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BRAIDING STRUCTURES OF DOUBLE CROSSPRODUCTS

By

Hui-Xiang CHEN

Introduction

The double crossproduct structure X < A of two bialgebras (Hopf algebras)
X and 4 is given by Majid [Mj], and Drinfel’d quantum double D(H) is such a
double crossproduct. Doi and Takeuchi studied the double crossproducts
determined by a skew pairing. These results have some interesting application in
quantum group theory. The concept of a braided bialgebra has been introduced
by Larson-Towber [LTo] and Hayashi [H]. The author studied the quasi-
triangular structures of bicrossed coproducts. In this paper, we discuss the dual
case, and study the braiding structures of double crossproducts. We also discuss
the relations between the comodule categories attached to double crossproduct,
and construct several (braided) monoidal functors.

1. Preliminaries

Throughout, we work over a fixed field k. Unless otherwise stated, all maps
are k-linear. Hom(H, k) is denoted by H*. For f,ge H*, H a bialgebra, f xg
is its convolution product [S]. For o e (H ® H)*, we write o(x ® y) = a(x, y),
x,y € H. We use the sigma notion: for x € H,

=Zx1®x2, (A ® id)A Zx1®x2®x3, etc.

Let (X, A) be a pair of matched bialgebras (Hopf algebras), see [K], that is, X
is a left 4-module coalgebra via a — x, 4 is a right X-module coalgebra via
a — x, such that the following conditions are satisfied:

— (x ) (a1 — x1)((a2 — x2) — ),

4) 1 —x=¢(x)1,

(M1) a

(M2) a

(M3) (ab) —x= Z(a — (b1 — x1))(b2 — x2),

(M4)

(MS5) > (a1 — x1) ® (a2 — x2) =Y (a2 — x2) @ (a1 — x1),
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for all a,be 4, x,ye X. In this case, Majid’s double crossproduct X 0a A is
defined (see [K, Mj or R]): as coalgebra X a 4 = X ® A4, write x < a for x ® a,
and multiplication is defined by

(x>aa)(y>ab) =Y x(a; — y;) (a2 — y,)b, abed,x,yeX.

If X and A are Hopf algebras with antipodes Sy and S, resp., then X < A4 is
also a Hopf algebra with antipode S given by

S(xpaa) = (1>a54(a))(Sx(x) > 1)
=) (Sa(az) = Sx(x2)) < (Sa(ar) — Sx(x1)).

A bilinear form 7: X ® A — k is a skew pairing if the following
conditions are satisfied:

(SP1) z(xy,a) =>_ t(x,a1)t(y,az),
(SP2) z(x,ab) = >_ t(x1,b)1(x2, a),
(SP3) 7(x,1) = &(x),
(SP4) 7(1,a) = ¢&(a),

forall x,ye X and a,be A. If 1: X ® A — k is an invertible (in (X ® 4)") skew
pairing, set

a—x= Z (1, a1) Xt (3, @2),
a— x = Zr(xl,al)azt_l(xz,%),

then (X, 4) is matched. In this case, the double crossproduct X o< A4 is denoted
by X 0<; A, and the multiplication is given by

(x>aa)(ypab) = t(y1,@)xy; b4 @bt (y3,a3).

In general, let ¢ be a 2-cocycle on a bialgebra H, that is, o is an invertible
bilinear form on H and the following condition is satisfied:

> o(x1,y1)0(x2y2,2) = Y 0(y1,71)0(x, y272), X, y,z€H,

then the bialgebra H? (see [D]) is constructed from H by altering the multi-
plication as follows and using the same unit, comultiplication, and counit:

x-y(inH®) =Y " o(x1,y1)%2020" ' (x3,53), X, yeH.
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If 7 is an invertible skew pairing on X ® 4, then [7] is a 2-cocycle on the tensor
product bialgebra X ® 4 defined by [DT]:

[f]l(x® a, y ® b) = e(x)e(b)r(y,a), x,yeX,a,be A,

and X o<, 4 = (X ® 4)1.

A bilinear form 7€ (X ® A)* is a paring if 7 satisfies (SP1), (SP3), (SP4) and
the following condition (P2):

(P2) 7(x,ab) = >_ t(x1,a)t(x2,b).

A braided (or co-quasitriangular) bialgebra means a pair (H,os) where H is
a bialgebra and o is an invertible skew pairing on H ® H such that

Zo'(xl, Y1)X2ys = Z y1x16(X2, ¥2)

for all x, ye H. In this case, o is called a braiding of H.
Let X > A4 be a double crossproduct, then iy : X — X <4, x — x> 1 and
ig:A— XA, a— 1aa are injective bialgebra morphism.

ProrosiTION 1.1. Let a: X — H, f: A — H be bialgebra maps such that
Bla)a(x) = Za(al —x1)B(az — x3), x€X,a€ A,
then there exists a unique bialgebra map F : X <« A — H such that F o iy = a and

FOiA“—‘ﬂ.

PROOF. SetF XA — H, F(xr<a) =a(x)f(a),ie. F=my(a®p): X
A a®ﬁH ® H 2% H, where my is the multiplication map of H which is a

coalgebra map. Since both a and B are coalgebra maps, so is F. Clearly,
F(leal) =1.

F((xp<a)(yabd)) ZF 1= y1) > (a2 — y;)b)
= Z x(ar — y1))B((az — y,)b)
= a(x)a(ar — y;)Blaz — y,)B(b)
= o(x)p (a)ot(y)ﬁ(b) = F(xvaa)F(y>b),
henceby, F is a bialgebra map. Clearly Foiy =« and Foiy = B. Since X < A
is generated by ix(X) = X <1 and i4y(4) = 1< A4 as an algebra, F is unique.

ProposITION 1.2. Let a: X — H, f: A — H be bialgebra maps, then the
map
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F:X<A— H, F(xra)=ua(x)B(a)
is a bialgebra map if and only if

Bla)a(x) = Z a(a; — x1)f(ay — x3), forall xe X,ae A.

PrOOF. Easy.

PROPOSITION 1.3. Let X< A be a double crossproduct. If X <A has a
braiding, then so do X and A, and there is an invertible skew pairing t on X @ A
such that

a—x= ZT(X],(I]))QT_I(?Q» az),
a—x= Z ‘t(xl,a1)a2‘f_l(xzaa3),

and consequently, X ba A = X v, A.

PrOOF. Suppose 6 is a braiding of the bialgebra X < 4, ie. 6 is an
invertible skew pairing on (X < 4) ® (X p< 4) and

D " &(x1 aar, yy 5 by) (x2 4 @) (y, > by)
=3 (1 b1)(x1 >4 a1)G(x2 < az, y; b< by) (%)

Set o(x,y)=a(x>x1l,y>al), nla,b)=6(1xa,l1abd), t(x,b) =d6(xx1l,
1< b), x,y€ X, a,b e A, then by using injective bialgebra maps iy : X — X >a 4
and iy : A — X >a A, one can easily check that (X,0) and (A4,7) are braided
bialgebras, and that 7 is an invertible skew pairing on X ® 4. By (*), we have

D " 6(x1 >a 1,1 baby)(x2 5 1)(1 04 by)
=Y (1baby)(x1 >4 1)5(xz > 1,1 b by),
ie., SS(x1,b1)(x2 a0 by) = (154 by )(x1 b 1)7(x2,b2). It follows that
D (b1 = x1) 0a (by = x2) = Y w(x1,b1) (%2 4 b2) T (33, b3).

By applying id ® ¢ and ¢ ® id to the both sides of the equation respectively, we
get

b—x= ZT(X],b])XZT_l(x;:,,bz)
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and

b—x= Z r(xl,bl)bz‘r_l(xz,b3).

REMARK 1.4. Let 4 be a Hopf algebra with bijective antipode S, then the
finite dual 4° of A is also a Hopf algebra with bijective antipode S°, and (4°)“”
is a Hopf algebra with antipode s = (S°)_1. Set

c:(A)TRA—-k, [f®ar{f,a),

then a straightforward verification shows that ¢ is an invertible skew pairing on
(4°)°”? ® A, and the double crossproduct (4°)“” <, A is a Hopf algebra. If 4 is
a finite dimensional Hopf algebra, then (A4°)°”? = (4*)°”? and (4*)“P 1<, A =
D(A) the Drinfel’d double (see [DT, remark 2.3]).

PROPOSITION 1.5. Let A be a Hopf algebra with bijective antipode, X be a
bialgebra and t be an invertible skew pairing on X @ A. Then the map

F:Xva,4— (A°)P <, A, x<da— t(x,—)>a
is a bialgebra map, where (A°)°”? v<, A is defined as in remark 1.4. And F is

injective if and only if t is left non-degenerate, ie. t(x,A) =0 implies x = 0.

Proor. By [DT, p. 5719], the maps
1 X = (4%, x—1(x,—)

is a bialgebra map. By the commutative diagram

X4 229 (4”@ 4

N A

k,

the proposition follows immediately.

PROPOSITION 1.6. Let X and A be finite dimensional Hopf algebra, t be an
invertible skew pairing on X ® A. Then

(1) If t is non-degenerate, then X >, A and D(A) are isomorphic as Hopf
algebras.

(2) Set I = kertg, where 1r: A — (X*)?, a— t(—,a) is a Hopf algebra map
([DT, p. 5719]), then there exists a Hopf algebra surjection from X < A to
Drinfel’d double D(A/I).
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Proor. By [DT, p. 5719}, the maps
X = (A7, xet(x,-),
and
tr:A— (X, aw 1(—,a)

are bialgebra maps, consequently, t; and tg are Hopf algebra maps.

(1) If t is non-degenerate, then 7; and 7g are injective, henceby dim X <
dim4* =dimA4 and dimA4 <dim X* =dim X. It follows that z; is bijective.
Thus by proposition 1.5,

F:Xv>0, A— D(A)=(A*) P 4, x><aar tr(x,—)>da

is a Hopf algebra isomorphism.

(2) Set J = kerty, then J is a Hopf ideal of X, I is a Hopf ideal of 4. Let
nx:X>X=X/J, x—~xand ng:A— A= A/I, a— a be the natural Hopf
projection, then

T=y @4 XRA->XR®A, xQRa—x®a

is a Hopf algebra surjection. Since kerr =J ® A + X ® I C kert, there exists a
uinque bilinear form 7 on X ® A4 such that #(X,a) = t(x,a) for all xe X,ae 4. It
is clear that 7 is an invertible skew pairing on X ® 4, and that n: X <, 4 —
X b<; A, x><aa+— X< d is a Hopf algebra surjection. By (1) X b<; A > D(A), it
follows that

Xv<a, A— D(A/I), xt<ar— I(X,—)xa

is a Hopf algebra surjection.

2. Braidings of X v, A

Throughout this section, unless otherwise stated, let = be a fixed invertible
skew pairing on X ® 4, X <, A be the double crossproduct determined by 7.
Then X o<; A = (X ® A) as in section 1.

For an algebra B, let Z(B) denote the center of B, U(B) denote the group
of units in B, and UZ(B) = U(Z(B)).

LEMMA 2.1. Let v be a bilinear form on X ® A, then the following three
conditions are equivalent:
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(1) v is central, ie. ve Z(X ® A)"),
2) Sv(xn, a1 ®ay=> x1 @a1v(xz,a2), x€ X,ae A,
(3) S v(x1,a)x2 = Y. v(xz,a)x1 and Y v(x,a1)a = > v(x,ax)a;, xe X,a € A.

Proor. Easy.
Let 4(X, A) denote the set of all central invertible pairing on X ® 4, that is
4(X,A) ={veUZ((X ® A)")| v is a pairing}.

LemMma 2.2. (1) If ve 9(X,A), then v is also a skew pairing.
(2) 9(X,A) is an abelian multiplicative subgroup of (X ® A)".

Proor. Easy.

LEMMA 2.3. Let t’ be a bilinear form on X ® A. Then t' is an invertible skew
pairing on X ® A such that X <,y A = X <, A if and only if ©' = t*v for some
ve 9(X,A). In particular, v’ is an invertible skew pairing on X @ A such that
X<y A=X® A if and only if T/ € 4(X,A).

Proor. If 7’ is an invertible skew pairing on X @ 4 such that X by 4 =
X <i; A, then
(Ia)(xpal) = 7(x1,a1)x2 b< ay7 ' (x3,a3)

=Y 7/ (x1,a1)%2 04 art' " (x3, a3).

lx 7/, then

Zv(xl,al)xz ®a; = le ® arv(x2,az),

and hence t is central by lemma 2.1. Clearly, v is invertible, and so ve
UZ((X ® A)"). Now we will check that v is a pairing. In fact, for any x,y € X,
a,be A,

Set v=1"

Wy, a@) = 3¢ (3, a7 (23, @)
=ZT_l(yl,al)r‘l(xl,az)r’(xz,a3)t’(y2,a4) (By [DT, SP1’], SP1)
=Y " (ya)v(x,a2)7 (12, a3)
= Z v(x,a;)t  (yy,a)7'(y;,a3) (By lemma 2.1)
= v(x,a)v(y, @),
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and similarly, v(x,ab) =3 v(x,a)v(x2,b). Clearly, v(x,1) =¢(x) and v(l,a) =
g(a). Thereby, ve 4(X,A) and v/ =t v.

Conversely, if t/ = 7 * v for some ve %(X, 4), then 7’ is invertible. For any
x,yeX, abe A,

' (xy,a) = Y t(xiyy, a)v(x2y;, a2)
=Y (xt,a)t(y1,a2)v(x2,a3)v(2, as)
=" t(x1, @) v(x2,@2)7(y1,a3)v(y2, aa)
=Y T(x,a)(y,a),

and similarly, 7'(x,ab) =5 7'(x1,b)r'(x2,a), and clearly, 7'(x,1) =¢(x) and
7'(1,a) = €(a). Thus we have proved that 7’ is an invertible skew pairing on
X ® A.

By /7! =71

+x77! and lemma 2.1, we have
> virha)y ®av (ys,@) = y®a,
and therefore,
> Ty a)xy, ® abt'™ (y3,a3)
= Z (1, @)V(¥y, a2)xy3s @ asbv™! (y4,a4) 7! (35, as)
=ty @)xy, ® abt”' (3, a).

This shows that X b« 4 = X 4, 4.

ProposITION 2.4. Let (X,0) and (A,n) be braided bialgebras. Define a
bilinear form [o,n] on (X <, A) ® (X <, A) by

[o.n](xb<a, yoab) = t(x1,b1)a(x2, y1)n(ar, b2)t (3, a2)-
Then (X v<, A,[o,n]) is a braided bialgebra.

Proor. Since (X,o) and (A,7n) are braided bialgebras, (X ® 4,06 ®@1n) is
also braided, where

(c®@n)(x®a,y®b) =0(x,y)nab), x,yeX,abeA.

It follows by [T, lemma 1.3] that (X o<, A,(a®ry)[’]) is braided. By a simple
computation, one get (¢ ® 7)) = [4,7], and so the proposition follows.
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COROLLARY 2.5. Let X <1 A be a double crossproduct. Then X > A has a
braiding if and only if both X and A have braiding, and there is an invertible skew
pairing T on X ® A such that X < A = X ><; A.

Proor. It follows by proposition 1.3 and proposition 2.4.

COROLLARY 2.6. (1) X <, A has a braiding if and only if X and A have
braiding.

(2) For e (X< X)*, ne (A® A)* with 6(1,1) =1 =17(1,1), define [o,n] €
(X p<; A) ® (X b1, A))" as in proposition 2.4. then (X v<i; A,[o,7]) is a braided
bialgebra if and only if (X,0) and (A,n) are braided bialgebras.

Proor. It follows from proposition 1.3 and proposition 2.4.

COROLLERY 2.7. Let H be a finite dimensional Hopf algebra. If H and H*
have braiding, then Drinfel’d double D(H) also has a braiding.

PROPOSITION 2.8. %(X <, A, X <1, A) is isomorphic to 9(X,A) x 4(X,X)x
Y(A,A) x 9(X,A) as a group. In particular, 4(X @ A, X ® A) = G(X <, A4,
X v, A).

ProorF. For any (v,0,7,V)e%(X,4)x%(X,X)x%(4,4) x%(X,A),
define ®(v,q,7,v') by

d)(vy a,n, v,)('x >a, ym b) = Z V(Xl,b])U(XZ, yl)”(alabZ)v/(yZaa2)‘

Then a straightforward verification shows that ® is a group morphism from
YG(X,A) x9(X,X) x%(A,A) x 9(X,A) to (X <, A, X <, 4). On the other
hand, for any & € 9(X <, A, X >, A), set

v(G)(x,b) = G(x < 1,1>ab),
o(@)(x,y) =a(xx 1, ypal),
n()(a,b) = (1 < a,1xb),
V(&) (y,a) =6(1><a, yl),

for all x,ye X, a,be A. It is clear that (v(G),0(5),n(&),v'(6)) is contained in
Y(X,A) x9(X,X) x 9(A4,4) x 9(X,A). Henceby, the map

0:9(X >, A, X >, A) — G(X, A) x 9(X,X) x 9(A,4) x 9(X, A)



598 Hui-Xiang CHEN

given by 6(G) = (v(6),0(d),n(5),v'(d)) is well-defined. One can easily check that
Oo® =id and ®of =id, and so ® is a group isomorphism.

Let 7 = &¢® ¢ in the above argument, we get the same isomorphism ® from
GX,A)x%(X,X)x%(A,A) xG(X,A) to (X ®A4,XR®A).

LEMMA 29. If (H,o0) is a braided bialgebra, ve $(H,H), then (H,o x V) is
also braided.

PrROOF. By lemma 2.3, o *v is an invertible skew pairing on H ® H and
H <., H = H <, H. Thus it follows from [DT, prop. 3.1] that (H,oxv) is a
braided bialgebra.

THEOREM 2.10. Let (X,0) and (A,n) be braided bialgebras, v and v' be in
9(X,A). Define a bilinear form [o,n,v,v'] on (X >4, A) ® (X <, A) by

[6,7,v,V'](x < a, y < b)
= Z T(Xl,bl)G(X2, yl)”(alva)T_l (yZa aZ)v(x3a b3)v,(y37 a3)-

Then (X v, A,[o,n,v,V']) is a braided bialgebra and any braiding of X <. A has
this form.

Proor. By proposition 2.4, (X <. 4,[o,n]) is a braided bialgebra. By
proposition 2.8, ®(v,1,1,v') e 4(X v<, 4, X b, A), and

O(v,1,1,v)(x>aa, y>ab) = v(x,b)v'(y,a).

Since [a,n,v,V'] = [o,57] * (v, 1,1,V’), it follows from lemma 2.9 that (X <, A4,
[o,n,v,v']) is a braided bialgebra.

Conversely, suppose that (X o<, 4,6) is a braided bialgebra. By [T, lemma
1.3], ¢ = 6! for some braiding & on X ® 4. Set

o(x,y) =6(x®1,y®1),
n(a,b) =6(1®a,1®Db),
vix,b) =6(x® 1,1 ® b),
Vi(y,a)=6(1®a,y®1),

for all x,ye X, a,be A. Then (X,0) and (A4,n) are braided bialgebras. One can
easily check that v,v' € ¥(X, A4).
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Since (X' ® 4,45) is a braided bialgebra,
d(x®a,y@b)=6((x®@1)(1®a),y®b)

Z& x®1,y,®b)d(l ®a, y, @ by)

=Y 6x1®1,1®b)F(x®1,y ®1)

x(1®a,1 ®b)5(1 ®az,y, ®1)

Il

I

Z (x1,b1)a(x2, y1)n(ar, b2)v' (12, a2)
= > olx1, yi)nlar, bi)v(xz, b2)' (92, a2).

It follows that

G(xvaa, yab) =6 (xaa, yab)
= [y ®b1, %1 ® a1)F(x2 ® a2, ,®b2)[7] "} (x3 ® a3, y3 ® b3)
= t(x1,b1)0(x2, yi)n(ar, ba)v(x3, b3)V (15, @) 7" (y3, a3)
= [o,n,v,V'](x > a, y < b),

and therefore ¢ = [o,7,v,V'].

For a bialgebra H, let #(H) denote the set of all braidings of H.

ProrosiTiON 2.11. There exists a bijective correspondence between
B(X v<; A) and the set direct product B(X) x B(A) x 9(X,A) x 9(X,A) given
by

B(X)x B(A) X 9(X,A) X 9(X,A) > B(X <, A)

(0-7 ’7’ v’ v,) = [G, ’7’ v? vl],

where [o,n,v,V'] is defined as in theorem 2.10.

Proor. By theorem 2.10, the above map is surjective. One can easily check
that if [o,7,v,V'] = [o1,%,,v1, V] then 6 = 61,7 = n,v = v1,v' = v]. It follows that
the map given in the proposition is bijective.

THEOREM 2.12. Let ¢ be an invertible skew pairing on X ® X, (o] = |0, 0] be
a bilinear form on (X <, X) ® (X <, X) defined as in proposition 2.4, that is

[o](x > a, yab) =) a(x1,b1)a(x2, y1)o(a, b2)o™ (y2,42), a,b,x,y € X.



600 Hui-Xiang CHEN

Then the following three conditions are equivalent:
(1) (X,0) is a co-triangular bialgebra.
(2) (X >, X, [0]) is a co-triangular bialgebra.
(3) The multiplication

X< X - X, xp<aa— xa
is a bialgebra morphism, and [o](x >< a, y > b) = a(xa, yb).

Proor. (1) < (2). If (X,0) is co-triangular, then (X <, X, [0]) is a braided
bialgebra by proposition 2.4, and o~ !(x,y) = a(y, x). Henceby,

6] (x >< @, y ba b)
=> o(yn,a)o” (a2, b1)07 (x1, y2)07 (x2, b2)
=Y o(yia)o(bi,a2)o(yy, x1)07 (x2,b2)
= [g](y > b,x > a),

it follows that (X p<, X, [0]) is a co-triangular bialgebra.

Conversely, suppose (X <, X,[0]) is a co-triangular bialgebra. Since X —
X<d; X,x+— xpal is a bialgebra injection and o(x,y) = [o](x< 1, ypal),
(X,0) is also a co-triangular bialgebra.

(1) & (3). By [DT, prop. 3.1], (X,0) is a braided bialgebra if and only if the
multiplication

X<, X - X, xbpbaa— xa

is a bialgebra map. In this case, since

O'(XCI, yb) = Z a(x, ylbl)a(aa y2b2)
=Y a(x1,b1)a(x2, y1)a(ar, b2)a(az, y,),

it follows that [o](x b< a, y b< b) = o(xa, yb) holds for all x, y,a,b € X if and only
if 67!(x,y) = a(y,x) holds for all x,y e X.

3. Monoidal Functors Attached to X t<, 4

Throughout this section, let H = X 0<; 4 be a double crossproduct deter-
mined by a fixed invertible skew pairing 7 on X ® 4.

For any coalgebra C, let M€ denote the category of right C-comodules. For
MeMEC, Py M — M® C denotes the comodule structure map, and write
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pu(m) =5 my®m; as usual. If f:C — D is a coalgebra morphism and
M e M€, then M is a right D-comodule with the comodule structure map given
by (id ® f)p,,. If C is a bialgebra, then M€ is a monoidal category (or tensor
category) with the usual tensor product, the unit k and the usual associativity and
unit constraints. Furthermore, if (C,o) is a braided bialgebra, then M€ is a
braided monoidal category with the braiding given by

IMN - MIN->NRQM, m@n— Zd(ml,nl)no@)mo,

where M,N e M me M and ne N. The reader is directed to [K or M] for
detailes of these concepts, basic results, and (braided) monoidal functors also.

Now we have three monoidal categories M*, M4 and M. Since ny : H —
X, xv<a— xe(a) and ny : H — A, x> a — &(x)a are coalgebra morphisms, any
M e M* becomes a right X-comodule and also a right A-comodule as before,
denote them by My and M, respectively, that is, p,, = (id ® nx)p, and

Pu, = (id ® ma)py.
Define Fy : M7 — M* and F,: M7 — M“ by

Fx(M) = Mx,Fx(f)=f, and F4(M)= M4, F4(f) =/,

for all M e Ob(M*), f € Hom(M*), then Fy is a functor from M to M* and
F4 is a functor from M*# to M4,

LemMmA 3.1. For any h,z e H, we have:
() X mx(hiz)[c](h2, 22) = Yo[e)(M, 21)7x (h2)mx (22).
(2) X ma(hiz1)[t](h2, 22) = 3o[e) (A1, 21)ma(h2)ma(22).

Proor. It follows by a straightforward verification.

LemMA 3.2. Let M, N be right H-comodules, then
(1) ¢x(M,N) : Fx(M) ® Fx(N) — Fx(M ® N),
m@ni— Y _mo® nolt](my,m)
is a right X-comodule isomorphism.
(2) $4(M,N) : Fy(M) ® F4(N) — F4(M ® N),
mQ® n— Zmo ® ngz)(my,ny)

is a right A-comodule isomorphism.
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Proor. (1) It is clear that ¢, is a bijective linear map. Note that Fy (M) ®
Fx(N)=Mxy ® Ny, Fx(M ® N) = (M ® N),, and their comodule structures are
different,

P my ®Nx(m ®n) = ZmO @ no @ ny(my)nx(n)
and
p(M®N)X(m ®n) = Zmo ® no ® my(mny)

for all me M, ne N. In order to show that ¢, = @y(M,N) is a right X-
comodule morphism, we need to prove pygn), $x = (¢x ® idx)py, on,- In fact,
let me M, ne N, then

P(men),Px(m @ n)
= P(MeN), (Z my @ ”O[T](mhnl))
= " mo ® no ® nx (mym)[x)(ma, n2),
and
(6x @ idx)pry e, (Mm@ n)
= (¢x ® idy) (3" mo ® o @ 7 (mn )mx(m)
=Y mo ®no ® [](my, m)mx (m2)mx (n2).

It follows by lemma 3.1 (1) that pygn), $x (M @ n) = (dx @ idx)pr,n, (M@ n),
and so pygn),Px = (9x ® idx)pr, Ny -

(2) It follows by a similar verification by lemma 3.1 (2). Note that ¢, (M, N)
= ¢,(M,N) as linear maps.

THEOREM 3.3. (1) The triple (Fx,idx,dy) is a monoidal functor from the
monoidal category M to MX.

(2) The triple (F4,idx,¢,) is a monoidal functor from the monoidal category
M*" 1o M4,

ProoF. (1) By lemma 3.2, ¢,(M,N) is an isomorphism in M¥ henceby
one can easily check that {¢,(M,N)} is a family of natural isomorphism indexed
by all couples (M, N) of objects of M*. By the definition of a monoidal functor
(see [K, p. 287]), we need to show that the following three diagrams commute:
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(My @ Ny) @ Wy ——
lqﬁx(M,N) ® idw,
(M ® N)X ®@ Wx
lqéx(M@N,W)
Fx(a)=a
((M &® N) ® W)X —_—
I
k® My M,
lidk ® idy,
and
My ®k EALEN
jvidMX ®id
MX ®k ¢X(Msk)

My ® (Nx @ Wy)

lidMX ® by (N.W)
My®@ (NQ W)y

laﬁX(M,N ® W)

MSINQW))y

My

TFX(IM)ZIM (3.2)

(k® M)y

My

TFX(VM)=VM (33)

(M®k)y

for all M,N, W € M* where a is the canonical associativity constraint, / and r
are natural isomorphisms. By [DT, lemma 1.4], we know ¢y(k, M) =id and
¢y (M,k) =id. So the commutativities of diagrams (3.2) and (3.3) follow

immediately.

As to (3.1), let me M, ne N, we W, then

¢x(M,N Q@ W)(id ® ¢x (N, W))a((m®@n) @ w)
=¢x(M,NQ® W)(id @ ¢x (N, W))(m ® (n ® w))

=¢x(M,N® W) (Zm ® (no ® Wo)[T](nl,w1)>
=" my ® (no ® wo)[z](m1, mw1)[7](n2, wa),

and

apy(M Q N, W)(¢x(M,N) ® id)((m®@n) ®w)
=agy(M @ N, W) (Z(mg ® no)[t|(m1,nm) ® w)
=Y my ® (no ® wo)[t](miny, wi)[c](ma, m2).
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Since [7] is a 2-cocycle on X ® 4 and X <, 4 = (X @ A), [7]7' is a 2-cocycle
on X qa; A. By [1] = ([zf]7")7, it follows from [D, theorem 1.6 (al)] that the
diagram (3.1) is commutative.

(2) Since ¢,(M,N)=Dy(M,N) as linear maps, (2) follows immediately
from (1).

For any monoidal categories (¥, ®,I,a,l,r) and (¢',®’',1',a’,l',r"), the
product category 4 x €’ is also a monoidal category with the tensor product,
unit, associativity and unit constraints as follows:

(U, U@V, V)=(UV,U &'V,
f,f)®(9,9)=®9f ®9),
a=(a,a"), I=U1TIY [I=(1l) and r=(rr").

If (F,¢q,8,)((F', 4, ¢;)) is a monoidal functor from monoidal category €(%’) to
2(2'), then ((F,F’), (. $), (42, #)) is a monoidal functor from € x €’ to 2 x
2'. Thus by theorme 3.3 we get a monoidal functor ((Fx, Fy), (id,id),(dy,d4))
from M x M to M¥ x M*. On the other hand, the diagonal functor D : M
— M¥ x M¥ where D(M) = (M, M) and D(f) = (f, f), is a strict monoidal
functor. By composing these two functors we get:

PROPOSITION 3.4. Let F:MT" — M* x M F(M) = (Mx,M,), F(f)=
(fa f): ¢0 = (ld, ld) : (k’ k) - F(k) = (k,k),

¢2(M,N) = (§x(M,N),$,(M,N)) : (Mx ® Ny, M4 ® N4)
- (M®N)y,(M®N),),
where M,N € Ob(M"), f e Hom(M*). Then (F,¢,,4,) is a monoidal functor
from M to M* x M.
For Ue M¥*, V e M4, define
Pugr U@V - (URV)®H, u®v+— Z(uo®vo)®(ull><lvl),

then U ® V is a right H-comodule, i.e., U® VeM.H. If f:U—-U'andg:V
— V' are morphisms in M7 and M4 resp., then fRg: UQV - U' ®V'isa
morphism in M. Thus we get a functor

G:M¥ xM* - M¥
GU,V)=U®V,G(f,9) =f®y,
where (U, V) e Ob(M* x M*), (f,g) € Hom(M* x M*).
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LEMMA 3.5. For any objects (U,V),(U', V') of M* x M*, define
W>((U, V), (U, V") : G(U, V) ® GU", V') = G((U, V) ® (U, V"))
M@V ® W @) — 3 (u®up) ® (o ® v')e" (1}, v1).

Then {Yy,((U,V),(U’,V'))} is a family of natural isomorphisms indexed by all
couples (U, V),(U', V")) of objects of M¥X x M4,

Proor. Write v, =y,((U,V),(U, V"), p1=psuviecu,v) and p,
PG(u,v)® (U’ vr) Tesp., then by definition,

GU,V)QGU' V)Y=URV)® (U ®V'),
GUU, MU, V)=6GUU VeV =UU) VeV,
P 0) ® (U @) = (1o ® v0) ® (u ® ) ® (1 >4 v1) (] > v7)
and
P Uu®u)® U@ V') =D (4o ® uy) ® (vo ® vg) ® (1] > vyv})
for all ue U, u' e U’, ve V, v’ € V'. Therefore,
P (u® 1) ® (4 @)
= p,(Z(u ® up) ® (vo @ v")7 (uf, vl))
= (U ® ug) ® (vo ® ) ® (wrug >4 v1v])7~" (145, 02),
and
(Y2 ® idn)p)(u @) ® (4 @ "))
= (1, ® ids) (3" (0 ® v0) ® (15 ® 0§) ® (1 > 1) (u] > 0}) )
= (o ® ug) ® (vo @ vg)t™" (1, v1) ® (1 > 1) (w5 <t v7)
= (10 ® g) ® (w0 ® vg)7 (41, 01) ® T(uz, v2) (wrts > w307)7™" (1, 04)
=" (o ® ) ® (v0 ® v)) ® (uruty v v10})7 ™ (5, v2),

and so p,¥, = (Y, ® idy)p;, that is, ¥, is a morphism in M*. The rest is obvious.

THEOREM 3.6. (G, Y, ¥,) is a monoidal functor from the monoidal category
M?* x M4 to M¥ where G and y, are given above, Y, : k — G(k,k) =k ®k

is the natural isomorphism.
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ProoF. We need to show that the following three diagrams commute:

(GU,V)®GU', VY)®GU", V") = GU,V)® (GU',V)® GU", V"))

lwz((um,(ucw» ® idgyn ) lidG(U.V) ® V(U V"), (U, ™)
G((U, V) ® G(U', V') ® G(U", V") G(U, V)®G((U', V)®(U", V"))
lm«u,m ® (U V).(U" V") Pz((u,m«u',v')@ w".rm)
G(U,V)® (U, V) ® (U", V") —2, G((U,V)® (U, V') ® (U", V"))
(3.4)
I/
k® G(U, V) an G(U, V)
ll//o ® idg,v) TG(I(U‘V)) (3.5)
Gk,k)®@ GU,v) ) Gk vy (U, V)
G(U,V)®k _aen | G(U, V)
Jridc(uy) ® Yo TG(’(U,V)) (3.6)

G(U,V)® G(k,k) 22 EN G, vy @ (k,k)).

By definition, we rewrite the three diagrams as follows:

a

(UeNeU'ar)eU"@r") — (UV)e(U'@V)eU"®V")

YV, ®idyngyn idygv ®y,
(UU)(VeV)eU"aV") (UV)(U'a@U"(V'®@r")
12} U2
(URUHIRUMS(VeV)eV") — (U(U’ ®U"))®(V®(V V"))
(3.4)
kQUV) e U® Vv
Jv‘l/()@idU@V I/U ®ly (35)

k@K)@URV) — k®U)Q (kR V)
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rvev

(U®V)®k
lidU®V®Wo Try®ry (36)

URV)® k®k) —2~ (UK ® (V k).

By [DT, lemma 1.4], one can easily check that and are commutative.
As to 34), let ueU, veV,u'eU’, vVeV', u" e U"” and v" € V", then

(a® a) (> ® idyr 1) (4 @) ® (W' ® ) @ (" @ ")
= (@@ ) ( (4 ® 1) ® (10 ® )™ (1f,01)) ® (" @ "))

= (@®a)(3_((4® 1)) ® uf) ® ((v0 ® v6) ® v")e™" (uf, muv})™ (1], v2))

UV

= (U® (4 ® u)) ® (vo ® (v ® v")) =™ (], v107) 7 (], v2)
=D (@ ® (uy ®up)) ® (v0 ® (v ® v"))r™ (', v1)e™" (3, v})
v Y(u],v;), (By [DT, SP2])
and

Y2 (ldugy @ ¥,)a((u®v) ® (' ®v") ® (1" ®v"))
=Y, ([dugy @ Y,) (U ® ) ® (W' ® V') ® (u" @v")))
=42 (@) ® (W @) ® (0§ ® ") (e 0))))
= (u® (4 ® ug)) ® (v0 ® (vg ® V"))~ (wjuf, v1)7™ (ug, v7)
= (® (4 ®u)) ® (v ® (v ® v")) 7™ (uf, v01)7™" (5, v2)

™ (uy,v]). (By [DT, SP1'])

It follows that the diagram (3.4) commutes. So (G, Y, ¥,) is a monoidal functor
from M* x M4 to M¥.

Now assume that (X,o) and (4,n) are braided bialgebras then (H, [o,7]) is
also a braided bialgebra by proposition 2.4. Thus M*, M4 and M¥ are braided
monoidal categories with braidings given by

ty,u: U® U — U’® U,u®u/*—’ Za(uhu;)u()@uo’
try VRV V' @V,0®0v — Zn(vl,v{)v()@Uo,
and

tM,N . M®N‘_) N®M;m®n — Z[aa”](mlanl)rm@mo,
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respectively, where U, U’ e M*, V.,V e M? and M,N e M¥. Henceby,
M?* x M* is also a braided monoidal category with braiding t(y. v) (v, v/ =
(tv.u,tv,v). In this case we have:

THEOREM 3.7. (G, V,,V,) is a braided monoidal functor from M*X x M4 to
MY,

PrROOF. By definition (see [K, p. 327]), we only need to show the diagram

WZ((UJ/)v(U'vVI))

GU,V)®GU', V" > GU(U,V)® (U, V"))
lfc«v. VG v lG('(u, U v) (3.7)
G, V@G, y) ZEDED (v e (v, v)

commutes. Let us rewrite (3.7) as follows:

UeNeUer) . ueu)ewer)
qu@v.u'@l/' lt”'”'@t”'y' (3.7)

UeV)eUeV) -2 (U'eU)e(V'® V).
For any uc U, ve V, ' € U', v' € V', we have
(tv,u @ty v )Y ,(u®v) ® (u' ®v"))
= (t0,0 ® ty, 1) (W@ ) ® (0 ® )™ (u, 1))
= Z o(uy, up)(uy @ ug) @ n(vy, vy)(vy ® vo)T™" (43, v2)
=Y (uy ® up) ® (vg ® vo)a(ur, up)y(vy,v7)t™" (uh,v2),

and
Va(tver,ver(u®v) ® (u' @v'))
= 2 (Dl (e a1, 02 0]) (4 @ 0)) ® (110 ® o))
= (4 ® uo) ® (v ® vo)™" (1, }) [0, 7] (w2 >3 v1, uj > )
= > (up ® uo) ® (v ® vo)z™" (w1, v]) (w2, v3) o (w3, uy (v, 03)7 ™" (ut, v2)
=) (up ® uo) ® (vy ® vo)a(ur, ui)n(vr,vy)T™" (u}, v2).

Completing the proof.
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