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Abstract. We will show the existence of a duality on CMC-l
surfaces in hyperbolic 3-space, and we will show an analogue of the
0sserman Inequality in terms of dual surfaces. Moreover, we will
show that equality holds (in this analogue) if and only if all the
ends of the surface are regular and embedded.

Introduction

The total curvature of a complete immersed minimal surface $x:M^{2}\rightarrow R^{3}$

of finite total curvature satisfies the 0sserman Inequality ([3]):

$\frac{1}{2\pi}\int_{M^{2}}KdA\leq(\chi(M^{2})-n)$ ,

where $K$ is the Gaussian curvature of the surface and $n$ is the number of ends.
Furthermore, equality holds if and only if all of the ends of the surface are
embedded ([2]).

CMC-l surfaces (i.e. surfaces of constant mean curvature 1) in hyperbolic
3-space $H^{3}(-1)$ of constant curvature $-1$ have quite similar properties to
minimal surfaces in $R^{3}$ . In fact, Bryant established an analogue of the
Weierstrass representation formula for the case of CMC-l surfaces in $H^{3}(-1)$ .
However, for the total curvature of these CMC-l surfaces, an analogue of the
0sserman Inequality does not hold directly. In a previous paper [6], the authors
showed that complete immersed CMC-l surfaces in $H^{3}(-1)$ only satisfy the
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Cohn-Vossen Inequality

$\frac{1}{2\pi}\int_{M^{2}}KdA<\chi(M^{2})$ ,

and equality never holds in this inequality. Such a difference mainly comes from
the fact that the total curvature of CMC-l surfaces in $H^{3}(-1)$ is not necessarily
an integral multiple of $ 4\pi$ .

We will show the existence of a duality on CMC-l surfaces and an
analogue of the 0sserman Inequality in terms of dual surfaces: Let $M^{2}$ be
a Riemann surface and $x:M^{2}\rightarrow H^{3}(-1)$ a complete conformal CMC-l
immersion of finite total curvature. Then its dual CMC-l immersion
$x\#:\tilde{M}^{2}\rightarrow H^{3}(-1)$ , defined on the universal cover $\tilde{M}^{2}$ of $M^{2}$ , is obtained by
exchanging the hyperbolic Gauss map and the secondary Gauss map of the
original CMC-l immersion $x$ . Though the dual CMC-l immersion $ x\#$ may not
be single-valued on $M^{2}$ , its first fundamental form $ds\# 2$ is defined on $M^{2}$ itself.
Moreover, its total curvature on $M^{2}$ is an integral multiple of $ 4\pi$ . In this paper,
we show the following

THEOREM. Let $M^{2}$ be a Riemann surface and $x:M^{2}\rightarrow H^{3}(-1)$ a complete
conformal CMC-l immersion of finite total curvature. Then the following
inequality holds: ( $ dA\#$ is the volume element of the dual surface $x\#.$ )

(1) $\frac{1}{2\pi}\int_{M^{2}}K^{\#}dA\#\leq(\chi(M^{2})-n)$ ,

where $ K\#$ is the Gaussian curvature of the dual surface $ x\#$ and $n$ is the number of
ends of the original CMC-l surface $x$ . Equality holds if and only if all the ends of
$x$ are regular and embedded.

Other useful applications of the duality will be found in a forthcoming
paper [4]. The authors thank Wayne Rossman for informative conversations.

Preliminaries

Let $M^{2}$ be a Riemann surface and $x:M^{2}\rightarrow H^{3}(-1)$ a complete conformal
CMC-l immersion of finite total curvature. Then, there is a null holomorphic
immersion $F:\tilde{M}^{2}\rightarrow PSL(2, C)$ defined on the universal cover $\tilde{M}^{2}$ of $M^{2}$ such
that $x=FF^{*}$ . (Such an $F$ is uniquely determined up to the ambiguity $Fb$ for
$b\in SU(2).)$ Here we use the identification (See [1,6])

$H^{3}(-1)=\{X\in Herm(2);\det(X)=1, trace(X)>0\}$ .
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We define a meromorphic function $G$ by

(2) $G=\frac{dF_{11}}{dF_{21}}=\frac{dF_{12}}{dF_{22}}$ ,

where $F=(F_{ij})_{i,j=1,2}$ . Then $G$ is single-valued on $M^{2}$ ; that is, $G$ can be con-
sidered to be a meromorphic function on $M^{2}$ . The function $G$ is called the
hyperbolic Gauss map of $x$ . ([1])

Since $x$ induces a non-positively curved complete metric $ds^{2}$ of finite total
curvature, there is a compact Riemann surface $\overline{M}^{2}$ and a finite number of points
$\{p1\cdots,p_{n}\}\in\overline{M}^{2}$ such that $M^{2}=\overline{M}^{2}\backslash \{p1\cdots,p_{n}\}$ . The hyperbolic Gauss map
$G$ does not necessarily extend meromorphically on $\overline{M}^{2}$ . The end $p_{j}$ is called a
regular end if $p_{j}$ is at most a pole of $G$ . If $p_{j}$ is not regular, it is called an
irregular end. We can set

(3) $ F^{-1}dF=\left(\begin{array}{ll}g & -g^{2}\\1 & -g\end{array}\right)\omega$ ,

where $g$ is a meromorphic function defined on $\tilde{M}^{2}$ , and $\omega$ is a holomorphic 1-
form defined on $\tilde{M}^{2}$ . We call the pair $(g, \omega)$ the Weierstrass data of the CMC-l
immersion $x$ . $g$ is called the secondary Gauss map of $x$ . ( $g$ also has $SU(2)-$

ambiguity with respect to the choice of $Fb(b\in SU(2)).)$ In terms of the
Weierstrass data $(g, \omega)$ , the first fundamental form $dd$ and the second funda-
mental form $\Phi$ are written as

(4) $ds^{2}=(1+|g|^{2})^{2}\omega\cdot\overline{\omega}$ , $\Phi=-\omega\cdot dg-\overline{\omega\cdot dg}+ds^{2}$ ,

where ‘ means the symmetric product. The holomorphic quadratic differential
$Q=\omega\cdot dg$ is called the Hopf differential of $x$ . By (4), $Q$ is single-valued on $M^{2}$ .
Moreover, $Q$ can be meromorphically extended on the compactification $\overline{M}^{2}$ of
$M^{2}$ ([1]). The hyperbolic Gauss map $G$, the secondary Gauss map $g$ and the Hopf
differential $Q$ satisfy the following identity ([6, 7]):

(5) $S(g)-S(G)=2Q$ ,

where $S(g)=S_{z}(g)dz^{2}$ and $S_{z}(g)$ is the Schwarzian derivative of $g$ . The
Schwarzian derivative is defined as

$S_{Z}(g)=(\frac{g^{\prime\prime}}{g})^{\prime}-\frac{1}{2}(\frac{g^{J/}}{g^{\prime}})^{2}$ $(^{\prime}=d/dz)$ .

Using this relation (5), the following lemma is obtained. (cf. [6; Lemma
2.3])
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LEMMA 1 ([1; Prop.6]). The end $p_{j}$ is regular $lf$ and only if the order of $Q$ at
$p_{j}$ is greater than or equal to $-2$ .

Now we set $do^{2}=(-K)ds^{2}$ , where $K$ is the Gaussian curvature of $ds^{2}$ . Then
$d\sigma^{2}$ is a pseudometric of constant curvature 1. (See [1] or [7].) It follows from
(4) that

(6) $do^{2}=\frac{4dg\cdot d\overline{g}}{(1+|g|^{2})^{2}}$ .

Hence $d\sigma^{2}$ is the pull back of the canonical Riemannian metric $d\sigma_{0}^{2}$ on the unit 2-
sphere induced by $g:M^{2}\rightarrow C\cup\{\infty\}\cong S^{2}(1)$ . By (4) and (6) we have

(7) $ds^{2}\cdot do^{2}=4Q\cdot\overline{Q}$ .

DEFINITION ([5]). A conformal pseudometric $do^{2}$ on a Riemann surface $\overline{M}^{2}$

has a finite singularity of order $\beta(\beta\in R)$ at a point $p\in\overline{M}^{2}$ if $d\sigma^{2}$ has a local
expression $d\sigma^{2}=e^{2\omega}dz\cdot\overline{dz}$ around $p$ such that $\omega-\beta\log|z-z(p)|$ is continuous
at $p$ . We denote the value $\beta$ by $0rd_{p}(d\sigma^{2})$ . When $\beta>-1$ , we say that $do^{2}$ has a
conical singularity at the point $p$ .

Using this terminology, $do^{2}$ has a conical singularity at each end. ([1;
Prop.4])

For a meromorphic function $f$ on $\overline{M}^{2}$ , we denote by $b_{f}(p)$ the branching
number of $f$ at $p\in\overline{M}^{2}$ . We set $d\sigma_{f}^{2}=4df\cdot d\overline{f}/(1+|f|^{2})^{2}$ . Then one can easily
check that $b_{f}(p)=0rd_{p}(d\sigma_{f}^{2})$ . We denote by $0rd_{p}(Q)$ the order of the first non-
vanishing term of the Laurent expansion of the Hopf differential $Q$ at $p\in M^{2}$ .
We prepare some lemmas.

LEMMA 2 ([1; p346]). Let $p\in\overline{M}^{2}$ be a point such that $0rd_{p}(Q)\geq-2$ .
Suppose that the Hopf differential $Q$ has the Laurent expansion
$Q(z)=(q_{-2}/(z-p)^{2}+\cdots)dz^{2}$ . Then the following identity holds:

(8) $(b_{G}(p)+1)^{2}-(0rd_{p}(d\sigma^{2})+1)^{2}=4q_{-2}$ .

PROOF. By Proposition 4 in [1], there exists a coordinate $z$ around $p$ such
that the secondary Gauss map $g$ is of the form

$g=z^{\mu}$ $(\mu>0, \mu\in R)$ .
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On the other hand, $G$ has the following expansion:

$G(z)$ or $1/G(z)=G(p)+(z-p)^{l}(G_{0}+G_{1}(z-p)+\cdots)$ $(l>0, l\in Z, G_{0}\neq 0)$ .

So we have

$ S_{Z}(G)=\frac{1}{2}(1-l^{2})\frac{1}{(z-p)^{2}}+\cdots$ ,

$ S_{Z}(g)=\frac{1}{2}(1-\mu^{2})\frac{1}{(z-p)^{2}}+\cdots$ .

By (5), we get the identity $\ell^{2}-\mu^{2}=4q_{-2}$ . By (6), we have that
$0rd_{p}(d\sigma^{2})=\mu-1$ . Since $b_{G}(p)=l-1$ , this proves the lemma.

LEMMA 3. Suppose that $p_{j}$ is a regular end of $x$ . Then the following
inequality holds:

(9) $b_{G}(p_{j})-0rd_{p_{j}}(Q)\geq 2$ .

Equality holds if and only if the end $p_{j}$ is embedded.

PROOF. Take a coordinate $z$ around $p=p_{j}$ as in the proof of Lemma 2. By
Theorem 5.2 in [6], the end $p_{j}$ is embedded if and only if $m=\min\{m_{1},m_{2}\}=1$ ,
where $m_{1}$ and $m_{2}$ are the positive integers given by

$m_{1}=\sqrt{(v+1)^{2}+4q_{-2}}$ , $m_{2}=\sqrt{(2\mu+v+1)^{2}+4q_{-2}}$ ,

and
$v=0rd_{p_{j}}(\omega)=0rd_{p_{j}}(Q/dg)=0rd_{p_{j}}(Q)-\mu+1$ .

Since $p_{j}$ is a regular end, we have that $0rd_{p}(Q)\geq-2$ , by Lemma 1. If
$0rd_{p_{j}}(Q)=-2$ , then by Lemma 2,

$1\leq m_{1}=m_{2}=\sqrt{\mu^{2}+4q_{-2}}=t’$ .

Since $0rd_{p}(Q)=-2$ and $b_{G}(p_{j})=\ell-1$ , this implies that (9) holds and that
equality in (9) holds if and only if $m=1$ .

Next, we assume that $0rd_{p_{j}}(Q)>-2$ . In this case $q_{-2}=0$ , and by Lemma
2, $\mu=\ell$ . Thus we have

$m_{1}=|0rd_{p_{j}}(Q)-l+2|$ , $m_{2}=|0rd_{p_{j}}(Q)+l+2|$ .
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Since $0rd_{p_{j}}(Q)+2>0,$ $m_{1}<m_{2}$ holds. So

(10) $m=m_{1}=|0rd_{p_{j}}(Q)-l+2|$ .

On the other hand, by (7), we have

(11) $0rd_{p_{j}}(ds^{2})+0rd_{p_{j}}(d\sigma^{2})=0rd_{p_{j}}(Q)$ .

Since $ds^{2}$ is complete at $p_{j}$ ,

(12) $0rd_{p_{j}}(ds^{2})<-1$

holds, by Corollary 4.2 in [6].

Since $0rd_{p_{j}}(d\sigma^{2})=\mu-1=l-1$ is an integer, (11) and (12) yield

(13) $-3+\swarrow\geq 0rd_{p_{j}}(Q)$ .

This implies (9). Moreover, by (10) and (13), we have

$1\leq m=l-2-0rd_{p_{j}}(Q)$ .

So equality in (9) holds if and only if $m=1$ . This proves the lemma.

Duality on CMC-l surfaces

Let $x:M^{2}\rightarrow H^{3}(-1)$ be a complete CMC-l surface of finite total cur-
vature, as in the previous section. Let $G$ be the hyperbolic Gauss map, $(g, \omega)$ the
Weierstrass data, and $Q=\omega\cdot dg$ the Hopf differential of $x$ . The dual surface $ x\#$

of $x$ is obtained by exchanging the hyperbolic Gauss map and the secondary
Gauss map of the original CMC-l immersion $x$ . We show this property from
the following definition of the dual surface. (The authors thank the referee of
the Bull. London Math. Soc. for suggesting the following definition.)

DEFINITION. The dual CMC-l immersion $x\#:\tilde{M}^{2}\rightarrow H^{3}(-1)$ associated
with the Weierstrass data $(g, \omega)$ of the CMC-l immersion $x$ is defined by

$x^{\#}=(F^{-1})(F^{-1})^{*}$ ,

where $F$ is the lift of $x$ with respect to $(g, \omega)$ (namely, $F$ satisfies (3)).
$ x\#$ is not necessarily single-valued on $M^{2}$ . With [7; Cor. 2.4], one can easily

show that $ x\#$ is single-valued if and only if $g$ is single-valued on $M^{2}$ . Let $(g\#, \omega\#)$

be a pair defined by

(14) $(F\#)^{-1}dF\#=(g_{1^{\#}}$ $-(g_{g^{\#_{\#}}})^{2}-)\omega^{\#}$ ,



A duality on CMC-l surfaces 235

where $F\#=F^{-1}$ . Then $(g\#, \omega\#)$ is the Weierstrass data of $ x\#$ . Let $(x\#)^{\#}$ be a dual
CMC-l immersion associated with $(g\#, \omega\#)$ . Then by the definition, the relation
$(x\#)^{\#}=x$ is obvious. It should also be remarked that the congruent class of
the dual $ x\#$ is independent of the choice of the Weierstrass data $(g, \omega)$ of $x$, but
it does depend on the position of the surface $x$ . While $x$ and $axa^{*}$ are congment
if and only if $a\in SL(2, C),$ $ x\#$ and $(axa^{*})^{\#}$ are congment if and only if
$a\in SU(2)$ .

PROPOSITION 4. Let $ x\#$ be the dual CMC-l immersion of $x$ with respect to
the Weierstrass data $(g, \omega)$ . Then the hyperbolic Gauss map $ c\#$ , the Weierstrass
$da$ta $(g\#, \omega\#)$ , and the Hopf $d_{l}fferentialQ^{\#}$ of $ x\#$ are given by

$c\#_{=g}$ , $g^{\#}=G$ , $\omega^{\#}=-Q/dG$ , $Q^{\#}=-Q$ .

PROOF. We set $F=(F_{ij})$ . Then by (2), we have

$F_{11}^{\prime}F_{22}^{\prime}-F_{12}^{\prime}F_{21}^{\prime}=0$

where $‘=d/dz$ . Using this, the following identity is easily obtained

(15) $G=\frac{F_{11}^{\prime}}{F_{21}}=\frac{F_{11}^{\prime}F_{22}-F_{12}^{\prime}F_{21}}{F_{21}F_{22}-F_{22}F_{21}}$ .

Now we set $F\#=F^{-1}$ . Since $dF^{-1}=-F^{-1}(dF)F^{-1}$ , we have

(16) $(F^{\#})^{-1}dF^{\#}=-(dF)F^{-1}=-(_{F_{21}^{1_{/}1}F^{22}-F_{22}F^{21}}^{F^{\prime}F_{22}-F_{1_{/}2}^{\prime}F_{21}}$ $-F_{1_{/}1}^{\prime}F+F^{\prime}F_{11}-F_{21}F_{12}^{12}+F_{22}^{1_{/}2}F_{11}$

Hence by (14), (15), and (16), we have

$G=g^{\#}$ .

Replacing $F$ by $ F\#$ , we also have
$G^{\#}=g$ .

So by (5), we have $Q^{\#}=-Q$ and hence $\omega\#=-Q/dG$ . This proves the
proposition.

By (4) and Proposition 4, the first fundamental form of $ x\#$ is given by

(17) $ds^{\# 2}=(1+|G|^{2})^{2}\frac{Q}{dG}\cdot\overline{(\frac{Q}{dG})}$ .

Since $G$ and $Q$ are single-valued on $M^{2}$ , so is the metric $ds\# 2$ .
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LEMMA 5. Suppose that all the ends of $x$ are regular. Then the induced
metric $ds\# 2$ of the dual CMC-l immersion $ x\#$ is a complete Riemannian metric on
$M^{2}$ .

PROOF. We set

(18) $d\sigma^{\# 2}=\frac{4dG\cdot d\overline{G}}{(1+|G|^{2})^{2}}$ .

By (7), we have that

(19) $df$ . $do^{2}=4Q\cdot\overline{Q}=4(-Q)\cdot\overline{(-Q)}=ds^{\# 2}\cdot d\sigma^{\# 2}$ .

Sinoe $G$ is single valued on $M^{2}$ , so is $d\sigma\# 2$ . By (18), we have $b_{G}(p_{j})=0rd_{p_{j}}(d\sigma\# 2)$ .
So (9) is equivalent to

(20) $0rd_{p_{j}}(d\sigma^{\# 2})\geq 0rd_{p_{j}}(Q)+2$ .

Since $ x\#$ is an immersion, $ds\# 2$ is positive definite. By (19), we have

$0rd_{p_{j}}(d\sigma^{\# 2})+0rd_{p_{j}}(ds^{\# 2})=0rd_{p_{j}}(Q)$ .

Combining this with (20), we have that $0rd_{p_{j}}(ds\# 2)\leq-2$ . In particular, we have
$0rd_{p_{j}}(ds\# 2)\leq-1$ , which implies that $d\theta^{2}$ is complete at $p_{j}$ .

PROOF OF THE THEOREM. If $x$ has irregular ends, $G$ has essential singu-
larities at those ends. By (18) and the relation $d\sigma\# 2=(-K\#)ds\# 2$ we see that $ds\# 2$

has infinite total curvature on $M^{2}$ . So we may assume that all the ends of $x$ are
regular. We can directly apply (20), instead of (4.3) in [6], to the proof of
Theorem 4.3 in [6]. Then we have the inequality (1). Equality in (1) holds if and
only if equality holds in (20); that is, if and only if

(21) $0rd_{p_{j}}(d\sigma^{\# 2})=0rd_{p_{j}}(Q)+2$

holds for each $j=1,$ $\cdots,$
$n$ . On the other hand, $0rd_{p_{j}}(d\sigma\# 2)=b_{G}(p_{j})$ , by (18). So

by Lemma 3, (21) holds if and only if all the ends of $x$ are regular and embedded.
This proves the theorem.

REMARK. Let $\overline{M}^{2}$ be a compact Riemann surface and $x$ :
$\overline{M}^{2}\backslash \{p1, \ldots,p_{n}\}\rightarrow R^{3}$ a complete conformal minimal immersion of finite total
curvature. Then the Gauss map $G$ and the Hopf differential $Q$ of $x$ are given by

$G=\frac{\partial x_{3}}{\partial x_{1}-i\partial x_{2}}$ , $Q=(\partial x_{1}-i\partial x_{2})\cdot dG$ ,
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where $x=(x_{1}, x_{2}, x_{3})$ . It is well-known that $G$ and $Q$ can both be mero-
morphically extended to $\overline{M}^{2}$ . By [2], it can be easily checked that an end $p_{j}$ of $x$

is embedded if and only if equality holds in (9). So the embedding criterion for
regular ends of CMC-l surfaces is the same as that for minimal surfaces. Finally,
by our numerical experiments, we would like to propose the following:

PROBLEM. Are any irregular ends of CMC-l surfaces non-embedded?

ADDED IN PROOF. Recently, Zuhuan Yu proved Lemma 5 without
assuming regularity of ends (Value distribution of hyperbolic Gauss maps”, to
appear in Proceedings of the American Mathematical Society). Namely, the
dual of any complete CMC-I surface is also complete.
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