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\S 1. Introduction

As it is well known, the Cauchy problem for a nonlinear strictly hyperbolic
system of first order

$\left\{\begin{array}{l}u_{l}=f(t,x,u,u_{X}),\\u(0,x)=u_{0}(x)\end{array}\right.$

is locally solvable in $C^{\infty}$ , or even in Sobolev spaces $H^{s}(R^{n})$ of order large
enough $(s>1+n/2)$ . More generally, this is true for any symmetrizable
pseudodifferential nonlinear system of first order, or higher order strictly
hyperbolic equation. These results include as a special case the higher order
hyperbolic equations.

Indeed, the corresponding linearized system

$u_{t}=g_{1}(t, x, v, v_{X})u_{x}+g2(t, x, v, v_{X})u+h(t, x, v, v_{X})$

satisfies an energy estimate of the form

$\Vert u(t, \cdot)\Vert_{s}\leq C(\Vert v(t, \cdot)\Vert_{s})[\Vert u_{0}\Vert_{s}+1]$ , $0\leq t\leq T$

( $\Vert\cdot\Vert_{s}$ denotes the $H^{s}(R^{n})$ norm). Using such estimates, the local existence for the
nonlinear system is essentially a consequence of the contraction mapping principle
(see [Di]). We should remark, however, that the local existence in Sobolev spaces
of lower order is a delicate problem. It is possible to improve the preceding result
slightly by using paradifferential tecniques, but if the Sobolev order $s$ is too small
the local existence does not hold in general, even for the simplest cases such as
the semilinear wave equation (see e.g. [L]).

On the other hand, the question of local existence for degenerate hyperbolic
equations or systems is much more difficult, and still largely open. In the fol-
lowing, we shall restrict ourselves to the second order equations of the form
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$u_{tt}=\sum_{ij}(a_{ij}(t, x)u_{xi})_{xj}+f(\iota, x, u, u_{x})$ . (1.1)

This equation is weakly hyperbolic if the form $\sum a_{i_{\dot{J}}}\xi_{j}\xi_{j}$ is nonnegative (for

simplicity we consider real valued functions). It is always possible to solve locally
this equation, or even the above general first order system, in Gevrey classes of
suitable order; for the most general results in this directions see [K]. But for the
local existence in $C^{\infty}$ , already in the linear case there are two main obstructions:

1) Lower order terms must be dominated in a suitable sense by the principal
part of the equation (so-called Levi conditions). For instance, the equation

$u_{tt}=u_{X}$

is not solvable in $C^{\infty}$ , but only in Gevrey classes of order less than 2.
2) The oscillations in time of the coefficients of the elliptic part can destroy

the solvability in $C^{\infty}$ . For instance, in [CS] an example is constmcted of the form

$u_{tt}=a(t)u_{XX}$

which is not locally solvable; the function $a(t)$ is $C^{\infty}$ , satisfies $a(O)=0,$ $a(t)>0$

for $t>0$ , and has an infinite number of oscillations as $t\rightarrow 0+$ .
Thus some additional assumptions are needed, taking into account the above

obstructions. One of the first results in this direction was proved by $0$ . Oleinik
$[0]$ , regarding the linear equation

$u_{tt}=\sum_{ij}(a_{ij}(t, x)u_{x_{j}})_{x_{j}}+\sum_{j}b_{j}(\iota, x)u_{x_{j}}+f(t, x)$ . (1.2)

Under the assumption

$\alpha(\sum b_{/}\xi_{j})^{2}\cdot t\leq A\sum_{ij}a_{ij}\xi_{l}\xi_{j}+\partial_{t}\sum_{ij}a_{ij}\xi_{i}\xi_{/}$ (1.3)

the Cauchy problem for (1.2) is solvable in $C^{\infty}$ . More precisely, an estimate of
the following form holds:

$\Vert u(t, \cdot)\Vert_{s}\leq M[\Vert u_{0}\Vert_{s+p+4}+\Vert u_{1}\Vert_{s+p+3}+\sup_{0\leq t\leq T}\sum_{j+k\leq s+p+2}\Vert\partial_{t}^{j}f(t, \cdot)\Vert_{k}]$ (1.4)

where $u_{0},$ $u_{1}$ are the initial data. Note that, in contrast with the strictly hyperbolic
case, there is a loss of derivatives, i.e., the solution is less regular than the data
and the right hand member $f$; oddly enough, the loss is connected to the size of
the coefficient $\alpha$ in (1.3), that is to say,
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$p>\frac{1}{2\alpha}-3$ . (1.5)

This is not an artificial consequence of the tecnique, but an actual phenomenon,
as shown by the explicit example of Qi Min-You [Q]

$u_{tt}-t^{2}u_{XX}=au_{x}$ , $u(O, x)=\mu(x)$ , $u_{t}(0, x)=0$

with $a=4n+1,$ $n\in N$ , whose solution is

$u(t, x)=\sum_{k=0}^{n}\frac{\sqrt{\pi}t^{2k}}{k!(n-k)!\Gamma(k+1/2)}\frac{\partial^{k}}{\partial x^{k}}\mu(x+t^{2}/2)$ .

This example shows that assumption (1.3) (with (1.5)) is in some sense close to
optimal.

The loss of derivatives makes it impossible to prove the local existence in the
nonlinear case (1.1) as simply as for the strictly hyperbolic equations. Indeed, one
cannot find a Banach space where to apply the contraction mapping principle.
However, it is possible to overcome this difficulty by resorting to the Nash-Moser
theorem. Thus we shall consider the Cauchy problem

$u_{tt}=\sum_{ij}(a_{ij}(t,x)u_{x_{i}})_{x_{J}}+f(t, x, u, u_{X})$
(1.6)

$u(O, x)=u_{0}(x)$ , $u_{t}(0, x)=u_{1}(x)$ (1.7)

under the assumptions

$ 0\leq\sum_{i,j=1}^{n}a_{ij}\xi_{j}\xi_{j}\leq\Lambda$ (1.8)

and

$\alpha(\sum_{i=1}^{n}f_{x_{i}}(t, x, y, p)\xi_{j})^{2}\cdot t\leq A\sum_{i_{7}j=1}^{n}a_{ij}(t, x)\xi_{i}\xi_{j}+\partial_{t}\sum_{i,j=1}^{n}a_{ij}(t, x)\xi_{l}\xi_{j}$ (1.9)

for some $A,$ $\alpha>0$ , for all $t,$ $x,$ $y,$ $p$ , and we shall prove:

THEOREM 1. Assume that (1.8), (1.9) hold and the coefficients in (1.6) are $C^{\infty}$

functions. Then, for any initial data $u_{0},$ $u_{1}\in C_{0}^{\infty}(R^{n})$ , Problem (1.6), (1.7) has a
unique (local) solution in $C^{\infty}([0, T_{0}], R^{n})$ .

REMARK 2. By similar techniques, it is possible to prove an analogous result
by replacing assumption (1.9) with
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$\alpha(T-t)(\sum_{i=1}^{n}f_{x_{i}}\xi_{i})^{2}\leq A\sum_{i,j=0}^{n}a_{ij}\xi_{j}\xi_{j}-\partial_{t}\sum_{i_{1}j=1}^{n}a_{ij}\xi_{i}\xi_{j}+(\alpha(T-t))^{-1}\sum_{i,j=1}a_{ij}\xi_{j}\xi_{j}$

(1.10)

(see Remark 2.3). Under this assumption we can prove the local unique solv-
ability near $t=T$ (and of course near any $t=t_{0}$ ).

REMARK 3. To our knowledge, the Nash-Moser theorem was applied in the
study of nonlinear non-strictly hyperbolic equations for the first time by Iwasaki
[I1], [I2], and later by Gourdin [G]. These results concem equations with constant
multiplicity. In [D], [DT] the Nash-Moser theorem was used to solve nonlinear
hyperbolic equations of second order with variable multiplicity. We finally recall
that a partial result in the direction of the present paper was proved in [DM].

REMARK 4. It should be noticed that if the elliptic part vanishes of infinite
order, then assumption (1.9) (resp. (1.10)) is no longer optimal. For more details,
see [RY], [T].

REMARK 5. Theorem 1 can be extended without difficulty to the more
general equations

$u_{tt}=\sum_{ij}(a_{ij}(t, x)u_{x_{i}})_{x_{j}}+f(t, x, u, u_{X}, u_{\iota})$

under the same assumptions.

\S 2. The linear theorem

The basic tools in the proof of Theorem 1 are Oleinik’s estimate for the
linear equation, and Nash-Moser theorem. For the convenience of the reader, in
this section we briefly recall the main indeas of Oleinik’s result $([0])$ , with minor
modifications in view of the application to the nonlinear case.

Thus we consider the Cauchy problem

$L(u)\equiv u_{tt}-\sum_{i,j=1}^{n}(a_{ij}(t, x)u_{X_{i}})_{X_{j}}+\sum_{i=1}^{n}b_{i}(t, x)u_{x_{j}}+b_{0}(t, x)u_{t}+c(t, x)u=f(t, x)$

(2.1)

$u(O, x)=\phi(x)$ , $u_{t}(0, x)=\psi(x)$ (2.2)
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and we assume that it is weakly hyperbolic, i.e.,

$ 0\leq\sum_{i,j=1}^{n}a_{ij}\xi_{i}\xi_{j}\leq\Lambda$ . (2.3)

Moreover, we shall assume that Oleinik’s condition is satisfied, namely that

$\alpha(\sum_{i=1}^{n}b_{l}\xi_{i})^{2}\cdot t\leq A\sum_{i,j=1}^{n}a_{ij}\xi_{i}x_{j}+\partial_{t}\sum_{i,j=1}^{n}a_{ij}\xi_{j}\xi_{j}$ . (2.4)

Then it is possible to prove the following a priori estimate (by $T^{n}$ we denote the
n-dimensional torus):

LEMMA 2.1. Assume the coefficients in (2.1) are $C^{\infty}$ , and satisfy (2.3), (2.4),

where $A>0,$ $\alpha>(2p+6)^{-1}$ for $0\leq t\leq t_{0},$ $t_{0}=const$ . $>0$ , while the constant $\alpha$

can be arbitrary for $t_{0}\leq t\leq T$ .
Then any $C^{\infty}$ solution $u(t, x)$ of (2.1), (2.2) on $[0, T]\times R^{n}$ (resp. $on$

$[0, T]\times T^{n})$ satisfies, for $0\leq t\leq T$ and any $k\geq 0$ , the estimate

$\sum_{j=0}^{k}\Vert\partial_{\iota}^{j}u(t, \cdot)\Vert_{k-j}\leq C_{p+3}[\Vert\phi\Vert_{k+p+4}+\Vert\psi\Vert_{k+p+3}$

$+\max_{0\leq\iota\leq T}\sum_{j=0}^{k+p-1}\Vert\partial_{t}^{j}f\Vert_{k+2p+4-j}+C_{p+k+3]}$ (2.5)

where $\Vert\cdot\Vert_{s}$ is the norm of $H^{s}(R^{n})$ (resp. $H^{s}(T^{n})$ ), while

$C_{r}=\mu(r)(1+\max_{t,x}\max_{|\alpha|\leq r}\max_{\sigma}|\partial_{t,x}^{\alpha}\sigma(t, x)|)$ ,

with $(t, x)$ varying on $[0, T]\times R^{n}$ (or $[0,$ $T]\times T^{n}$ ), and $\sigma$ varying among the

coefficients $a_{ij},$
$b_{i},$ $b_{0},$ $c$ ( $\mu(r)$ depends on $r$ only).

REMARK 2.2. Estimate (2.5) is slightly modified with respect to the original
Oleinik’s Lemma, in order to make more explicit the dependence on the
coefficients as $k$ increases.

Before sketching the proof of the Lemma, we notice two consequences of
it. First, (2.5) implies the global unique solvability in $C^{\infty}$ or in Sobolev spaces
$H^{s}(R^{n})$ or $H^{s}(T^{n})$ for (2.1), (2.2). This can be proved in several (standard) ways:
for instance, one can approximate (2.1) by a sequence of strictly hyperbolic
equations, e.g., replacing $a_{ij}$ by $a_{ij}+\epsilon\delta_{ij}$ ; notice that the modified coefficients
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satisfy assumption (2.4) with the same constants. These approximating equations
have global solution by the classical theory, and (2.5) holds uniformly for the
solutions; by a compactness argument, we obtain in the limit the unique solution
to (2.1), (2.2), provided the initial data belong to the suitable Sobolev spaces.
Second, the same kind of approximations implies that equation (2.1) has the
property of the finite speed of propagation, with speed $\sqrt{\Lambda}$ as in the strictly
hyperbolic case.

SKETCH OF THE $PR\infty F$ OF LEMMA 1.1. To fix the ideas, we shall work on $T^{n}$ ;
the case of $R^{n}$ is analogous.

Assume $\tilde{u}$ is a solution of (2.1), (2.2), and define

$v_{p}(t, x)=\phi(x)+t\psi(x)+\frac{t^{2}}{2!}\partial_{t}^{2}\tilde{u}(0, x)+\cdots+\frac{t^{p+2}}{(p+2)!}\partial_{t}^{p+2}\tilde{u}(0, x)$ ;

then the function $u=\tilde{u}-v_{p}$ satifies the equation

$L(u)=f-L(v_{p})\equiv \mathscr{F}(t, x)$ . (2.6)

Let
$ w=\int_{\iota^{\tau}}u(\sigma, x)d\sigma$ .

Multiply (2.6) by $we^{\theta t}$ , where $\theta>0$ is a constant, and integrate over the domain

$G_{\tau}=[0, \tau]\times T^{n}$

Suppose $0\leq t\leq t_{0}$ . We transform the individual terms of the equality so
obtained: we have

$\int_{G_{\tau}}u_{tt}we^{\theta\iota}=\frac{1}{2}u(\tau, x)^{2}e^{\theta\tau}+\int_{G_{\tau}}u(\theta^{2}w-\frac{3}{2}u)e^{\theta t}$ ,

$\int_{G_{\tau}}(a_{ij}u_{X_{j}})_{x_{j}}we^{\theta t}=-\frac{1}{2}\int_{G\tau}(\theta a_{ij}+\partial_{t}a_{ij})w_{x_{i}}w_{x_{j}}e^{\theta t}-\frac{1}{2}\int a_{ij}w_{x_{j}}(0, x)w_{x_{/}}.(0, x)dx$ ,

$\int_{G_{\tau}}b_{0}u_{t}we^{\theta t}=\int_{G_{\tau}}(u^{2}b_{0}-uwb_{0}, -uw\theta b_{0})e^{\theta t}$

$\int_{G\tau}b_{i}u_{x_{j}}we^{\theta t}=-\int_{G_{\tau}}b_{i_{X}i}uwe^{\theta t}-\int_{G_{\tau}}b_{j}w_{X_{i}}ue^{\theta\iota}$ .

In particular, the last inequality implies

$|\int_{G_{\tau}}b_{j}u_{X_{i}}we^{\theta t1}\leq M_{2}\tau^{2}\int_{G_{\tau}}u^{2}t^{-1}e^{\theta t}+\frac{1}{2}\alpha\int_{G_{\tau}}tb_{i}^{2}w_{X}^{2_{i}}e^{\theta\iota}+\frac{1}{2\alpha}\int_{G_{\tau}}u^{2}t^{-1}e^{\theta\iota}$ .
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As to the last term, it is easy to see that

$\int\int \mathscr{F}we^{\theta t}dtdx=(-1)^{p+1}\int\int\partial_{t}^{p+1}\mathscr{F}W_{p+1}dxdt$ , (2.7)

with

$W_{0}=we^{\theta t}$ , $ W_{v+1}=\int_{t}^{\tau}W_{v}(\sigma, x)d\sigma$ , $v=0,1,$ $\ldots$ , $p$ ,

and that

$|W_{p+1}|^{2}\leq\tau^{2p+3}e^{2\theta T}\int_{0^{\tau}}u^{2}(\sigma, x)d\sigma$ ,

$\int\int \mathscr{F}we^{\theta t}dtdx|\leq\delta\int\int u^{2}t^{-1}e^{\theta t}dxdt$ (2.8)

$+\frac{e^{2\theta T_{T}2p+6}}{4\delta}\max 0\leq\sigma\leq t_{0}\int|\partial_{l}^{p+1}\mathscr{F}(\sigma, x)|^{2}dx$ ,

where $\delta$ is any constant such that $\alpha^{-1}+2\delta<2p+6$ . Using the estimates (2.7)

and (2.8) and the above identities, we deduce from (2.6), provided $\theta\geq A$ , that,
for $\tau\leq t_{0}$ ,

$\tau y^{\prime}(\tau)\leq(\alpha^{-1}+2\delta)y(\tau)+M_{1}\tau y(\tau)+M_{2}\tau^{2p+6_{0}}\max_{\leq\sigma\leq t_{0}}\int|\partial_{t}^{p+1}\mathscr{F}(\sigma, x)|^{2}dx$ , (2.9)

where

$y(\tau)=\int_{G_{\tau}}u^{2}t^{-1}e^{\theta t}dxdt$

and $M_{1},$ $M_{2}$ are constants depending on one derivative of the coefficients. Now
we need the following generalized form of Gronwall’s lemma:

LEMMA 2. Assume that $y\in C^{1}([0, T])$ satisfies

$y^{\prime}(\tau)\leq\frac{a}{\tau}y(\tau)+by(\tau)+f(\tau)$ (2.10)

for some $a,$ $b\in R,$ $f\in L^{\infty}([0, T])$ . Suppose that

(1) $\frac{y(\epsilon)}{\epsilon^{a}}\rightarrow 0$ for $\epsilon\rightarrow 0$

(2) $|f(s)|\leq cs^{a-1+\delta}$ for some $c,\delta>0$ .
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Then

$y(\tau)\leq\tau^{a}\int_{0^{\tau}}e^{b(\tau-s)}f(s)s^{-a}ds$ . (2.11)

PROOF. If we multiply (2.10) by the function

$g(\tau)=e^{-\int_{\epsilon}^{\tau}(a/s+b)ds}\equiv(\frac{\epsilon}{\tau})^{a}e^{-b(\tau-\epsilon)}$

we easily obtain

$[g(\tau)y]^{\prime}\leq g(\tau)f(\tau)$ .

We integrate from $\epsilon$ to $\tau$ , to obtain

$g(\tau)y(\tau)\leq g(\epsilon)y(\epsilon)+\int_{\epsilon^{\tau}}g(s)f(s)ds$

and hence

$y(\tau)\leq\frac{g(\epsilon)}{g(\epsilon)}y(\epsilon)+\int_{\epsilon^{\tau}}\frac{g(s)}{g(\tau)}f(s)ds$

which can be written $(g(\epsilon)=1)$

$y(\tau)\leq\tau^{a}e^{b(\tau-\epsilon)}\frac{y(\epsilon)}{\epsilon^{a}}+\tau^{a}\int_{\epsilon}^{\tau}\frac{f(s)}{s^{a}}e^{b(\tau-s)}ds$ , $0\leq\tau\leq T$ .

Letting $\epsilon\rightarrow 0$ , we obtain the thesis.
Applying Lemma 2 to (2.9) we get immediately

$ y(\tau)\leq\tau^{\alpha^{- 1}+2\delta}C\int_{0^{\tau}}s^{2p+6-1-\alpha^{- 1}-2\delta}ds\cdot\max_{0\leq\sigma\leq t_{0}}\int|\partial_{t}^{p+1}\mathscr{F}(\sigma, x)|^{2}dxd\tau$

$+C\tau^{2p+6_{0}}\max_{\leq\sigma\leq t_{0}}\int|\partial_{t}^{p+1}\mathscr{F}(\sigma, x)|^{2}dx$

and therefore

$\Vert u(t, \cdot)\Vert_{L^{2}}^{2}\leq C\tau^{2p+6_{0}}\max_{\leq\sigma\leq t_{0}}\int|\partial_{t}^{p+1}\mathscr{F}(\sigma, x)|^{2}dx$

which implies the thesis for $k=0$ , and $0\leq t\leq t_{0}$ . The proof for $t\geq t_{0}$ is similar,
only easier (the assumption (2.4) is stronger).

The higher order derivatives $D_{X}^{\alpha}u$ can be estimated in a similar way, by
differentiating the equation and proceeding inductively. We skip the computa-
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tions, which are similar to the above ones; the only subtle point is that the terms

$\sum\int_{G_{\tau}}\partial_{X_{r}}a_{ij}D^{\gamma-e_{r}}u_{x_{j}}D^{\gamma}we^{\theta t}$

(here $e_{r}$ is the multiindex with 1 in place $r$ and $0$ elsewhere) must be estimated by
the following Oleinik’s lemma (see $[0]$ ): for any $v\in C^{2}(R^{n}),$ $r=1,$ $\ldots,$

$n$ ,

$(\sum_{ij}(\partial_{x_{r}}a_{ij})v_{x_{j}x_{J}})^{2}\leq M\sum_{ijk}a_{ij}v_{x_{k^{X}i}}v_{x_{k}x_{j}}$

with $M$ depending on the supremum of the second derivatives of the $a_{ij}$ .
Finally, by differentiating the equation also with respect to time, it is easy to

conclude the proof.

REMARK 2.4. An analogous result holds when assumption (1.3) is replaced
with

$\alpha(T-t)(\sum_{i=1}^{n}b_{i}\xi_{i})^{2}\leq A\sum_{i,j=1}^{n}a_{ij}\xi_{i}\xi_{j}-\partial_{l}\sum_{i,j=1}^{n}a_{ij}\xi_{j}\xi_{j}+(\alpha(T-\iota))^{-1}\sum_{i,j=1}^{n}a_{ij}\xi_{j}\xi_{j}$

(2.11)

where $A>0$ , while $\alpha>(2p+1)^{-1}$ if $t_{1}\leq t\leq T,$ $t_{1}=const<T$ , and $\alpha>0$

arbitrary for $0\leq t\leq t_{1}$ . In this case the following a priori estimate holds for a
solution to (2.1), (2.2):

$\int_{0^{t}}\sum_{j=0}^{k}\Vert\partial_{t}^{j}u(\sigma, \cdot)\Vert_{H^{k- j}}^{2}d\sigma\leq C[\Vert\phi\Vert_{H^{k+p+1}}^{2}+\Vert\psi\Vert_{H^{k+p}}^{2}+\sum_{j=0}^{k+p}\int_{0^{t}}\Vert\partial_{t}^{j}f(\sigma, \cdot)\Vert_{H^{k+p- j}}^{2}d\sigma]$ .

(2.12)

\S 3. Proof of the main theorem

We can now conclude the proof of Theorem 1. The essential definitions and
results of the Nash-Moser theory are given in the Appendix at the end of the
paper; in particular we refer to it for the notions of tame space, tame map,
smooth tame map, and the statement of the Nash-Moser theorem in the form we
shall use here.

We shall perform the proof on $T^{n}$ , since we need to work on a compact
manifold; the proof on $R^{n}$ follows without difficulty from this one by a standard
localization argument (indeed, as we observed in Section 2, equation (2.1) enjoys
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the finite speed of propagation property). Let $F$ be the Fr\’echet space
$C^{\infty}([0,1]\times T^{n})$ endowed with the grading

$|u(t, x)|_{m}=\sup_{0\leq l\leq 1}\sum_{j=0}^{m}\Vert\partial_{t}^{j}u(t, \cdot)\Vert_{H^{m-j}(T^{n})}$ .

With this grading $F$ is a tame space. We consider the nonlinear application
$P:F\rightarrow F$ defined as

$(Pu)(t, x)=u(t,x)-u_{0}(x)-tu_{1}(x)-\int_{0^{t}}(t-s)\sum_{i,j=1}^{n}(a_{ij}(s)u_{x_{l}}(s, x))_{x_{j}}ds$

$-\int_{0^{t}}(t-s)f(s, x, u(s, x), u_{x}(s, x))ds$ .

Proving the local existence for the problem (1.6), (1.7) is equivalent to showing
that the image of $P$ contains a function which vanishes for $ 0\leq t\leq\epsilon$ , for some
$\epsilon>0$ . To this end we shall apply the Nash-Moser theorem.

$P$ is a smooth tame map because it is a composition of linear and nonlinear
differential operators, and of integrations (see the remarks in Section 3). Its
Fr\’echet derivative $DP$ can be computed explicitly as follows: for all $u,$ $h\in F$

$DP(u)h=h(t, x)-\int_{0^{t}}(t-s)A(s)h(s, x)ds$

$-\int_{0^{l}}(\iota-s)[f_{u}(s, x, u, u_{X})h(s, x)+\sum_{i=1}^{n}f_{u_{x_{j}}}(s, x, u, u_{x})h_{x_{j}}(s, x)]ds$ ;

where we write for brevity

$A(s)v=\sum_{i,j=1}^{n}(a_{ij}(s,x)\partial_{x_{i}}v)_{x_{j}}$ .

We now verify the basic assumption of Nash-Moser theorem, i.e., that the
equation

$DP(u)h=k$

can be solved in $h$ for any $u,$ $k\in F$ , and the solution is a smooth tame map of
$u,$

$k$ . This equation is equivalent to the Cauchy problem

$h_{tt}=A(t)h+\sum_{i=1}^{n}f_{u_{X}}i(u, u_{x})h_{x_{j}}+f_{u}(u, u_{X})h+k_{tt}$

$h(O, x)=k(0, x)$ , $h_{t}(0,x)=k_{t}(0, x)$ ;
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notice that this problem has a global smooth solution, thanks to Oleinik’s result
(see Lemma 2.1 and Remark 2.2).

The nth-order Fr\’echet derivative of $VP$ can be expressed as follows: the
function

$h^{(n)}=D^{n}VP(u)\{k_{1}, \ldots, k_{n+1}\}$

(a nonlinear function of $u$ and a $(n+1)$ -multilinear function of $k_{1},$
$\ldots,$

$k_{n+1}$ ), is
the solution of the Cauchy problem

$h_{tt}^{(n)}=A(t)h^{(n)}+\sum_{i=1}^{n}f_{u_{X}}i(t, x, u, u_{X})h_{x_{i}}^{(n)}+f_{u}(t, x, u, u_{x})h^{(n)}$

$+F_{n}(t, x, u, u_{x})\{k_{1}, \ldots, k_{n+1}\}$

$h^{(n)}(0, x)=h_{t}^{(n)}(0, x)=0$

where the map $F_{n}$ , nonlinear in $u,$ $u_{x}$ and linear in $k_{1},$
$\ldots,$

$k_{n+1}$ , is defined
recursively as follows:

$F_{n}(t, x, u, u_{x})\{k_{1}, \ldots, k_{n+1}\}$

$=\sum_{i}[k_{n+1}f_{uu_{x_{i}}}+\sum_{j}\partial_{x_{J}}k_{n+1}f_{u_{x_{j}}u_{x_{i}}}]\partial_{x_{j}}D^{n-1}VP(u)\{k_{1}, \ldots,k_{n}\}$

$+[k_{n+1}f_{uu}+\sum_{j}\partial_{x_{j}}k_{n+1}f_{uu_{x_{j}}}]D^{n-1}VP(u)\{k_{1}, \ldots, k_{n}\}$

$+k_{n+1}\partial_{u}F_{n-1}\{k_{1}, \ldots, k_{n}\}+\sum_{i}\partial_{x_{i}}k_{n+1}\partial_{u_{x_{j}}}F_{n-1}\{k_{1}, \ldots, k_{n}\}$

$(D^{0}VP\equiv VP, F_{0}\{k\}\equiv k_{\iota\iota})$ and hence can be easily expressed as a linear
combination of derivatives of $D^{j}VP$ for $j=0,$

$\ldots,$
$n-1$ .

We must show that $D^{n}VP$ is tame for all $n$ ; this can be easily obtained by a
repeated application of the following Lemma.

LEMMA 3.1. For any $u,$ $\phi\in F$ , denote by $ h=T_{0}(u)\phi$ the solution of the
Cauchy problem

$ h_{tt}=A(t)h+\sum_{i=1}^{n}f_{u_{x_{j}}}(t, x, u, u_{x})h_{x_{j}}+f_{u}(t, x, u, u_{x})h+\phi$

$h(O, x)=h_{t}(0, x)=0$
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and by $\tilde{h}=T(u)\phi$ the solution of

$\tilde{h}_{tt}=A(t)\tilde{h}+\sum_{i=1}^{n}f_{u_{X}}i(t, x, u, u_{x})\tilde{h}_{x_{j}}+f_{u}(t, x, u, u_{x})\tilde{h}+\phi_{tt}$

$\tilde{h}(0, x)=\phi(O,x)$ , $\tilde{h}_{t}(0, x)=\phi_{t}(0, x)$ .

Then the mappings $T,$ $T_{0}$ : $F\times F\rightarrow F$ are well defined and tame.

PROOF. $T_{0}$ and $T$ are well defined by Oleinik’s result. To prove that $T$ is
tame we have to find some $r,$ $b\in N$ such that the following estimate holds for any
$u,$ $\phi\in F$ and for any $m\geq b$

$|T(u)\phi|_{m}\leq c_{m}(1+|(u, \phi)|_{m+r})$

$(|(u, \phi)|_{m}=|u|_{m}+|\phi|_{m}$ is the grading on $F\times F$ ). By estimate (2.5), using the
Gagliardo-Nirenberg inequalities and the Sobolev embedding, we easily obtain

$|T(u)\phi|_{m}=|\tilde{h}|_{m}=\sup_{0\leq l\leq 1}\sum_{j=0}^{m}\Vert\partial_{t}^{j}\tilde{h}(t, \cdot)\Vert_{m-j}$

$\leq C(|u|_{N})[\Vert\phi(0, \cdot)\Vert_{m+p+4}+\Vert\phi_{t}(0, \cdot)\Vert_{m+p+3}$

$+\max_{0\leq t\leq 1}\sum_{j=0}^{k+p-\mathfrak{l}}\Vert\partial_{t}^{j}\phi_{tt}\Vert_{m+2p+4-j}+|u|_{m+N}]$

for some $N$ independent of $m$ . If $u$ varies in an arbitrary set, bounded for the . $|_{N}$

norm, this implies

$|T(u)\phi|_{m}\leq c_{m}(1+|(u, \phi)|_{m+r})$ , $m\geq N$

with $r=\max\{N, 2p+6\}$ . The proof that $T_{0}$ is smooth tame is analogous.

We remark now that the map $VP$ coincides with $T$, while the derivatives
$D^{j}VP$ can be obtained by repeated compositions of $T_{0},$ $T$ , according to the
recursive expression given above, and hence are tame, being composition of tame
maps. This proves that $VP$ is smooth tame.

We can thus apply the Nash-Moser Theorem, and we obtain that $P:F\rightarrow F$

is locally invertible.
We shall now construct a function $w\in F$ with the property

$\partial_{l}^{j}Pw(t, x)|_{t=0}=0$ $\forall j\in N$ . (3.1)
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Indeed, it is clear that (4.1) is equivalent to an infinite set of conditions on
$g_{j}(x)=\partial_{t}^{j}w(O, x)$ : for $j=0,1$ we obtain $go=u_{0},$ $gl=u_{1}$ , and for $j\geq 2$

$g_{j}(x)=\partial_{t}^{j-2}[A(t)w+f(t, x, w, w_{X})]_{t=0}$ .

Hence it is sufficient to construct a function $w(t, x)$ with the assigned traces $g_{j}$ at
$t=0$ , which is standard (see e.g. [H\"o, Th.1.2.6]).

We know that $P$ is a bijection of a neighbourhood $U$ of $w$ , satisfying (3.1),

onto a neighbourhood $V$ of $Pw$ . By the definition of the topology of $F$, possibly
restricting $V$ we can assume that it is a . $|_{k}$ -neighbourhood of $Pw$ , for some $k$ .
Now, let $\rho(s)$ be a $C^{\infty}$ function on $R$ such that $0\leq\rho\leq 1,$ $\rho\equiv 0$ for $s\leq 1,$ $\rho\equiv 1$

for $s\geq 2$ , and define

$\phi_{\epsilon}(t,x)=\int_{0^{t}}(t-s)^{k}\rho(\frac{s}{\epsilon})\partial_{l}^{k+1}(Pw(s, x))ds$ .

The function $\phi_{\epsilon}$ vanishes for $ 0\leq t\leq\epsilon$ . Moreover,

$Pw-\phi_{\epsilon}=\int_{0^{t}}(t-s)^{k}(1-p(\frac{s}{\epsilon}))\partial_{t}^{k+1}(Pw(s, x))ds$

(we use here the elementary identity $v(t, x)\equiv\int_{0^{l}}(t-s)^{k}\partial_{t}^{k+1}v(s, x)ds$ , valid for
any function $v$ such that $\partial_{l}^{j}v(0, x)=0$ for $0\leq j\leq k$). This implies easily, for any
$h\leq k$ and any $\alpha$ , the inequalities

$|\partial_{x}^{\alpha}\partial_{t}^{h}(Pw-\phi_{\epsilon})|\leq c_{\alpha,h}(a, u_{0}, u_{1},f)\epsilon$ . (3.2)

If $\epsilon$ is small enough, (3.2) implies that $\phi_{\epsilon}\in V$ , hence $u=P^{-1}\phi_{\epsilon}$ is the required
solution.

Uniqueness follows from estimate (2.5) by standard linearization arguments.

REMARK 3.2. As stated in the Introduction, an analogous result can be
proved by similar techniques using estimate (2.12) instead of (2.5).

Appendix: The Nash-Moser theorem

We give here a short account of the Nash-Moser theory. We refer to
Hamilton’s paper [H] for a detailed discussion of the definitions and for the proof
of the results cited in this section.

A graded (Fr\’echet) space is a Fr\’echet space whose topology is generated by a
grading, i.e. an increasing sequence of seminorms . $|_{n},$ $|f|_{n}\leq|f|_{n+1}$ for all $f\in F$

and $n=0,1,2,$ $\ldots$ . A linear map $L$ : $F\rightarrow G$ of one graded space into another is a
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tame linear map if for some $r,$ $b\in N$ the following estimate holds:

$|Lf|_{n}\leq C_{n}|f|_{n+r}$ , $f\in F,$ $n\geq b$ (A. 1)

where the constant $C_{n}$ depends only on $n$ . The number $b$ is called the base and $r$

the degree of the tame estimate (A. 1).

Thus a tame map is a map of “finite order” in the sense of the gradings (as
in the preceding definition, we shall not use different notations for the gradings of
different graded spaces, as far as there is no risk of misunderstanding). Note that,
in particular, tameness implies continuity.

To introduce the notion of tame space, we must define first the space of
exponentially decreasing sequences $\Sigma(B)$ on a Banach space $B$ . This is the graded
space of all sequences of vectors in $B$ , such that, for $n\geq 0$ ,

$|\{v_{k}\}|_{n}\equiv\sum_{k=0}^{\infty}e^{nk}\Vert v_{k}\Vert_{B}<\infty$ (A.2)

endowed with the grading . $|_{n}$ defined in (A.2).

DEFINITION A.1. A graded space $F$ is tame if, for some Banach space $B$,
there exist two tame linear maps $L_{1}$ : $F\rightarrow\Sigma(B)$ and $L_{2}$ ; $\Sigma(B)\rightarrow F$ such that
$L_{2}L_{1}$ is the identity on $F$.

The tameness property is stable under usual operations (direct sum, product
etc.).

The most important examples of tame spaces are the spaces of $C^{\infty}$ functions
on manifolds:

PROPOSITION A.2. Let $X$ be a smooth compact manifold, with or without
boundary. Then $C^{\infty}(X)$ , equipped with one of the gradings

$|f|_{n}=\sup_{|\alpha|\leq n}\sup_{x\in X}|D^{\alpha}f(x)|$

$or$

$|f|_{n}^{2}=\sum_{|\alpha|\leq n}\Vert D^{\alpha}f(x)\Vert_{L^{2}(X)}^{2}$
(A.3)

is a tame space.

PROOF. See [$H$ , pp. 137-8]. The definition of tameness for nonlinear maps is
slightly more involved than for the linear ones.
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DEFINITION A.3. Let $P:U\subseteq F\rightarrow G$ be a nonlinear map from a subset $U$ of
the graded space $F$ to the graded space G. $P$ satisfies a tame estimate of degree $r$

and base $b$ if, for any $f\in U,$ $n\geq b$ ,

$|P(f)|_{n}\leq C_{n}(1+|f|_{n+r})$ (A.4)

for some constant $C_{n}$ depending only on $n$ . A map $P$ defined on a open set is said
to be tame if it satisfies a tame estimate in the neighbourhood of each point (with

constants $r,$
$b$ and $C_{n}$ which may depend on the neighbourhood).

We remark that a linear map is tame if and only if it is a tame linear map;
moreover, the composition of tame maps is tame ( $[H$ , pp. 141-2]).

DEFINITION A.4. Let $F,$ $G$ be graded spaces, $U$ an open subset of $F$. A map
$P:U\rightarrow G$ is smooth tame if it is $C^{\infty}$ and and $D^{n}P$ is tame for all $n\geq 0$ .

We remark that sums and compositions of smooth tame maps are smooth
tame. Moreover, nonlinear partial differential operators on $C^{\infty}(X)$ are smooth
tame maps, $X$ smooth manifold with or without boundary.

Finally, the following theorem is the fundamental result of the Nash-Moser
theory:

THEOREM A.5 [Nash-Moser]. Let $F,$ $G$ be tame spaces, $U$ an open subset of
$F,$ $P:U\rightarrow G$ a smooth tame map. Assume that the equation $DP(u)h=k$ has a
unique solution $h\equiv VP(u)k$ for all $u\in U,$ $u\in G$ , and that $VP:U\times G\rightarrow F$ thus
defined is smooth tame. Then $P$ is locally invertible, and each local inverse is
smooth tame.
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