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NORMALITY AND COLLECTIONWISE NORMALITY OF
PRODUCT SPACES, II

By

Kaori YAMAZAKI

Abstract. We prove that the product space $X\times Y$ is collectionwise
normal if and only if $X\times Y$ is normal in the following cases; (1) $X$ is
a collectionwise normal $\Sigma$-space and $Y$ is a collectionwise normal first
countable P-space, (2) $X$ is the closed image of a normal M-space
and $Y$ is a collectionwise normal first countable P-space, (3) $X$ is the
closed image of a paracompact M-space and $Y$ is a collectionwise
normal P-space. In particular, (2) and (3) essentially generalize $K$.
Chiba’s theorems [3].

1. Introduction

Throughout this paper we assume all spaces to be Hausdorff, and all maps to
be continuous. For two collectionwise normal spaces $X$ and $Y$, the result which
asserts normality of $X\times Y$ implies its collectionwise normality has been proved
in cases $Y$ being metrizable, Las\v{n}ev, a paracompact M-space and $\sigma$-locally
compact paracompact by Okuyama [12], Hoshina [5], Rudin-Starbird [14] and
Chiba [3], respectively. In a previous paper [16, Theorem 2.2], the author proved
another case that the product of a paracompact $\Sigma$-space $X$ and a collectionwise
normal P-space $Y$ is collectionwise normal if and only if it is normal; this extends
Nagami’s theorem [9] with $Y$ being a paracompact $\sigma$-space as well as affirma-
tively answers to the problem posed by Yang [17].

$\ln[2]$ , K. Chiba showed the following; for a collectionwise normal $\Sigma$-space $X$

and a paracompact first countable P-space $Y,$ $X\times Y$ is collectionwise normal. If
we weaken the paracompactness of $Y$ to the collectionwise normality, even the
normality of $X\times Y$ need not be implied. Being suggested by these facts, we
obtain the following result.
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THEOREM 1.1. Let $X$ be a collectionwise normal $\Sigma$-space and $Y$ a $co$ llec-
tionwise normal first countable P-space. Then the product $X\times Y$ is collectionwise
normal if and only if $X\times Y$ is normal.

In [3], K. Chiba showed that normality of $X\times Y$ implies its collectionwise
normality in the following cases;

(A) $X$ is the closed image of a normal M-space and $Y$ is a paracompact first
countable P-space,

(B) $X$ is the closed image of a paracompact first countable M-space and $Y$ is
a collectionwise normal $\Sigma$-space.

In the proof of both cases, it needed to show at first the collectionwise
normality of $Z\times Y$ which is essential to the proof, where $Z$ is an M-space
assumed in (A) or (B). In this paper, we prove further the following two theorems
which generalize the Chiba’s results above; it should be noted that in our results
even the normality of $Z\times Y$ , where $Z$ is an M-space in our theorems, need not
be implied from our cases.

THEOREM 1.2. Let $X$ be the closed image of a normal M-space and $Y$ a
collectionwise normal first countable P-space. Then the product $X\times Y$ is col-
lectionwise normal if and only if $X\times Y$ is normal.

THEOREM 1.3. Let $X$ be the closed image of a paracompact M-space and $Y$ a
collectionwise normal P-space. Then the product $X\times Y$ is collectionwise normal if
and only if $X\times Y$ is normal.

2. Preliminaries and key lemmas

Let $N$ be the set of all positive integers.
A space $Y$ is a P-space [8] if for any index set $\Omega$ and for any collection

$\{G(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$ of open subsets of $Y$ such that

$G(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n},$

$\alpha_{n+1}\in\Omega$ ,

there exists a collection $\{F(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$ of closed subsets of
$Y$ such that the conditions (a), (b) below are satisfied:

(a) $F(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n})$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ ,

(b) $Y=\cup\{G(\alpha_{1}, \ldots , \alpha_{n})|n\in N\}\Rightarrow Y=\cup\{F(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .
A $\Sigma$-space [10] is a space $X$ having a sequence, called a $\Sigma$-net, $\{\mathscr{E}_{n}|n\in N\}$ of

locally finite closed covers of $X$ which satisfies the following conditions:
(c) $\mathscr{E}_{n}$ is written as $\{E(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ with an index set $\Omega$ ,
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(d) $E(\alpha_{1}, \ldots, \alpha_{n})=\cup\{E(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})|\alpha_{n+1}\in\Omega\}$ for $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ ,

(e) For every $x\in X,$ $C(x)$ is countably compact, and there exists a sequence
$\alpha_{1},$ $\alpha_{2},$

$\ldots\in\Omega$ such that $C(x)\subset V$ with $V$ open implies $C(x)\subset E(\alpha_{1}, \ldots, \alpha_{n})\subset V$

for some $n$ , where $C(x)=\cap\{E|y\in E\in \mathscr{E}_{n}, n\in N\}$ . We call $\{E(\alpha_{1}, \ldots, \alpha_{n})|$

$n\in N\}$ a local net of $C(x)$ .
The definition of M-spaces is due to Morita [8].

The well-known facts are that every M-space is a $\Sigma$-space, every $\Sigma$-space is a
P-space, every normal P-space is countably paracompact and every normal M-
space is collectionwise normal (see Nagata [11]). We also note that not every
closed image of a paracompact M-space is a $\Sigma$-space (see Gruenhage [4]).

The following lemma will be fundamental for the proof of our results.

LEMMA 2.1. Let $X$ be a space. Suppose $\{K_{\lambda}|\lambda\in\Lambda\}$ a discrete collection of
closed subsets of $X$ satisfies the following conditions (i) and (ii) below:

(i) for each $n\in N$ there exists a locally finite collection $\mathcal{O}_{n}=\{O_{\lambda}^{n}|\lambda\in\Lambda\}$ of
open subsets of $X$ such that

$K_{\lambda}\subset\cup\{O_{\lambda}^{n}|n\in N\}$

for every $\lambda\in\Lambda$ ,
(ii) there exists an open subset $W_{\lambda}$ of $X$ such that

$K_{\lambda}\subset W_{\lambda}$ and $\overline{W_{\lambda}}\cap(\cup\{K_{\mu}|\mu\neq\lambda,\mu\in\Lambda\})=\emptyset$

for every $\lambda\in\Lambda$ .
Then there exists a disjoint collection $\{Q_{\lambda}|\lambda\in\Lambda\}$ of open subsets of $X$ such

that $K_{\lambda}\subset Q_{\lambda}$ for every $\lambda\in\Lambda$ .

PROOF. Suppose $\{K_{\lambda}|\lambda\in\Lambda\}$ satisfies the conditions (i) and (ii). Let $\{\mathcal{O}_{n}|$

$n\in N\}$ and $\{W_{\lambda}|\lambda\in\Lambda\}$ be the collections described in the conditions (i) and (ii).

Here we put

$R_{\lambda}^{n}=O_{\lambda}^{n}\cap W_{\lambda}$

for each $\lambda\in\Lambda$ and $n\in N$ . Then $\{R_{\lambda}^{n}|\lambda\in\Lambda\}$ is a locally finite collection of open
subsets of $X$ for every $n\in N$ , which satisfies

$\overline{R_{\lambda}^{n}}\cap(\cup\{K_{\mu}|\mu\neq\lambda,\mu\in\Lambda\})=\otimes$

for each $\lambda\in\Lambda,$ $n\in N$ and

$K_{\lambda}\subset\cup\{R_{\lambda}^{n}|n\in N\}$
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for every $\lambda\in\Lambda$ . We define

$Q_{\lambda}=\cup\{R_{\lambda}^{n}-\cup\{\overline{R_{\mu}^{i}}|\mu\neq\lambda,\mu\in\Lambda;i\leq n\}|n\in N\}$

for each $\lambda\in\Lambda$ . Then we can easily show that $\{Q_{\lambda}|\lambda\in\Lambda\}$ is a disjoint collection
of open subsets of $X$ such that $K_{\lambda}\subset Q_{\lambda}$ for every $\lambda\in\Lambda$ . It completes the proof of
Lemma 2.1. $\square $

REMARK. $X$ is collectionwise normal if and only if $X$ is normal and every
discrete collection $\{K_{\lambda}|\lambda\in\Lambda\}$ of closed subsets of $X$ satisfies the condition (i) of
Lemma 2.1.

We need the following lemmas for our results. Our proofs of the lemmas are
based on the proof of [16, Theorem 2.2].

LEMMA 2.2. Let $X$ be a collectionwise normal $\Sigma$-space and $Y$ a collectionwise
normal first countable P-space. Let $\{K_{\lambda}|\lambda\in\Lambda\}$ be a locally finite collection of
closed subsets of $X\times Y$ . Then $\{K_{\lambda}|\lambda\in\Lambda\}$ satisfies the condition (i) of Lemma 2.1.

PROOF. Let $\{\mathscr{E}_{n}|n\in N\}$ be a $\Sigma$-net of $X$, where we express

$\mathscr{E}_{n}=\{E(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ .

Since $X$ is collectionwise normal and countably paracompact, for each $n\in N$

there exists a locally finite open cover $\{L(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega\}$ of $X$ such
that

(1) $E(\alpha_{1}, \ldots, \alpha_{n})\subset L(\alpha_{1}, \ldots, \alpha_{n})$

for each $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ .

Define $\Delta=$ { $\Gamma\subset\Lambda|$ Card $\Gamma$ is finite}. For each $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega,$ $n\in N$ and

$\Gamma\in\Delta$ , let us put

$G_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})=\cup\{0|O$ is open in $Y$ and

$(E(\alpha_{1}, \ldots, \alpha_{n})\times O)\cap(\cup\{K_{\lambda}|\lambda\not\in\Gamma\})=\emptyset\}$ .

Then $G_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})$ is open in $Y$ and we have

$G_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})\subset G_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$
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for each $\alpha_{1},$

$\ldots,$
$\alpha_{n},$

$\alpha_{n+1}\in\Omega$ since $E(\alpha_{1}, \ldots, \alpha_{n})\supset E(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$ . Hence if we
put

$G(\alpha_{1}, \ldots, \alpha_{n})=\cup\{G_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})|\Gamma\in\Delta\}$ ,

then $G(\alpha_{1}, \ldots, \alpha_{n})$ is an open subset of $Y$ and we have

$G(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$

for each $\alpha_{1},$

$\ldots,$
$\alpha_{n},$

$\alpha_{n+1}\in\Omega$ . Since $Y$ is a P-space, there exists a collection

$\{M(\alpha_{1}, \ldots, \alpha_{n})|\alpha_{1}, \ldots, \alpha_{n}\in\Omega;n\in N\}$

of closed subsets of $Y$ such that

(2) $M(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n})$

for each $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega;n\in N$ , and

(3) $Y=\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}\Rightarrow Y=\cup\{M(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .

Here we may assume

(4) $M(\alpha_{1}, \ldots, \alpha_{n})\subset M(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1})$

for each $\alpha_{1},$

$\ldots,$
$\alpha_{n},$ $\alpha_{n+1}\in\Omega$ .

Fix $n\in N$ and $\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ arbitrarily. Define

$P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})=$ { $y\in Y|(E(\alpha_{1},$
$\ldots,$

$\alpha_{n})\times\{y\})\cap K_{\lambda}\neq\emptyset$ if and only if $\lambda\in\Gamma$ }

for each $\Gamma\in\Delta$ . We show that the collection

(5) $\{M(\alpha_{1}, \ldots, \alpha_{n})\cap P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})|\Gamma\in\Delta\}$

is locally finite in $Y$. To prove this, let $y\in Y$ and we show that the above
collection is locally finite at $y$ . Since $M(\alpha_{1}, \ldots, \alpha_{n})$ is closed in $Y$ , we may assume
that $y\in M(\alpha_{1}, \ldots, \alpha_{n})$ . Then by (2) we have $y\in G(\alpha_{1}, \ldots, \alpha_{n})$ , and hence there
exists a $\Gamma_{y}\in\Delta$ such that $y\in G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n})$ . Suppose

$ G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n})\cap P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})\neq\otimes$ ,

then we show $\Gamma\subset\Gamma_{y}$ . To show this, let a $\lambda\in\Gamma$ . Select a point

$z\in G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n})\cap P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})$ .

Since $z\in P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})$ , we have

$(E(\alpha_{1}, \ldots, \alpha_{n})\times\{z\})\cap K_{\lambda}\neq\emptyset$ ,
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so

(6) $(E(\alpha_{1}, \ldots, \alpha_{n})\times G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n}))\cap K_{\lambda}\neq\emptyset$ .

By the definition of $G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n})$ , we have

(7) $(E(\alpha_{1}, \ldots, \alpha_{n})\times G_{\Gamma_{y}}(\alpha_{1}, \ldots, \alpha_{n}))\cap(\cup\{K_{\mu}|\mu\not\in\Gamma_{y}\})=\otimes$ .

The formulations (6) and (7) show $\lambda\in\Gamma_{y}$ , it follows that $\Gamma\subset\Gamma_{y}$ . And since
$G_{\Gamma_{v}}(\alpha_{1}, \ldots, \alpha_{n})$ is an open neighborhood of $y$ and Card $\Gamma_{y}$ is finite, we have
shown that the collection (5) above is localy finite at $y$ .

Since $Y$ is collectionwise normal and countably paracompact, there exists a
locally finite collection $\{H_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})|\Gamma\in\Delta\}$ of open subsets of $Y$ such that

$M(\alpha_{1}, \ldots, \alpha_{n})\cap P_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})\subset H_{\Gamma}(\alpha_{1}, \ldots, \alpha_{n})$

for each $\Gamma\in\Delta$ .
We define

$ O_{\lambda}^{n}=\cup$ { $L(\alpha_{1},$
$\ldots,$

$\alpha_{n})\times H_{\Gamma}(\alpha_{1},$
$\ldots,$

$\alpha_{n})|\Gamma\in\Delta$ and $\lambda\in\Gamma;\alpha_{1},$

$\ldots,$
$\alpha_{n}\in\Omega$ },

for each $n\in N$ and $\lambda\in\Lambda$ . Then we can see that $\{0_{\lambda}^{n}|\lambda\in\Lambda\}$ is a locally finite
collection of open subsets of $X\times Y$ for each $n\in N$ .

We shall show that $K_{\lambda}\subset\cup\{O_{\lambda}^{n}|n\in N\}$ for every $\lambda\in\Lambda$ . To see this, let
$(x, y)\in K_{\lambda}$ . We choose $\alpha_{1},$ $\alpha_{2},$

$\ldots\in\Omega$ so that

$\{E(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ is a local net of $C(x)$ .

Before everything, we show that $Y=\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ . Let any $ z\in$

$Y$ . Put

$\Gamma_{xz}=\{\mu\in\Lambda|(C(x)\times\{z\})\cap K_{\mu}\neq\otimes\}$ .

Since $C(x)\times\{z\}$ is countably compact and $\{K_{\mu}|\mu\in\Lambda\}$ is locally finite, $\Gamma_{xz}$ is
finite, that is, $\Gamma_{xz}\in\Delta$ . Moreover, since $C(x)\times\{z\}$ is countably compact and $Y$ is
first countable, there exist open subsets $O$ and $O^{\prime}$ of $X$ and $Y$, respectively, such
that

$C(x)\times\{z\}\subset O\times O^{\prime}\subset X\times Y-\cup\{K_{\mu}|\mu\not\in\Gamma_{xz}\}$ .

From the property of the local net, there exists an $n\in N$ such that

$C(x)\subset E(\alpha_{1}, \ldots, \alpha_{n})\subset O$ .

Therefore

$(E(\alpha_{1}, \ldots, \alpha_{n})\times O^{\prime})\cap(\cup\{K_{\mu}|\mu\not\in\Gamma_{xz}\})=\otimes$ .



Normality and Collectionwise normality 789

Thus we can verify $z\in O^{\prime}\subset G_{\Gamma_{\mathscr{O}}}(\alpha_{1}, \ldots, \alpha_{n})\subset G(\alpha_{1}, \ldots, \alpha_{n})$ . Hence we have $Y=$

$\cup\{G(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .
It follows from (3) that

$Y=\cup\{M(\alpha_{1}, \ldots, \alpha_{n})|n\in N\}$ .

So there exists an $n\in N$ such that $y\in M(\alpha_{1}, \ldots, \alpha_{n})$ . Let

$\Gamma_{xy}=\{\mu\in\Lambda|(C(x)\times\{y\})\cap K_{\mu}\neq\emptyset\}$ .

Likewise the matter shown above, we have $\Gamma_{xy}\in\Delta$ , and there exist open subsets
$O_{x}$ and $O_{y}$ of $X$ and $Y$, respectively, such that

$C(x)\times\{y\}\subset O_{x}\times O_{y}\subset X\times Y-\cup\{K_{\mu}|\mu\not\in\Gamma_{xy}\}$ .

From the property of the local net, there exists an $m\in N$ such that

$C(x)\times\{y\}\subset E(\alpha_{1}, \ldots, \alpha_{m})\times\{y\}\subset O_{x}\times O_{y}$ ,

where we can select $m\geq n$ . So we have

(8) $(E(\alpha_{1}, \ldots, \alpha_{m})\times\{y\})\cap(\cup\{K_{\mu}|\mu\not\in\Gamma_{xy}\})=\otimes$ .

Moreover, by the definition of $\Gamma_{xy}$ and the fact $C(x)\subset E(\alpha_{1}, \ldots, a_{m})$ , we
have

(9) $(E(\alpha_{1}, \ldots, \alpha_{m})\times\{y\})\cap K_{\mu}\neq\emptyset$ for every $\mu\in\Gamma_{xy}$ .

It follows from the formulations (8) and (9) that

$y\in P_{\Gamma_{xy}}(\alpha_{1}, \ldots, \alpha_{m})$ .

By (4), $y\in M(\alpha_{1}, \ldots, \alpha_{n})\subset M(\alpha_{1}, \ldots, \alpha_{m})$ . So we have

(10) $y\in M(\alpha_{1}, \ldots, \alpha_{m})\cap P_{\Gamma_{xy}}(\alpha_{1}, \ldots, \alpha_{m})\subset H_{\Gamma_{xy}}(\alpha_{1}, \ldots, \alpha_{m})$ .

It follows from (1) and (10) that

$(x, y)\in L(\alpha_{1}, \ldots, \alpha_{m})\times H_{\Gamma_{xy}}(\alpha_{1}, \ldots, \alpha_{m})$ .

Since $(x, y)\in K_{\lambda}$ , it is clear that $\lambda\in\Gamma_{xy}$ . Thus we have $(x, y)\in O_{\lambda}^{m}$ , which proves
that $K_{\lambda}\subset\cup\{O_{\lambda}^{n}|n\in N\}$ . It follows that $\{K_{\lambda}|\lambda\in\Lambda\}$ satisfies the condition (i) of
Lemma 2.1. This completes the proof of the lemma. $\square $

If $C(x)$ in the proof of Lemma 2.2 is compact, then without using the first
countability of $Y$ the similar proof to the above yields the following lemma.
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LEMMA 2.3. Let $X$ be a paracompact $\Sigma$-space and $Y$ a collectionwise normal
P-space. Let $\{K_{\lambda}|\lambda\in\Lambda\}$ be a locally finite collection of closed subsets of $X\times Y$ .
Then $\{K_{\lambda}|\lambda\in\Lambda\}$ satisfies the condition (i) of Lemma 2.1.

3. The proofs of Theorems

Let us proceed to the proofs of Theorems.

PROOF OF THEOREM 1.1. It is shown by Remark of Lemma 2.1 and Lemma
2.2. $\square $

PROOF OF THEOREM 1.2. Let $Z$ be a normal M-space and $f$ a closed
continuous map from $Z$ onto $X$. Then we can express that $X=\cup\{X_{i}|i\geq 0\}$ ,
where $X_{i}$ is closed discrete for every $i\geq 1$ and $f^{-1}(x)$ is countably compact for
each $x\in X_{0}$ (see Nagata [11]).

First we observe that for a subset $A$ of $Z\times Y$ the following equality holds:

(11) $(f\times 1_{Y})(\overline{A})\cap(X_{0}\times Y)=\overline{(f\times 1_{Y})(A)}\cap(X_{0}\times Y)$ .

Let $\{D_{\lambda}|\lambda\in\Lambda\}$ be a discrete collection of closed subsets of $X\times Y$ . For each
$l\geq 1$ , we can take a discrete collection $\{U_{\lambda}^{i}|\lambda\in\Lambda\}$ of open subsets of $X\times Y$

such that

$D_{\lambda}\cap(X_{i}\times Y)\subset U_{\lambda}^{i}$

for every $\lambda\in\Lambda$ , because $X$ and $Y$ are collectionwise normal.
Let

$F_{\lambda}=D_{\lambda}-\cup\{U_{\lambda}^{i}|i\geq 1\}$

for each $\lambda\in\Lambda$ . Then $F_{\lambda}$ is closed in $X\times Y$ and we have $F_{\lambda}\subset X_{0}\times Y$ .
Here $\{(f\times 1_{Y})^{-1}(F_{\lambda})|\lambda\in\Lambda\}$ is a discrete collection of closed subsets of

$Z\times Y$ .
Since $Z$ is a normal M-space (therefore a collectionwise normal $\Sigma$-space), it

follows that $\{(f\times 1_{Y})^{-1}(F_{\lambda})|\lambda\in\Lambda\}$ satisfies the condition (i) of Lemma 2. 1
because of Lemma 2.2.

Since $X\times Y$ is normal, for each $\lambda\in\Lambda$ , there exists an open subset $W_{\lambda}$ of
$X\times Y$ such that

$F_{\lambda}\subset W_{\lambda}\subset\overline{W_{\lambda}}\subset X\times Y-\cup\{F_{\mu}|\mu\neq\lambda, \mu\in\Lambda\}$ .
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Then $\{(f\times 1_{Y})^{-1}(W_{\lambda})|\lambda\in\Lambda\}$ is the required collection for $\{(f\times 1_{Y})^{-1}(F_{\lambda})|$

$\lambda\in\Lambda\}$ to satisfy the condition (ii) of Lemma 2.1. Hence $\{(f\times 1_{Y})^{-1}(F_{\lambda})|\lambda\in\Lambda\}$

satisfies the condition (ii) of Lemma 2.1.
By Lemma 2.1, we can take a disjoint collection $\{Q_{\lambda}|\lambda\in\Lambda\}$ of open subsets

of $Z\times Y$ such that

$(f\times 1_{Y})^{-1}(F_{\lambda})\subset Q_{\lambda}$

for each $\lambda\in\Lambda$ .
Define

$V_{\lambda}=X\times Y-\overline{(f\times 1_{Y})(Z\times Y-Q_{\lambda})}$

for each $\lambda\in\Lambda$ . It is clear that $\{V_{\lambda}|\lambda\in\Lambda\}$ is a disjoint collection of open subsets
of $X\times Y$ . Since $F_{\lambda}\subset X_{0}\times Y$ , we can show that

$F_{\lambda}\subset V_{\lambda}$

for each $\lambda\in\Lambda$ by (11). By the normality of $X\times Y$ , there exists a discrete
collection $\{U_{\lambda}^{0}|\lambda\in\Lambda\}$ of open subsets of $X\times Y$ such that

$F_{\lambda}\subset U_{\lambda}^{0}\subset V_{\lambda}$

for each $\lambda\in\Lambda$ .
The collection $\{U_{\lambda}^{i}|\lambda\in\Lambda, i\geq 0\}$ has the properties that

$D_{\lambda}\subset\cup\{U_{\lambda}^{i}|i\geq 0\}$

for each $\lambda\in\Lambda$ and that $\{U_{\lambda}^{i}|\lambda\in\Lambda\}$ is discrete for each $i\geq 0$ . Namely $\{D_{\lambda}|\lambda\in$

$\Lambda\}$ satisfies the condition (i) of Lemma 2.1, and also satisfies the condition (ii) of
Lemma 2.1 because of the normality of $X\times Y$ . Therefore we can get a disjoint
collection $\{B_{\lambda}|\lambda\in\Lambda\}$ of open subsets of $X\times Y$ such that $D_{\lambda}\subset B_{\lambda}$ for each $\lambda\in\Lambda$

by Lemma 2.1. Hence $X\times Y$ is collectionwise normal, which completes the proof
of Theorem 1.2. $\square $

PROOF OF THEOREM 1.3. Let $Z$ be a paracompact M-space and $f$ a closed
continuous map from $Z$ onto $X$. We can express $X=\cup\{X_{i}|i\geq 0\}$ that has the
properties of the proof of Theorem 1.2. Let $\{D_{\lambda}|\lambda\in\Lambda\}$ be a discrete collection
of closed subsets of $X\times Y$ . The proof of this theorem is similar to that of
Theorem 1.2, because we can use Lemma 2.3 instead of Lemma 2.2. So we can
take a discrete collection $\{U_{\lambda}^{i}|\lambda\in\Lambda\}$ of open subsets of $X\times Y$ for each $i\geq 0$

such that
$D_{\lambda}\subset\cup\{U_{\lambda}^{i}|i\geq 0\}$
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for each $\lambda\in\Lambda$ as the proof of Theorem 1.2. Hence $\{D_{\lambda}|\lambda\in\Lambda\}$ satisfies the condi-
tion (i) of Lemma 2.1. Since $X\times Y$ is normal, $\{D_{\lambda}|\lambda\in\Lambda\}$ satisfies the condition
(ii) of Lemma 2.1. Therefore we can get a disjoint collection $\{B_{\lambda}|\lambda\in\Lambda\}$ of open
subsets of $X\times Y$ such that $D_{\lambda}\subset B_{\lambda}$ for each $\lambda\in\Lambda$ . Hence $X\times Y$ is collec-
tionwise normal, which completes the proof of Theorem 1.3. $\square $

REMARK. Since $\omega_{1}$ is a collectionwise normal first countable M-space and
$\omega_{1}+1$ is a compact space, the assumption of the normality of $X\times Y$ of
Theorems 1.1, 1.2 and 1.3 can not be dropped.

4. Some problems

It is well-known by Nagami [10, Corollary 4.2] that for a paracompact $\Sigma_{-}$

space $X$ and a paracompact P-space $Y$ the product $X\times Y$ is paracompact. If we
replace the paracompactness of $X$ and $Y$ by the collectionwise normality, then
even the normality of $X\times Y$ need not implied in general. Thus the following
problem naturally arises. [16, Theorem 2.2] or Theorem 1.1 can be regarded as a
partial answer to this problem.

PROBLEM 4.1. Let $X$ be a collectionwise normal $\Sigma$-space and $Y$ a collec-
tionwise normal (or a paracompact) P-space. Is it true that $X\times Y$ is collectionwise
normal $\iota f$ and only if $X\times Y$ is normal?

Corresponding to Nagami’s result above, we have the following theorem.

THEOREM 4.2. Let $X$ be the closed image of a paracompact M-space and $Y$ a
paracompact P-space. Then $X\times Y$ is paracompact if and only if $X\times Y$ normal.

PROOF. First we note the fact that for spaces $X$ and $Y$ given in the theorem
$X\times Y$ is normal iff $X\times Y$ is countably paracompact; the proof is similar to
Be\v{s}lagi\v{c} and Chiba [1, Section 5]. Assume $X\times Y$ is normal, therefore it is
countably paracompact. Let $K$ be a compact space. Then $Y\times K$ is a para-
compact P-space, and by the fact above the countably paracompact space
$(X\times Y)\times K=X\times(Y\times K)$ is normal. Hence $X\times Y$ is paracompact from
Tamano’s theorem [15, Theorem 2]. $\square $

In view of this result, under the similar consideration to Problem 4.1, the
following problem also arises. A partial answer to this problem is Theorem 1.2 or
Theorem 1.3.
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PROBLEM 4.3. Let $X$ be the closed image of a normal M-space and $Y$ a
collectionwise normal (or a paracompact) P-space. Is it true that $X\times Y$ is col-
lectionwise normal if and only $\iota fX\times Y$ is normal?
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