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THE INVERSE SURFACE AND THE OSSERMAN
INEQUALITY*

By

Zuhuan YU

0. Introduction

In this paper, we shall work with surfaces of constant mean curvature one
in hyper-bolic 3-space. We abbreviate constant mean curvature one by CMC-I.
These surfaces share many properties with minimal surfaces in Euclidean 3-space.
A striking result is that these surfaces have a hyperbolic analogue of Weierstrass
representation formula [2]. Another important property is that the total curvature
of CMC-I surfaces is not necessarily an integral multiple of $ 4\pi$ , and does not
generally satisfy 0sserman inequality [4].

Let $f:M^{2}\rightarrow H^{3}(-1)$ be a CMC-I immersion. Then there exist a null
holomorphic immersion $F:\tilde{M}^{2}\rightarrow SL(2, C)$ , such that $f=F\cdot F^{*}$ , where $\tilde{M}^{2}$ is
the universal cover of $M^{2}$ . By taking the inverse of the matrix $F$, we can
construct a new CMC-I surface $f_{-1}$ : $\tilde{M}^{2}\rightarrow H^{3}(-1)$ , call it the inverse surface
(or dual surface [5]). Although the inverse surface is defined on the universal
cover $\tilde{M}^{2}$ , its metric $ds_{-1}^{2}$ is well defined on $M^{2}$ . So we have two metrics on $M^{2}$ ,
and they have the same completeness [6]. Umehara and Yamada have shown that
if the surface $f$ : $M^{2}\rightarrow H^{3}(-1)$ is complete and of finite total curvature, then the
following inequality holds

$\frac{1}{2\pi}\int_{M^{2}}k_{-1}dA_{-1}\leq\chi(M^{2})-n$ , (0.1)

where $n$ is the number of ends of the original CMC-I surface, the equality holds
if and only if all the ends are regular and embedded [5].

By carefully observing, we may find that the condition of finite total cur-
vature is not necessary. Indeed we have the following theorem
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THEOREM. Let $f:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-l immersion, then the
Osserman inequality (0.1) holds.

I would like to thank Prof. H. S. Hu and Prof. Y. L. Xin for their kind
guidance, furthermore also to thank the referee for his valuable comments and
supplying concise proofs of Proposition 2.1 and Lemma 3.2.

1. The inverse surface

Let $f:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-I immersion, $\tilde{M}$ 2 the universal
cover of $M^{2}$ , which possess a holomorphic lift $F:\tilde{M}^{2}\rightarrow SL(2, C)$ , such that
$f=F\cdot F^{*}$ : $M^{2}\rightarrow H^{3}(-1)[2]$ . $F$ satisfies the following equation

$ F^{-1}dF=\left(\begin{array}{ll}g & -g^{2}\\1 & -g\end{array}\right)\omega$ , (1.1)

where $g$ and $\omega$ are meromophic function and holomorphic l-form defined on $\tilde{M}^{2}$ ,
respectively. The pair $(g, \omega)$ is called the Weierstrass data of the surface $f$, and
$Q=\omega dg$ is the Hopf differential. By using the Weierstrass data, the first and
second fundamental form $ds^{2}$ and $\Phi$ can be expressed as

$ds^{2}=(1+|g|^{2})^{2}\omega\overline{\omega}$ , (1.2)

$\Phi=-\omega dg-\overline{\omega dg}+ds^{2}$ . (1.3)

From (1.2) and (1.3), we easily know that the holomorphic quadratic differential
$Q$ is well defined on $M^{2}$ . Moreover, the hyperbolic Gauss map can be written as

$G:M^{2}\rightarrow CP^{1}$ , $G(z)=[dF_{1}, dF_{3}]$ , (1.4)

here we have used the notation

$F=\left(\begin{array}{ll}F_{1} & F_{2}\\F_{3} & F_{4}\end{array}\right)$ , $\det F=1$ .

The pseudometric $d\sigma^{2}=-kds^{2}$ can be expressed as

$d\sigma^{2}=\frac{4dg\cdot\overline{dg}}{(1+|g|^{2})^{2}}$ . (1.5)

By (1.2), (1.5) and the definition of $Q$ , we also have

$d\sigma^{2}\cdot ds^{2}=4Q$ . Q. (1.6)

In what following, we give the definition of the inverse surface (see [5] and
[6]).
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DEFINITION 1.1. The inverse surface $f_{-1}$ : $\tilde{M}^{2}\rightarrow H^{3}(-1)$ of the CMC-I
surface $f$ : $M^{2}\rightarrow H^{3}(-1)$ is defined by

$f_{-1}=(F^{-1})\cdot(F^{-1})^{*}$ ,

where $F$ is the holomorphic lift of $f$, and $F^{-1}$ is its inverse matrix.

Note that the inverse surface is defined on the universal cover $\tilde{M}^{2}$ , generally,
which can not be defined on $M^{2}$ . About this problem Umehara and Yamada
showed that it can be defined on $M^{2}$ if and only if the second Gauss map $g$ is
single-value on $M^{2}[5]$ .

Now we demonstrate some important relations between the inverse surface
and the original surface, their proofs can be found in related papers, so we omit
them here.

PROPOSITION 1.2 [6]. $f_{-1}$ is complete if and only if $f$ is complete.

In [5] the completeness of the inverse surface is also shown under the
hypothesis that all ends are regular. Another relation is

PROPOSITION 1.3 [5]. The hyperbo $lic$ Gauss map, Weierstrass data and Hopf
$d_{l}fferential$ of the inverse surface can be represenfed as

$G_{-1}=g$ , $g_{-1}=G$ , $\omega_{-1}=-\frac{Q}{dG}$ , $Q_{-1}=$ -Q. (1.7)

By (1.7) one can give the inverse metric

$ds_{-1}^{2}=(1+|g_{-1}|^{2})^{2}\omega_{-1}\cdot\overline{\omega}_{-1}=(1+|G|^{2})^{2}\frac{Q}{dG}\cdot\frac{\overline{Q}}{dG}$ . (1.8)

Because $G,$ $Q$ are both defined on $M^{2},$ $ds_{-1}^{2}$ is also well defined on it. Hence we
may compute total curvature of the inverse metric on $M^{2}$ . Set $d\sigma_{-1}^{2}=-k_{-1}ds_{-1}^{2}$ ,

which is the pseudometric of $ds_{-1}^{2}$ induced via $G:M^{2}\rightarrow CP^{1}$

$d\sigma_{-1}^{2}=\frac{4dG\cdot\overline{dG}}{(1+|G|^{2})^{2}}$ . (1.9)

Note that $Q_{-1}=\omega_{-1}dg_{-1}=-Q$ . Combining (1.8) and (1.9) we get

$d\sigma_{-1}^{2}\cdot ds_{-1}^{2}=4Q_{-1}\cdot\overline{Q}_{-1}=4Q$ . Q. (1.10)
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2. Monodromy conditions

Let $f:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-I immersion. We have known
that the inverse metric $ds_{-1}^{2}$ is well defined on $M^{2}$ . So one can compute total
curvature $\int_{M^{2}}k_{-1}dA_{-1}$ , where $k_{-1}$ is the Gauss curvature of $f_{-1}$ , and $dA_{-1}$ is the
volume element of $f_{-1}$ . If $\int_{M^{2}}k_{-1}dA_{-1}$ is finite, then $M^{2}$ is conformal equivalent
to a compact surface $\overline{M}^{2}$ with finite points $\{p_{1}, \ldots,p_{n}\}$ removed, i.e.
$M^{2}=\overline{M}^{2}\backslash \{p_{1}, \ldots, p_{n}\}$ . The point $p_{j}(j=1, \ldots, n)$ corresponds to an end of $f$

At this time we immediately see that the hyperbolic Gauss map is mero-
morphically extended across all the ends $\{p_{1}, \ldots, p_{n}\}$ . Consequently, the total
curvature is an integral multiple of $ 4\pi$ .

Notice that the Hopf differential $Q_{-1}=-Q$ is also defined on $M^{2}$ . Like
proposition 5 in [2], we have the following result

PROPOSITION 2.1. If the inverse metric $ds_{-1}^{2}$ is offinite total curvature on $M^{2}$ ,
then the Hopf differential $Q_{-1}$ can be meromorphically extended to $\overline{M}^{2}$ .

PROOF. We first note a fact which is contained in the proof of Theorem 9.3
in [3].

FACT 1. Let $\Delta^{*}=\Delta\backslash \{0\}$ be a punctured unit disk on $C$ and $f,$ $g$ holo-
morphic functions on $\Delta^{*}$ such that

$ds^{2}$ $:=(1+|g|^{2})^{2}|f|^{2}|dz|^{2}$

is positive definite on $\Delta^{*}$ and complete at the origin $z=0$ . If $g$ is meromorphic at
$z=0$ , so is $f$

Since $d\sigma_{-1}^{2}=G^{*}d\sigma_{0}^{2}$ ( $d\sigma_{0}^{2}$ is the Fubini-Study metric on $CP^{1}=C\cup\{\infty\}$ ) is
of finite area, the hyperbolic Gauss map $G$ must have at most pole, by the Great
Picard Theorem. Since $ds_{-1}^{2}$ is complete by Proposition 1.2, the above fact yields
that $\omega_{-1}$ has at most pole at the end. So the Hopf differential $Q_{-1}=\omega_{-1}dG$ has
the same property. $\square $

In order to prove the main result, we should well understand the holo-
morphic representation around the end. Take a coordinate neighborhood of the
end $p_{j},$ $\Delta_{\epsilon}^{*}=\{z\in C|0<|z|<\epsilon, z(p_{j})=0\}$ such that

$g_{-1}=G=z^{n}$ , $n\geq 1$ ,

$\omega_{-1}=z^{v}\omega_{0}(z)dz$ , $\omega_{0}(0)\neq 0$ ,
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where $n$ and $v$ are integers, $\omega_{0}(z)$ is a holomorphic function on $\Delta_{\epsilon}=\Delta_{\epsilon}^{*}\cup\{0\}$ .
The holomorphic representation $F:\tilde{\Delta}_{\epsilon}^{*}\rightarrow SL(2, C)$ satisfies

F. $dF^{-1}=\left(\begin{array}{ll}g_{-1} & g_{-1}^{2}\\1 & -g_{-1}\end{array}\right)\omega_{-1}$ . (2.1)

By a direct calculation, one easily get the following result, for details one can
refer to [4].

$F_{3},$ $F_{4}$ satisfy the equation

$X^{\prime\prime}-\frac{\omega_{-1}^{\prime}}{\omega_{-1}}X^{\prime}-g_{-1}^{\prime}\omega_{-1}X=0$ ; (E. 1)

$F_{1},$ $F_{2}$ satisfy the equation

$Y^{\prime\prime}-\frac{(g_{-1}^{2}\omega_{-1})^{\prime}}{g_{-1}^{2}\omega_{-1}}Y^{\prime}-g_{-1}^{\prime}\omega_{-1}Y=0$ , (E.2)

where $‘=d/dz$ . Notice that

$\frac{(\omega_{-1})^{\prime}}{\omega_{-1}}=\frac{v}{Z}+\frac{\omega_{0}^{\prime}}{\omega_{0}}$ , $\frac{(g_{-1}^{2}\omega_{1})^{\prime}}{g_{-1}^{2}\omega_{-1}}=\frac{n+v}{Z}+\frac{\omega_{0}^{\prime}}{\omega_{0}}$ , $g_{-1}^{\prime}\omega_{-1}=nz^{n+v-1}\omega_{0}$ .

Hence, the coefficients of (E.1) and (E.2) are all meromorphic functions on $\Delta_{\epsilon}$ .
Since we already assume that $ds_{-1}^{2}$ has finite total curvature on $M^{2}$ , by prop-
osition 2.1, then the Hopf differential $Q_{-1}$ is meromorphic on $\Delta_{\epsilon}$ . Now assume
that the Order of $Q_{-1}$ satisfies $0rd_{0}Q_{-1}\geq-2$ . Thus equations (E.1) and (E.2)

have regular singularity at the point $z=0$ . If write

$Q_{-1}=qdz^{2}=(\sum_{j=-2}^{\infty}q_{j}z^{j})dz^{2}$ ,

by local theory of the ordinary differential equation [1], we obtain the indicial
equations of (E.1) and (E.2) as follows

$t^{2}-(v+1)t-q_{-2}=0$ , $(e.1)$

$t^{2}-(2n+v+1)t-q_{-2}=0$ . (e.2)

Let $\lambda_{j}$ and $\lambda_{j}-m_{j}$ are solutions of the indicial equations $(e_{j}, j=1,2)$ . Then the
fundamental system of the solutions $\{X_{1}, X_{2}\}$ of (E. 1) and $\{Y_{1}, Y_{2}\}$ of (E.2) can
be written as
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$X_{1}=z^{\lambda_{1}}\xi_{1}(z)$ , $X_{2}=z^{\lambda_{1}-m_{1}}\xi_{2}(z)+k_{1}X_{1}\log z$ , (2.2)

$Y_{1}=z^{\lambda_{2}}\eta_{1}(z)$ , $Y_{2}=z^{\lambda_{2}-m_{2}}\eta_{2}(z)+k_{2}Y_{1}\log z$ , (2.3)

where $\xi_{i}(0)=1,$ $\eta_{i}(0)=1,$ $(i=1,2),$ $k_{1}$ and $k_{2}$ are constant.

LEMMA 2.2. Let $f$ : $\Delta_{\epsilon}^{*}\rightarrow H^{3}(-1)$ be a CMC-l immersion, which is complete
at $z=0$ , and the total curvature of $ds_{-1}^{2}$ on $\Delta_{\epsilon}^{*}$ is finite. Then $k_{1}=k_{2}=0$ .

PROOF. If $m_{1}$ is not an integral number, then the fundamental system of
(E.1) must be in terms of

$X_{1}=z^{\lambda_{1}}\xi_{1}(z)$ , $X_{2}=z^{\lambda_{1}-m_{1}}\xi_{2}(z)$ .

So $k_{1}=0[1]$ . The same result will be hold for equation (E.2).

If $m\mathfrak{l}$ is an integral number, without loss generality, assume $m_{1}\geq 0$ , and set

$F_{3}=b_{11}X_{1}+b_{12}X_{2}$ , $F_{4}=b_{21}X_{1}+b_{22}X_{2}$ .

We calculate

$|F_{3}|^{2}+|F_{4}|^{2}$

$=|b_{11}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{12}(z^{(v+1-m_{1})/2}\xi_{2}(z)+k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z)|^{2}$

$+|b_{21}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{22}(z^{(v+1-m_{1})/2}\xi_{2}(z)+k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z)|^{2}$ ,

$=|b_{11}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{12}(z^{(v+1-m_{1})/2}\xi_{2}(z))|^{2}+\frac{|b_{12}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z|^{2}}{I}$

$+[b_{11}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{12}(z_{JI}^{(v+1-m_{1})/2}\underline{\xi_{2}(z))]b_{12}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z_{\lrcorner}}\underline{\underline{\backslash }}$

$+[\overline{b_{11}z^{(v+1+m_{1})/z_{I^{1}II}^{(v+1-m)/2}}2\xi_{1}(z)+b_{12}(\xi_{2}(z))]}\underline{b_{12}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z_{\lrcorner}}\underline{\underline{c}}$

$+|b_{21}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{22}(z^{(v+1-m_{1})/2}\xi_{2}(z))|^{2}+\frac{|b_{22}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z|^{2}}{IV}$

$+[b_{21}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{22}(z^{(v+1-m_{1})/2}\xi_{2}(z))]b_{22}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z$

$\backslash -\underline{\lrcorner}\overline{V}$

$+_{\underline{\underline{c}}}\overline{b_{21}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{22}(z_{VI^{2}}^{(v+1-m_{1})\underline{/\xi_{2}(z))]b_{22}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)\ln z_{\lrcorner}}}}$

.

Fix $z=re^{i(\theta+2k\pi)}$ , here $k=\pm 1,$ $\pm 2,$
$\ldots$ . For convenience, assume $\theta=0$ . The

part, which is relative with the number $k$ , of the sum is
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$I+\Pi+III+IV+V+VI=(|b_{12}|^{2}+|b_{22}|^{2})|k_{1}|^{2}|z^{(v+1+m_{1})/2}\xi_{1}(z)|^{2}|\ln z|^{2}$

$+(a+b)\overline{\ln}z+\overline{(a+b)}\ln z$ ,

where

$a=(b_{11}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{12}z^{(v+1-m_{1})/2})\overline{b_{12}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)}$ , (2.4)

$b=(b_{21}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{22}z^{(v+1-m_{1})/2})\overline{b_{22}k_{1}z^{(v+1+m_{1})/2}\xi_{1}(z)}$ . (2.5)

Since $|F_{3}|^{2}+|F_{4}|^{2}$ is single-valued on $A_{\epsilon}^{*}$ , then it is constant when $k$ varies. we get

$(|b_{12}|^{2}+|b_{22}|^{2})|k_{1}|^{2}|z^{(v+1+m_{1})/2}\xi_{1}(z)|^{2}(2k\pi)^{2}+(a+b)(-2k\pi i)+\overline{(a+b)}(2k\pi i)=0$ .

Thus

$(|b_{12}|^{2}+|b_{22}|^{2})|k_{1}|^{2}|z^{(v+1+m_{1})/2}\xi_{1}(z)|^{2}=0$ , $\overline{(a+b)}+(a+b)=0$ . (2.6)

If $k_{1}=0$ , then the first equality of (2.6) holds, and (2.4) (2.5) yield the second
equality of (2.6). If $k_{1}\neq 0$ , fix $z=re^{2k\pi i}$ , and $r$ is much small. Since

$|z^{(v+1+m_{1})/2}\xi_{1}(z)|^{2}\neq 0$ ,

then

$|b_{12}|^{2}+|b_{22}|^{2}=0$ , i.e. $b_{12}=b_{22}=0$ .

It means that $F_{3}$ and $F_{4}$ are linear dependent. Therefore $g=-dF_{4}/dF_{3}$ is
constant, and hence $f$ is flat. So we have that $G$ is a constant. This contradicts
with $G=z^{n},$ $n\geq 1$ , so $k_{1}=0$ , similarly $k_{2}=0$ . We complete the proof of the
lemma 2.2. $\square $

LEMMA 2.3. Let $f$ : $\Delta_{\epsilon}^{*}\rightarrow H^{3}(-1)$ be a CMC-l immersion, complete at
$z=0,$ $ds_{-1}^{2}$ offinite total curvature on $A_{\epsilon}^{*}$ . Then $m_{1},$ $m_{2}$ must be integers or non-
integral real numbers, simultaneously.

PROOF. We firstly show that if $m_{1}$ is an integer, then $m_{2}$ is also an integer
and vice versa. By $G=dF_{1}/dF_{3}$ , setting

$F_{1}=a_{11}Y_{1}+a_{12}Y_{2}$ , $F_{2}=a_{21}Y_{1}+a_{22}Y_{2}$ ,

we obtain

$Z^{n}=\frac{(a_{11}z^{(2n+v+m_{2}+1)/2}\eta_{1}(z)+a_{12}z^{(2n+v-m_{2}+1)/2}\eta_{2}(z))^{\prime}}{(b_{11}z^{(v+m_{1}+1)/2}\xi_{1}(z)+b_{12^{Z^{(v-m_{1}+1)/2}}}\xi_{2}(z))}$ . (2.7)
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Since $n$ and $v$ are all integral numbers, from (2.7) we easily see that $m_{1}$ and $m_{2}$

must be integral numbers simultaneously.
Secondly, we prove that when $m_{1}$ and $m_{2}$ are not integral numbers, they

should be real numbers. Using the representation

$F_{3}=b_{11}z^{\lambda_{1}}\xi_{1}(z)+b_{12}z^{\lambda_{1}-m_{1}}\xi_{2}(z)$ , $F_{4}=b_{21}z^{\lambda_{1}}\xi_{1}(z)+b_{22}z^{\lambda_{1}-m_{1}}\xi_{2}(z)$ ,

we obtain

$|F_{3}|^{2}+|F_{4}|^{2}=|z^{\lambda_{1}}|^{2}|b_{11}\xi_{1}(z)+b_{12}z^{-m_{1}}\xi_{2}(z)|^{2}+|z^{\lambda_{1}}|^{2}|b_{21}\xi_{1}(z)+b_{22}z^{-m_{1}}\xi_{2}(z)|^{2}$ .

Put $\lambda_{1}=\frac{v+1+\sqrt{(v+1)^{2}+4q_{-2}}}{2}$
,

$\lambda_{1}-m_{1}=\frac{v+1-\sqrt{(v+1)^{2}+4q_{-2}}}{2}$
, $m_{1}=$

$\sqrt{(v+1)^{2}+4q_{-2}}$ into the equation above, then

$|F_{3}|^{2}+|F_{4}|^{2}$

$=(|b_{11}|^{2}+|b_{21}|^{2})|\xi_{1}(z)|^{2}|z^{(v+m_{1}+1)/2}|^{2}$

$+(|b_{12}|^{2}+|b_{22}|^{2})|\xi_{1}(z)|^{2}|z^{(v-m_{1}+1)/2}|^{2}$

$+b_{11}\overline{b}_{12}\xi_{1}\overline{\xi}_{2}z^{(v+m_{1}=1)/2}z^{\overline{(v-m_{1}+1)}/2}+\overline{b}_{11}b_{12}\overline{\xi}_{1}\xi_{2}z^{\overline{(v+m_{1}=1)}/2_{Z}(v-m_{1}+1)/2}$

$+b_{21}b_{22}^{-}\xi_{1}\overline{\xi}_{2}z^{(v+m_{1}+1)/2}z^{\overline{(v-m_{1}+1)}/2}+b_{21}^{-}b_{22}\overline{\xi}_{1}\xi_{2}z^{\overline{(v+m_{1}+1)}/2}z^{(v-m_{1}+1)/2}$ . (2.8)

Fix $z=re^{i(\theta+2k\pi)},$ $r$ is much small, and $k=\pm 1,$ $\pm 2,$
$\ldots$ . For convenience, assume

$\theta=0$ . Furthermore

$|z^{(v+m_{1}+1)/2}|^{2}=e^{(2(v+1)+m_{1}+\overline{m}_{1})/2\ln r+(m_{1}-\overline{m}_{1})k\pi i}$ ,

$|z^{(v-m_{1}+1)/2}|^{2}=e^{(2(v+1)-m_{1}-\overline{m}_{1})/2\ln r+(-m_{1}+\overline{m}\downarrow)k\pi i}$ ,

$z^{(v+m_{1}+1)/2}z^{\overline{(v-m_{1}+1)/2}}=e^{(2(v+1)+m_{1}-\overline{m}_{1})/2\ln r+(m_{1}+\overline{m}_{1})k\pi i}$ ,

$z^{\overline{(v-m_{1}+1)/2}}z^{(v-m_{1}+1)/2}=e^{(2(v+1)+m_{1}-\overline{m}_{1})/2\ln r-(m_{1}+\overline{m}_{1})k\pi i}$ .

Now, we set $m_{1}=a+bi$ , and

$h_{1}=(|b_{21}|^{2}+|b_{11}|^{2})|\xi_{1}|^{2}$ , $h_{2}=(|b_{12}|^{2}+|b_{22}|^{2})|\xi_{2}|^{2}$ , $l=(b_{11}\overline{b_{12}}+b_{21}\overline{b_{22}})\xi_{1}\overline{\xi}_{2}$ .

Then
$|F_{3}|^{2}+|F_{4}|^{2}=h_{1}r^{v+a+1}e^{-2kb\pi}+h_{2}r^{v-a+1}e^{2kb\pi}$

$+lr^{v+1}e^{(b\ln r+2ka\pi)i}+\overline{l}r^{v+1}e^{-(b\ln r+2ka\pi)i}$ . (2.9)
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If $b\neq 0$ , of course $h_{1}$ and $h_{2}$ do not all vanish, the last two terms in (2.9) are
bounded, when $k$ tends to $\infty$ , right side of (2.9) will be infinite. However,
$|F_{3}|^{2}+|F_{4}|^{2}$ has to be constant when $k$ varies. This is a contradiction. So $b=0$ , it
means that $m_{1}=a+bi=a$ is a real number. Similarly $m_{2}$ is also a real number.
Lemma 2.3 is proved. $\square $

Since $b=0$ , the terms containing $k$ in (2.9) is the following

$r^{v+1}(l(\cos 2ka\pi+i\sin 2ka\pi)+\overline{l}(\cos 2ka\pi-i\sin 2ka\pi))$

$=r^{v+1}((l+\overline{l})\cos 2ka\pi+(li-\overline{l}i)\sin 2ka\pi)$

$=r^{v+1}(2l_{1}\cos 2ka\pi-2l_{2}\sin 2ka\pi)$

$=2r^{v+1}\sqrt{l_{1}^{2}+l_{2^{2}}}\sin(\theta+2ka\pi)$ ,

where

$l=l_{1}+il_{2}$ ,
$\sin\theta=\frac{l_{1}}{\sqrt{l_{1}^{2}+l_{2^{2}}}}$

,
$\cos\theta=\frac{l_{2}}{\sqrt{l_{1}^{2}+l_{2^{2}}}}$

.

If $1\neq 0$ , as $|F_{3}|^{2}+|F_{4}|^{2}$ is not relevant with $k$, so $a$ has to be an integral number,
this contradicts the hypothesis, thus $l=0$ .

COROLLARY 2.4. If $m_{1},$ $m_{2}$ are not integral numbers, then coefficients of
$F_{j}(i=1,2,3,4)$ satisfy

$b_{11}\overline{b}_{12}+b_{21}\overline{b}_{22}=0$ , $a_{11}\overline{a}_{12}+a_{21}\overline{a}_{22}=0$ .

LEMMA 2.5. If $m_{1},$ $m_{2}$ are not integral numbers, then following equations hold

$m_{1}=m_{2}=m$ , $n=-(v+1)$ ,

$a_{11}(m-v-1)=b_{11}(m+v+1)$ , $a_{21}(m-v-1)=b_{21}(m+v+1)$ ,

$a_{12}(m+v+1)=b_{12}(m-v-1)$ , $a_{22}(m+v+1)=b_{22}(m-v-1)$ .

PROOF. By using $G=dF_{1}/dF_{3}$ we have

$z^{n}=\frac{[a_{11}z^{(2n+v+1+m_{2})/2}\eta_{1}(z)+a_{12}z^{(2n+v+1-m_{2})/2}\eta_{2}(z)]^{\prime}}{[b_{11}z^{(v+1+m_{1})/2}\xi_{1}(z)+b_{12}z^{(v+1-m_{1})/2}\xi_{2}(z)]}$ .
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A direct computation shows that

$a_{11}(\frac{2n+v+1+m_{2}}{2}\eta_{1}+z\eta_{1}^{\prime})z^{m_{2}/2}+a_{12}(\frac{2n+v+1-m_{2}}{2}\eta_{2}+z\eta_{2}^{\prime})z^{-m_{2}/2}$

$=b_{11}(\frac{v+1+m1}{2}\xi 1+z\xi_{1}^{\prime})z^{m_{1}/2}+b_{12}(\frac{v+1-m_{1}}{2}\xi_{2}+z\xi_{2}^{\prime})z^{-m_{1}/2}$ , (2.10)

where

$m_{1}=\sqrt{(v+1)^{2}+4q_{-2}}>0$ , $m_{2}=\sqrt{(2n+v+1)^{2}+4q_{-2}}>0$ .

Since $m_{1}$ and $m_{2}$ are not integral numbers, then

$\frac{v+1+m_{1}}{2}\frac{v+1-m_{1}}{2}\frac{2n+v+1+m_{2}}{2}\frac{2n+v+1-m_{2}}{2}$

do not vanish.
1). If $a_{12}=0$ , then $b_{12}=0$ . 0therwise $b_{12}\neq 0$ , when $z$ tends to $0$ , the left

hand side of the equation (2.10) converges to $0$ , and the right hand side is
divergent. This is a contradiction. In this case $m_{1}=m_{2}$ must hold and hence
$n=-(v+1)$ . Moreover applying $\eta_{2}(0)=1$ and $\xi 1(0)=1$ we get

$a_{11}\frac{2n+v+1+m_{2}}{2}=b_{11}\frac{v+1+m_{1}}{2}$ .

2). If $a_{12}\neq 0$ , then $b_{12}\neq 0$ . Assume $m_{2}>m_{1}$ . We multiply the equation
(2.10) by $z^{ml/2}$ . When $z$ tends to $0$ , the right side of the equation (2.10) tends to a
constant, and the left side divergent, we get a repugnance, similarly $m_{1}>m_{2}$ does
not hold.

Thus $m_{1}=m_{2}$ and hence $n=-(v+1)$ . Now put $m_{1}=m_{2}=m$ into the
equation (2.10)

$a_{11}(\frac{2n+v+1+m}{2}\eta 1+z\eta_{1}^{\prime})z^{m}+a_{12}(\frac{2n+v+1-m}{2}\eta_{2}+z\eta_{2}^{\prime})$

$=b_{11}(\frac{v+1+m}{2}\xi_{1}+z\xi_{1}^{\prime})z^{m}+b_{12}(\frac{v+1-m}{2}\xi_{2}+z\xi_{2}^{\prime})$ .

Take $z\rightarrow 0$ , we get

$a_{12}(\frac{2n+v+1-m}{2})=b_{12}(\frac{v+1-m}{2})$ .

On the other hand, the coefficients of $z^{m}$ on two side should be equal to each
other. If not, $z^{m}=h_{0}/h_{1},$ $h_{0}$ and $h_{1}$ are holomorphic functions. $z^{m}$ is a multiple-
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valued holomorphic function. This is a contradiction. So

$a_{11}\frac{2n+v+1+m}{2}=b_{11}\frac{v+1+m}{2}$ .

From $z^{n}=dF_{2}/dF_{4}$ , the other equations can be verified. Lemma 2.5 is proved.
$\square $

Next we prove the main result in this section.

THEOREM 2.6. Let $f:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-l immersion. $In$

the following three conditions any two conditions imply the another,

i) $\int_{M^{2}}k_{-1}dA_{-1}$ is finite,
ii) $\int_{M^{2}}kdA$ is finite,
iii) $Ord_{p_{J}}Q\geq-2,$ $(j=1,2, \ldots, n)$ .

PROOF. In [2] Bryant has shown that i) is equivalent to iii) under the
condition ii). So we only need to prove that i) and iii) imply ii). It is sufficient to
prove that $\int_{\Delta_{\epsilon}^{*}}kdA$ is finite, $\Delta_{\epsilon}^{*}$ is a coordinate neighborhood near the end
$p_{j}(j=1,2, \ldots, n)$ . By Lemma 2.3, $m_{1}m_{2}$ are integral numbers or both are not
simultaneously.

1). $m_{1}$ and $m_{2}$ are integral numbers. The second Gauss map $g$ is

$g=-\frac{b_{21}\lambda_{1}z^{-1}\xi_{1}+b_{21}\xi_{1}^{\prime}+b_{22}(\lambda_{1}-m_{1})z^{-m_{1}-1}\xi_{2}+b_{22}z^{-m_{1}}\xi_{2}^{\prime}}{b_{11}\lambda_{1}z^{-1}\xi_{1}+b_{12}\xi_{1}^{\prime}+b_{12}(\lambda_{1}-m_{1})z^{-m_{1}-1}\xi_{2}+b_{12}z^{-m_{1}}\xi_{2}^{\prime}}$ . (2.11)

From (2.11) we know that $g$ is a meromorphic function on $\Delta_{\epsilon}$ . Moreover
$-\int_{\Delta_{\epsilon}^{*}}kdA$ is the area of the image of $g:\Delta_{\epsilon}^{*}\rightarrow CP^{1}$ , so $\int_{\Delta_{\epsilon}^{\nu}}kd$ is finite.

2). $m_{1}$ and $m_{2}$ are not integral numbers. By lemma 2.5 $m_{1}=m_{2}=m>0$ and
$n=-(v+1)$ , using corollary 2.4 we can prove that $\int_{\Delta_{\epsilon}^{*}}kd$ is finite in three cases
as follows.

CASE 1. If $b_{11}\neq 0,$ $b_{12}=0$ . Then $b_{21}=0,$ $b_{22}\neq 0$ . The second Gauss map is

$g=-\frac{1}{z^{m}}\frac{b_{22}(\xi_{2}+z\xi_{2}^{\prime})}{b_{11}(\xi_{1}+z\xi_{1}^{\prime})}$ .

Take $\Delta_{\epsilon}^{*}$ very small such that

$\frac{b_{22}(\xi_{2}+z\xi_{2}^{\prime})}{b_{11}(\xi_{1}+z\xi_{1})}\neq 0$
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for all $z\in\Delta_{\epsilon}^{*}$ . Consider a conformal transformation $w:\Delta_{\epsilon}\rightarrow\Delta_{\epsilon}^{\prime}$

$w(z)=z(\frac{b_{22}(\xi_{2}+z\xi_{2}^{\prime})}{b_{11}(\xi_{1}+z\xi_{1})})^{-1/m}$

It is obviously that

$w^{\prime}=(\frac{b_{22}(\xi_{2}+z\xi_{2}^{\prime})}{b_{11}(\xi_{1}+z\xi_{1})})^{-1/m}+z[(\frac{b_{22}(\xi_{2}+z\xi_{2}^{\prime})}{b_{11}(\xi_{1}+z\xi_{1})})^{-1/m}]^{\prime}$

So $w^{\prime}(0)\neq 0$ . Thus on the new coordinate neighborhood $\Delta_{\epsilon}^{\prime}$ the second Gauss
map is

$g=-\frac{1}{w^{m}}$ .

It is clear that

$\int_{\Delta_{\epsilon}^{\prime}}kdA=\int_{\Delta_{\epsilon}^{\prime}}\frac{4m^{2}|w|^{2(m-1)}dw\cdot d\overline{w}}{(1+|w|^{2m})^{2}}$

is finite.
CASE 2. If $b_{21}\neq 0,$ $b_{11}=0$ . Then $b_{21}\neq 0,$ $b_{22}=0$ . That is similar with

case 1.
CASE 3. If $b_{11}\neq 0,$ $b_{12}\neq 0$ . Then $b_{21}\neq 0,$ $b_{22}\neq 0$ . We compute the second

Gauss map

$g=-\frac{\frac \mathcal{V}+2l(b_{21}\xi_{1}z^{m}+b_{22}\xi_{2})+\frac{m}{2}b_{21}z^{m}+b_{21}z^{m+1}\xi_{1}^{\prime}+b_{22}z\xi_{2}^{\prime}-\frac{m}{2}b_{22}\xi_{2}}{\frac v+,21(b_{11}\xi_{1}z^{m}+b_{12}\xi_{2})+\frac{m}{2}b_{11}z^{m}+b_{11}z^{m+l}\xi_{l}+b_{12}z\xi_{2}-\frac{m}{2}b_{12}\xi_{2}}$

and

$g(0)=-\frac{\frac{v+1}{v+12}b_{22}-\frac{m}{2}b_{22}}{\frac,2b_{12}-\frac{m}{2}b_{12}}=-\frac{b_{22}}{b_{12}}\neq 0$ .

By $ds^{2}=(1+|g|^{2})^{2}\omega\overline{\omega}$ we get $ 0rd_{0}ds^{2}=0rd_{0}\omega$ . On the other hand

$\omega=F_{1}dF_{3}-F_{3}dF_{1}$

$=z^{-1-m}(v+1)\{a_{12}b_{12}\xi_{2}\eta_{2}+a_{11}b_{11}\xi_{1}\eta_{1}z^{2m}+z^{m}(a_{12}b_{11}\xi_{1}\eta_{2}+a_{11}b_{12}\xi_{2}\eta_{1})$

$+\frac{z^{m+1}}{v+1}(\cdots)\}dz$ .

When $z\rightarrow 0$ , the value of $(\cdots)$ is finite, so we get $0rd_{0}\omega=-m-1$ , hence

$0rd_{0}ds^{2}=-m-1$ . (2.12)
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By hypothesis $0rd_{0}Q=0rd_{0}Q_{-1}\geq-2$ , when $q_{-2}=0,$ $m_{1},$ $m_{2}$ are integral
numbers, thus $0rd_{0}Q=-2$ . Note that

$0rd_{0}ds^{2}+0rd_{0}d\sigma^{2}=0rd_{0}Q=-2$ . (2. 13)

In conjunction with (2.12) and (2.13) we get $0rd_{0}d\sigma^{2}=m-1,$ $m>0$ . Thus
$-\int_{\Delta_{\epsilon}^{*}}kdA=-\int_{\Delta_{\epsilon}^{*}}d\sigma^{2}$ is finite.

Up to now we have proved that total curvature around all the ends is finite,

so ii) holds. Theorem 2.6 is proved. $\square $

3. 0sserman inequality

In this section we prove the main result

THEOREM 3.1. Let $f:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-l immersion, then
the Osserman inequality

$\frac{1}{2\pi}\int_{M^{2}}k_{-1}dA_{-1}\leq\chi(M^{2})-n$ , (3.1)

holds, where $n$ is the boundary number of the surface $f$

In order to prove Theorem 3.1, we need to establish a lemma as follows.

LEMMA 3.2. Let $ds_{-1}^{2}$ be offinite total curvature on $M^{2}$ . Then the inequality

$Ord_{p_{j}}d\sigma_{-1}^{2}>Ord_{p_{j}}Q_{-1}+1$ (3.2)

holds, where $p_{j}$ corresponding to an end of $f$

PROOF. We apply the following fact to prove the lemma.

FACT 2 [5, Lemma 3]. Let $ds_{-1}^{2}$ is of finite total curvature on $M^{2}$ . Then the
following inequality holds

$Ord_{p_{j}}d\sigma_{-1}^{2}>Ord_{p_{j}}Q+1$ .

Suppose that $0rd_{pj}d\sigma_{-1}^{2}\leq 0rd_{p_{j}}Q_{-1}+1$ . Since $0rd_{p_{j}}d\sigma_{-1}^{2}>-1$ , we have

$0rd_{p_{J}}Q_{-1}>-2$ .

Since we assume that $d\sigma_{-1}^{2}$ is of finite total curvature at $z=p_{j}$ , so is $ds^{2}$ by
Theorem 2.6. Thus we get a contradiction by the above fact 2. Lemma 3.2 is
proved. $\square $
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We have the following corollary

COROLLARY 3.3. $Ord_{p_{j}}ds_{-1}^{2}\leq-2$ .

PROOF OF THEOREM 3.1. If $ds_{-1}^{2}$ has infinite total curvature, the result is
obviously. If $ds_{-1}^{2}$ is of finite total curvature, by Corollary 3.3 and using the
method in [4], the Theorem 3.1 can be proved. $\square $

Now let $ds_{-1}^{2}$ be of finite total curvature, and the equality in (3.1) holds.
This means $0rd_{p_{j}}=-2$ at every end $p_{j},$

$(j=1,2, \ldots, n)$ . Because $0rd_{p_{j}}d\sigma_{-1}^{2}=$

$n-1\geq 0$ , and $0rd_{p_{j}}Q_{-1}=0rd_{p_{j}}d\sigma_{-1}^{2}+0rd_{p_{j}}ds_{-1}^{2}$ , then the inequality

$0rd_{p_{j}}Q_{-1}\geq-2$ , $j=1,2,$ $\ldots,n$

holds. By this fact and applying Theorem 2.6 we have that the total curvature of
$ds^{2}$ is finite. Then we obtain

COROLLARY 3.5 [5]. If the inverse metric $ds_{-1}^{2}$ is offinite total curvature, then
the equality in (3.1) holds if and only if all the ends of$f$ are regular and embedded.
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