$ with $ O(x, f)\cap$

$(\cup \mathscr{L})\neq\otimes,$ $h(f|_{\omega(x,f)})=0$ .

PROOF. If $O(x, f)$ is finite, it is clear that $\omega(x,f)$ is periodic orbit and
$h(f|_{\omega(x,f)})=0$ . Hence we assume that $O(x, f)$ is infinite. Let $ k=\min\{n\in$

$N\cup\{0\}:O(x,f)\cap(\cup \mathscr{L}_{n})\neq\otimes\}$ and $C_{0}\in \mathscr{L}_{k}$ with $ O(x,f)\cap C_{0}\neq\emptyset$ . Let $C$

be the path connected component of $X$ containing $C_{0}$ . As $x\in R(f)$ and
$\bigcup_{i=0}^{k-1}(\cup \mathscr{L}_{i})\cup C_{0}$ is open in $X$ (Lemma 3.2), there exists $m\in N$ such that
$f^{m}(C)\subset C$ .

Since $C$ is homeomorphic to a connected subset of the real line (Lemma 3.1),

the periods of all periodic points of $f^{m}|_{C}$ are powers of 2 and $O(x, f)\cap C_{0}\subset$

$R(f^{m}|_{C})\subset\overline{P(f^{m}|_{C})}$ (Lemma 2.5). Then for any $y\in O(x,f)\cap C_{0}$ we have that
$\omega(y, f^{m})$ is a compact subset of $C$ by Lemma 2.5. Let $J=[a, b]$ be the sub-
continuum of $X$ irreducible with respect to $\omega(y, f^{m})$ . Then $J$ is a compact subset
of $C$. Let $r:C\rightarrow J$ be the retraction defined by: $r|_{[a,b]}=id;r(x)=a$ when $x\in C$

and $x\prec a;r(x)=b$ when $x\in C$ and $x\succ b$ . It is clear that $r\circ f^{m}|_{J}\in C(J, J)$ and
that $P(r\circ f^{m}|_{J})\subset P(f)$ . Thus, the periods of all periodic points of $r\circ f^{m}|_{J}$ are
powers of 2. By Theorem A we have that $h(r\circ f^{m}|_{J})=0$ . Hence $h(f^{m}|_{\omega(y,f^{m})})=$

$h(r\circ f^{m}|_{J\cap\omega(y,r\circ f^{m}|_{J})})\leq h(r\circ f^{m}|_{J})=0$ .
As $f^{m}(f^{i}(C))\subset f^{i}(C)$ , by a similar argument we can show that

$h(f^{m}|_{\omega(f^{i}(y),f^{m})})=0$ for each $1\leq i\leq m-1$ . Hence

$h(f|_{\omega(x,f)})=\frac{1}{m}h(f^{m}|_{\omega(x,f)})=_{0\leq i\leq m-1}\frac{1}{m}\max h(f^{m}|_{\omega(f^{j}(y),f^{m})})=0$ . $\square $

LEMMA 4.2. Let $X\in \mathscr{H}_{\alpha}(\alpha\in\{\omega_{0}, \omega_{0}+1\}),$ $f\in C(X, X)$ and the periods of
all periodic points of $f$ be powers of 2. For any given $x\in R(f)$ , if $ O(x, f)\cap$

$(\cup \mathscr{L})=\emptyset$ and $x\prec f(x)$ , then there are closed subsets $M_{0}$ and $M_{1}$ of $X$ such
that: (i) $M_{0}\prec M_{1}$ ; (ii) $M_{0}\supset\omega(x,f^{2})$ and $M_{1}\supset\omega(f(x),f^{2})$ .

PROOF. Let $W$ be the subcontinuum irreducible with respect to $\omega(x.f)$ ,
$D_{0}\prec D_{1}\prec\cdots\prec D_{n}$ be all nondegenerate layers of $W,$ $C_{1}\prec C_{2}\prec\cdots\prec C_{n}$ be all
path connected components of $W-\bigcup_{i=0}^{n}D_{j}$ and $G_{i}$ be the path connected
components of $W$ with $G_{j}\supset C_{j}(i=1,2, \ldots, n.)$ . It is easy to check that $\overline{G_{i}}\subset$

$(D_{i-1}\cup C_{j}\cup D_{j})$ . By Lemma 3.5,

$p$ : $\{1, 2, \ldots, n\}\rightarrow\{1,2, \ldots, n\}$ $(p(i)=j\Leftrightarrow f(C_{j})\subset G_{j})$

is a permutation. We complete the proof by considering the following two cases.
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CASE 1. $n=1$ . Let $M_{0}=D_{0}$ and $M_{1}=D_{1}$ . Then (i) holds. Since $\omega(x,f)\cap$

$C_{1}=\otimes,$ $f(M_{i}\cap\omega(x,f))\subset M_{j}\cup M_{j}(i\neq j\in\{0,1\})$ . In order to show (ii), we
need only to prove that $ f(M_{j}\cap\omega(x,f))\cap M_{j}=\emptyset$ for $i=0,1$ . Assume that
$ f(M_{0}\cap\omega(x,f))\cap M_{0}\neq\emptyset$ . Note that $f(C_{1})\subset C_{1}$ and $f(W)=W$ . Then, by
Lemma 2.1, $f^{2}(M_{0})\cap f^{2}(M_{1})\supset M_{0}\cup M_{1}$ . It contradicts to our assumption that
the periods of all periodic points of $f$ are powers of 2. This proves that
$ f(M_{0}\cap\omega(x, f))\cap M_{0}=\emptyset$ . By the same reasoning $ f(M_{1}\cap\omega(x, f))\cap M_{1}=\emptyset$ .
Hence the Lemma is true if $n=1$ .

CASE 2. $n>1$ . By the minimum property of $\omega(x,f),$ $p(1)>1$ and $p(n)<n$ .
Let $ l=\max${ $i|p(k)>k$ when $k\leq i$} and $ r=\min${ $i|p(k)<k$ when $k\geq i$}. It is
obvious that either $l+1=r$ or $l+1<r$ .

SUBCASE 2.1. $l+1=r$ . Let $A_{l,l+1}=\overline{C}_{l}\cap\overline{C}_{l+1}$ . It is obvious that $ D_{l}\supset$

$ A_{l,l+1}\neq\emptyset$ . Firstly, we show that $f(A_{l,l+1})\subset A_{l,l+1}$ and $ A_{l,l+1}\cap\omega(x,f)=\emptyset$ .
If there exists $x\in A_{l,l+1}$ such that $f(x)\prec A_{l,l+1}$ , then there exists an open
neighborhood $U$ of $x$ in $W$ such that $f(U)\prec A_{l,l+1}$ . Hence, by the nowhere
density of $A_{l,l+1}$ in $W$, there exists $x^{\prime}\in C_{l}$ such that $f(x^{\prime})\prec A_{l,l+1}$ . It implies that
$p(l)\leq l$ , a contradiction. Similarly, $f(x)\succ A_{l,l+1}$ dose not hold for any $ x\in$

$A_{l,l+1}$ . By the minimum property of $\omega(x, f),$ $\omega(x, f)\cap A_{l,l+1}=\emptyset$ .
Secondly, we show that $p(l-i)=r+i$ and $p(r+i)=l-i(0\leq i<l)$ and

$n=2l$ . Let $A_{i,i+1}=\overline{C}_{i}\cap\overline{C}_{l+1}(0<i<n-1)$ . Since $f(A_{l,l+1})\subset\overline{G}_{p(l)}\cap\overline{G}_{p(l+1)}$ ,
we have $l\leq p(r)<p(l)\leq r$ , i.e., $p(r)=l$ and $p(l)=r$ . Suppose that for $ 0\leq i\leq$

$k<l$ we have $p(l-i)=r+i$ and $p(r+i)=l-i$ . Then, on one hand, $r+k<$
$p(l-k-1)$ by $p$ being a permutation; on the other hand, $p(l-k-1)\leq r+k+$
$1$ by the fact that $ f(\overline{C_{l-k-1}})\cap f(\overline{C_{l-k}})\supset f(A_{l-k-1,l-k})\neq\emptyset$ . Hence $p(l-k-1)$

$=r+k+1$ . Similarly, we have that $p(r+k+1)=r-k-1$ . Note the facts that
$p$ is a permutation, $l=Card\{C_{l}|p(i)>l\}$ and $n-l=Card\{C_{i}|p(i)<r\}$ . Then
$l\leq n-l\leq l$ , that is, $n=2l$ .

Finally, we give the structure of $M_{0}$ and $M_{1}$ . If $A_{l,l+1}=D_{l}$ , let $M_{0}=\bigcup_{i<l}D_{l}$

and $M_{1}=\bigcup_{i>l}D_{i}$ . Then it is easy to check that (i) and (ii) hold. If $A_{l,l+1}\neq D_{l}$ ,
since $\omega(x,f)$ and $A_{l,l+1}$ are disjoint closed subsets, there exists an open set $U$

in $W$ such that $U\supset A_{l,l+1}$ and $ U\cap\omega(x,f)=\emptyset$ . Set $D_{l}^{\prime}=D_{l}-(U\cup\overline{C}_{l+1})$ and
$D_{l}^{J/}=D_{l}-(U\cup\overline{C}_{l})$ . Then $M_{0}$ $:=(\bigcup_{i<l}D_{i})\cup D_{l}^{\prime}$ and $M_{1}$ $:=(\bigcup_{i>l}D_{i})\cup D_{l}^{\prime\prime}$ are
the subsets we need.

SUBCASE 2.2. $l+1<r$ . Let $V=\bigcup_{i^{r}=^{-}l^{1}+1}\overline{C_{i}}$ . We will first show that $f(V)$

$\subset V$ and $\omega(x, f)\cap V=\emptyset$ . In fact, since $V$ is connected, $p(l+1)\leq 1+1$ and
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$p(r-1)\geq r-1$ , we have $p(\{l+1,1+2, \ldots, r-1\})\supset\{1+1,1+2, \ldots, r-1\}$ . As
$p$ is a permutation, $p(\{l+1,1+2, \ldots, r-1\})=\{l+1,1+2, \ldots, r-1\}$ , and
hence $f(V)\subset V$ . By the minimum property of $\omega(x,f),$ $\omega(x,f)\cap V=\emptyset$ . Let
$M_{0}=\bigcup_{i\leq l}D_{i}$ and $M_{1}=\bigcup_{i\geq r}D_{j}$ . Then (i) holds. In order to show (ii), it is
sufficient to prove that:

$\{1, 2, \ldots, l\}\Leftrightarrow^{p}\{r, r+1, \ldots, n\}$ . (4.1)
$p$

Since $p$ is a permutation and $p(l)>l$ , then $p(l)\geq r$ . As $ f(\overline{C_{l}})\cap f(V)\supset$

$ f(A_{l,l+1})\neq\emptyset$ , we have $p(l)\leq r$ , and hence $p(l)=r$ . Similarly, $p(r)=l$ . By
an induction argument similar to paragraph 2 in Subcase 2.1, we can show
that $p(l-i)=r+i$ and $p(r+i)=l-i(0\leq i<l)$ , that is, (4.1) holds. $\square $

LEMMA 4.3. Let $X\in \mathscr{H}_{\alpha}(\alpha\in\{\omega_{0}, \omega_{0}+1\}),$ $f\in C(X, X)$ and the periods

of all periodic points of $f$ be powers of 2. If $x\in R(f)$ and $ O(x, f)\cap(\cup \mathscr{L})=\emptyset$ ,

then for each $s\in N$ and $i_{1},$ $i_{2},$

$\ldots,$
$i_{s}\in\{0,1\}$ there exist closed subset $M_{i_{1}i_{2}\cdots i}$, of

$X$ such that

(i) $\omega(f^{k}(x),f^{2^{s}})\subset M_{i_{1}i_{2}\cdots i_{s}}$ , where $k=i_{1}+i_{2}2+\cdots+i_{s}2^{s-1}$ .
(ii) $M_{i_{I}i_{2}\cdots i_{s}}\prec M_{i_{1}i_{2}\cdots\overline{i_{s}}}$ or $M_{i_{I}i_{2}\cdots i_{s}}\succ M_{i_{\mathfrak{l}}i_{2}\cdots\overline{i_{s}}}$ , where $i_{s}+\overline{i_{s}}=1$ .
(iii) $ M_{i_{1}i_{2}\cdots i_{s}}\supset M_{i_{1}i_{2}\cdots i_{s+1}}\cup M_{i_{1}i_{2}\cdots\overline{i_{+1}}},\cdot$

(iv) For any $\gamma=(i_{1}i_{2}\cdots)\in\Sigma,$ $\bigcap_{s\geq 1}M_{i_{1}i_{2}\cdots i_{\sigma}}$ is contained in some element of
$\iota h-\omega_{0}$ layer of $X$, that is, there exists $A\in \mathscr{D}_{\omega_{0}}$ such that $\bigcap_{s\geq 1}M_{i_{1}i_{2}\cdots i_{s}}\subset A$ .

PROOF. As for each $s\in N,$ $\omega(x, f)=\bigcup_{k=0}^{2^{s}-1}\omega(f^{k}(x), f^{2^{s}}),$ $(i)-(iii)$ are direct
consequence of Lemma 4.2. In order to prove (iv), it is sufficient to show that if
for an $m\in N$ there exists $D\in \mathscr{D}_{m}^{ND}$ such that $\bigcap_{s\geq 1}M_{i_{1}i_{2}\cdots i_{\sigma}}\subset D$ then there exists
$D^{\prime}\in \mathscr{D}_{m+1}^{ND}$ such that $\bigcap_{s\geq 1}M_{i_{1}i_{2}\cdots i_{s}}\subset D^{\prime}$ . Suppose, for some $m\in N\cup\{0\},$ $ M_{i_{1}}\subset$

$D\in \mathscr{D}_{m}^{ND}$ and $M_{j_{1}}\not\subset D^{\prime}$ for any $D^{\prime}\in \mathscr{D}_{m+1}^{ND}$ . Then there exists $k\in N$ such that the
number of nondegenerate layers of $D$ is less than $2^{k}$ . By the way that $M_{i_{1}i_{2}}$ is
obtained (see Lemma 4.2), we know that the number of nondegenerate layers of
$D$ which intersect $M_{i_{1}i_{2}}$ is less than $2^{k-1}$ . Inductively, for each $1\leq j\leq k$ the
number of nondegenerate layers of $D$ which intersect $M_{i_{1}\cdots i_{j}}$ is less than $2^{k+1\rightarrow}$ .
Hence $M_{i_{1}i_{2}\cdots i_{k}}$ intersects only one nondegenerate layer of $D$ , i.e., there exists $ D^{\prime}\in$

$\mathscr{D}_{m+1}^{ND}$ such that $M_{i_{1}i_{2}\cdots i_{k}}\subset D^{\prime}$ . Hence $\bigcap_{s\geq 1}M_{i_{I}i_{2}\cdots i_{s}}\subset D^{\prime}$ . $\square $

THEOREM 4.4. For each $X\in\bigcup_{\alpha\leq\omega_{0}+1}\mathscr{H}_{\alpha}$ and $f\in C(X, X),$ $h(f)=0$ if and
only $lf$ the periods of all periodic points of $f$ are powers of 2.
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PROOF. Suppose $f$ has a periodic point whose period is not a power of 2. By
theorem $B$ , there exists $m\in N$ , such that $f^{m}$ has a periodic point of period 3. By
Lemma 2.4, there are disjoint nondegenerate subcontinua $J_{1}$ and $J_{2}$ of $X$, and
$g\in\{f^{m},f^{2m},f^{3m}\}$ such that $J_{1}\cup J_{2}\subset g^{2}(J_{1})\cap g^{2}(J_{2})$ , and topological entropy
$h(g^{2})\geq\log 2$ , hence $h(f)>0$ . Thus, if $h(f)=0$ then the periods of all periodic
points of $f$ are powers of 2.

Now we suppose that the periods of all periodic points of $f$ are powers 2 and
want to prove that $h(f)=0$ . By theorem $C$ , we need only to prove that for any
$x\in R(f)$ , $h(f|_{\omega(x,f)})=0$ . If $ O(x, f)\cap(\cup \mathscr{L})\neq\emptyset$ , then $h(f|_{\omega(x,f)})=0$ by
Lemma 4.1. Hence we assume $ O(x,f)\cap(\cup \mathscr{L})=\emptyset$ and $\omega(x,f)$ is an infinite
set. By Lemma 4.3, for each $s\in N$ and $i_{1},$ $i_{2},$

$\ldots,$
$i_{s}\in\{0,1\}$ there exists a closed

subset $M_{i_{1}i_{2}\cdots i_{s}}$ of $X$ with properties listed in the Lemma. Define $\varphi$ : $\omega(x, f)\rightarrow\Sigma$

such that $\varphi(y)=\gamma$ if $y\in\bigcap_{s\geq 1}M_{i_{1}i_{2}\cdots i_{s}}$ and $\gamma=(i_{1}i_{2}\cdots)$ .
It is easy to check that $\varphi$ is a continuous surjection and satisfies that

$\varphi(f(y))=\delta(\varphi(y))$ . By (iv) of Lemma 4.3, $(\omega(x,f),f|_{\omega(x,f)})$ is topologically
conjugate to the adding machine $(\Sigma,\delta)$ if Order(X) $=\omega_{0}$ , or $(\omega(x,f),$ $f|_{\omega(x,f)}$ )

is semi-conjugate to the adding machine $(\Sigma,\delta)$ if Order(X) $=\omega_{0}+1$ . As $\mathscr{D}_{\omega}^{N_{0}D}$ is
countable, by lemma 2.3, $h(f_{\omega(x,f)})=0$ . $\square $

Let $I=[0,1]$ and $\varphi\in C(I, I)$ . The inverse limit space $\lim_{\leftarrow}\{I, \varphi\}$ is the subspace
of $\Pi_{i=1}^{\infty}I$ defined by

$\lim_{\leftarrow}\{I, \varphi\}=\{\underline{x}=(x_{1}x_{2}\cdots)\in\Pi_{i=1}^{\infty}I : \varphi(x_{i+1})=x_{j}, i\in N\}$ .

The following corollary shows that the class of HDCC is a larger class in
some sense.

COROLLARY 4.5. Let $\varphi\in C(I, I)$ be a piecewise monotone continuous map
with zero topological enlropy and $M=\lim_{\leftarrow}\{I, \varphi\}$ . If $f\in C(M, M)$ then $h(f)=0$

if and only if the periods of all periodic poin $ts$ of $f$ are powers of 2.

PROOF. By [10], $M\in\bigcup_{\alpha\leq\omega_{0+1}}\mathscr{H}_{\alpha}$ . $\square $

In the end, we would like to ask the following question: on which hereditarily
decomposable chainable continua the Bowen-Franks-Misiurewicz’s theorem
holds? Our conjecture is:

CONJECTURE. Assume that $X$ is a Suslinean chainable continuum and $ f\in$

$C(X, X)$ . Then $h(f)=0$ if and only if the periods of all periodic points of $f$ are
powers of 2.
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