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THE SELF-EQUIVALENCE GROUPS IN CERTAIN
COHERENT HOMOTOPY CATEGORIES

By

H. J. BAUES, K. A. HARDIE and K. H. KAMPS

Abstract. We study the self-equivalence groups associated with
objects in (i) the track homotopy category over a fixed space $B$, (ii)
the track homotopy category under a fixed space $A$ and (iii) the
category of homotopy pairs. In each case a short exact sequence
decomposition of the self-equivalence group is available. In the case
of (i) the group is isomorphic to the group of fibre-homotopy self-
equivalences of an associated fibration, the decomposition (in other
form) is known and has been used as the basis of computations. We
make sample computations in the simplest situations for (i), (ii),

and (iii), in each case solving the extension problem that arises by
considering secondary operations and determining the Toda-Hopf
invariant of relevant tracks. We indicate that in certain cases such
computations can be used to determine the self-equivalence group
of a mapping cone.

0. Introduction

Let $p:E\rightarrow B$ be a pointed Hurewicz fibration. The problem of determining
the group $\mathscr{E}_{F}(E)$ of self fibre-homotopy equivalences of $p$ seems to have been
considered first by Nomura [9]. $d_{F}(E)$ is formally the group of automorphisms
of $p$ in the classical homotopy category of (pointed) spaces over $B$ . As discussed
by the authors of [7] this category has certain inconvenient features and can (for

many purposes with advantage) be replaced by $\mathscr{H}_{B}$ , the corresponding track
homotopy category over $B$ , which has the same objects but whose arrows are
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equivalence classes $\{v, v_{t}\}$ of diagrams

$\{$

$W\rightarrow^{v}X$

(0.1)
$wI^{\{v}$ }’ $f$

$B-B$
with commuting track (i.e. relative homotopy class of homotopies). Moreover it
was shown [6; Theorem 4.3] that the set $\pi(w,f/B)$ of morphisms from $w$ to $f$ lies
in an exact sequence

(0.2) $\pi_{1}^{W}(X;u)\rightarrow f\cdot\pi_{1}^{W}(B;fu)-\rangle$$m_{v}\pi(w,f/B)_{v}\rightarrow d\pi(W, X)_{u}\rightarrow f\cdot\pi(W, B)_{w}$

yielding a bijection

(0.3)
$\pi(w, f/B)\leftrightarrow\bigcup_{\{u\}\in f^{-1}\{w\}}K(u, w)$

,

where $K(u, w)$ denotes the set of left cosets of $f.\pi_{1}^{W}(X;u)$ in $\pi_{1}^{W}(B;fu)$ . Here
$\pi_{1}^{W}(X;u)$ denotes the u-based track group in the sense of Rutter [10].

If we are interested in the automorphism group of an object $f$, we may
enquire what happens to the bijection 0.3 when we take $W=X,$ $w=f$,
$u=1=1_{X}$ . Then it tums out that the operator $m_{v}$ , (which in general depends
on the choice of preferred element $v$ in $\pi(w, f/B))$ becomes a homomorphism if
we take $v=1_{f}$ in $\pi(f,f/B)$ , and $f.\pi_{1}^{X}(X;1)$ becomes a normal subgroup of
$\pi_{1}^{X}(B;f)$ . Moreover the image of $m_{v}$ is contained in $\mathscr{E}(f/B)$ , the self-equivalence
group of $f$ in $\mathscr{H}_{B}$ and, if we further restrict $d$ to this subgroup, its image lies in

(0.4) $\overline{\mathscr{E}}_{f}(X)=$ { $\{v\}|v$ is a self-equivalence of $X$ with $fv\simeq f$ }.

Accordingly the bijection 0.3 takes the form of a short exact sequence of (not
necessarily abelian) groups:

(0.5) coker $(f.)\mapsto \mathscr{E}(f/B)\rightarrow>\overline{\mathscr{E}}_{w}(X)$ .

Details for the decomposition 0.5 are given in section 1, together with a
technique for settling the extension problem, which we successfully use in
a sample computation. Corresponding discussions of self-equivalences under
a fixed $A$ and of homotopy pair self-equivalences are given in sections 2 and 3.
In a final section we show that the homotopy pair self-equivalence group of a
map $f$ may coincide with the self-equivalence group of its associated mapping
cone.
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Although we began the introduction by considering a pointed fibration it is
worth noting that the argument leading up to the sequence 0.5 applies equally
well to the basepoint free case and, indeed, remains valid if the category of
topological spaces is replaced by an arbitrary 2-category with invertible 2-
morphisms.

1. Track self-equivalences over $B$

$\{$

We recall [6] that the morphism set $\pi(w,f/B)$ from $w$ to $f$ in $\mathscr{H}_{B}$ is obtained
from the set of diagrams of form 0.1 by factoring out by the equivalence
relation

$W\rightarrow^{v^{\prime}}X$

$W\rightarrow^{v}X$ $\Vert^{\{v_{1f}^{\prime}}1$ $\Vert$

(1.1) $ wt^{v}\cdot$ }$f$
$f$ $W\rightarrow^{v}X$

$B-B$ $w1^{\{v_{1f}}1$ $f$

$B-B$ ,

where the diagram on the right is the composite in the obvious sense of the two
rectangles. We note that each isomorphism in $\mathscr{H}_{B}$ is the equivalence class of a
diagram of form 0.1 in which the map $v$ is a homotopy equivalence [7; Theorem
1.3].

For the general case of the sequence 0.2, apart from the first homo-
morphism, the operators are functions between pointed sets in which there is
some freedom in the choice of preferred elements. Since we are interested in the
case $W=X,$ $w=f$ we are free to select preferred elements $\{f\}\in\pi(X, B)$ ,
$\{u\}=\{1\}\in\pi(X, X)$ . Moreover, choosing $v$ to be the class of the diagram

$XX\underline{1}$

$ff1$
$\downarrow f$

$B-B$ ,

$m_{v}$ becomes the function

$|f=\{h_{\ell}\}\underline{m}f\downarrow$

$X-X$ $XX\underline{1}$

$ f\downarrow^{h}’\iota$ $|f=\{1, h_{t}\}$ .$h_{t}y$

$B-B$ $B-B$
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With $d$ the operator that selects the class of the top arrow of diagram 0.1 we have
the following.

1.2. PROPOSITION. The following sequence of groups and homomorphisms is
exact.

$\pi_{1}^{X}(X;1)\rightarrow f$
.

$\pi_{1}^{X}(B;f)\rightarrow m\mathscr{E}(f/B)\rightarrow>\mathscr{E}_{f}(X)d$

PROOF. Although the result can be obtained by specialisation from [6;
Theorem 4.3] it will be convenient to argue directly. Clearly $dm=0$ . Suppose
that $d\{v, v_{t}\}=0$ . Then there exists a homotopy $g_{t}$ : $v\simeq 1$ . Then $m\{v_{t}+fg_{t}\}=$

$\{1, v_{l}+fg_{t}\}\sim\{v, v_{t}\}$ . Clearly $mf$ . $=0$ . Suppose $m\{h_{t}\}=0$ . Then $\{1, h_{t}\}\sim\{1,1\}$ ,
hence there exists $g_{t}$ : $1\rightarrow 1$ such that $h_{t}$ is relatively homotopic to $fg_{t}$ . Then
$f.\{g_{l}\}=\{h_{\iota}\}$ . The exactness of 0.5 is an immediate consequence.

1.3. REMARK. If $\mathscr{E}(f/B)$ and $\overline{\mathscr{E}}_{f}(X)$ are replaced by $M(f/B)$ (the endo-
morphism monoid of $f$ in the track homotopy category over $B$) and
$\overline{M}_{f}(X)=\{\{u\}|u:X\rightarrow X,fu\simeq f\}$ respectively, the sequence remains exact.

The sequence 0.5 is, of course, a formulation in another setting of a basic
fact that, in the context of fibre homotopy self-equivalences, has been exploited
by several authors (cf. [9], [3], [13], [11], [2]). The simplicity of the situation,
however, facilitates the enunciation of a principle that can sometimes be used to
resolve the problems of group extension that arise when 0.5 is used to compute
$\mathscr{E}(f/B)$ . Following the pioneering work of Toda [12], secondary operations have
been used systematically to resolve extension problems. Suppose that $\alpha,$

$\alpha^{\prime}$ in
$\overline{\mathscr{E}}_{f}(X)$ are elements with composition $\alpha.\alpha^{\prime}=1$ in $\overline{\mathscr{E}}_{f}(X)$ . In view of the sur-
jectivity of $d$ there exist elements $\beta,$ $\beta^{\prime}$ in $\mathscr{E}(f/B)$ such that $d\beta=\alpha,$ $d\beta^{\prime}=\alpha^{\prime}$ . For
the extension problem it becomes important to know whether $\beta.\beta^{\prime}$ is the image
under $m$ of a non-zero element of coker$(f.)$ . Let $\beta=\{v, v_{t}\},$ $\beta^{\prime}=\{v^{\prime}, v_{t}^{\prime}\}$ and
consider the element

$x_{\overline{\overline{g_{1}f}}}x$

(1.4) $\gamma=\gamma(g_{t})=$
$X\underline{v^{\prime}}X\rightarrow^{v}X$ $\in\pi_{1}^{X}(B;f)$ ,
$fv^{\prime}y$ $fv.f$

$f$

$B-B-B$
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where $g_{t}$ : $vv^{\prime}\simeq 1$ , and let

(1.5) $\{\beta, \beta^{\prime}\}_{B}=\{\gamma|g_{l} : vv^{\prime}\simeq 1\}\subseteq\pi_{1}^{X}(B;f)$ .

Then we have

1.6. PROPOSITION. The subset $\{\beta, \beta^{\prime}\}_{B}$ is a coset in $\pi_{1}^{X}(B;f)$ of the image of
the homomorphism $f$ . : $\pi_{1}^{X}(X;1)\rightarrow\pi_{1}^{X}(B;f)$ and is independent of the choice of
representatives $(v, v_{l}),$ $(v^{\prime}, v_{t}^{\prime})$ of $\beta,$

$\beta^{\prime}$ respectively. Moreover $m\{\beta, \beta^{\prime}\}_{B}=\beta.\beta^{\prime}$ .

PROOF. Composing the homotopies in diagram 1.4 we see that $\gamma(g_{t})=$

$\{v_{t}^{\prime}+v_{t}v^{\prime}+fg_{l}\}$ . Hence $\gamma(g_{t})^{-1}\gamma(g_{t}^{\prime})=\{fg1-t+v_{1-t}v^{\prime}+v_{1-l}^{\prime}+v_{t}^{\prime}+v_{t}v^{\prime}+fg_{t}^{\prime}\}=$

$f.\{g\iota-t+g_{t}^{\prime}\}$ . The independence of $\{\beta, \beta^{\prime}\}_{B}$ on the choice of representatives is an
easy consequence of the relation 1.1 and, to verify the equation $m\{\beta, \beta^{\prime}\}=\beta\beta^{\prime}$ ,

we need only apply the definition of $m$ to the composite square 1.4, bearing in
mind 1.1.

1.7. EXAMPLE. Let $f:S^{5}\rightarrow S^{3}$ be a representative of the generator $\eta_{3}^{2}$ of
$\pi_{5}(S^{3})$ (using Toda’s notation [12]). The homomorphism $f$ is equivalent to
Rutter’s homomorphism $\Delta(f, 1_{X}):[X, \Omega X]\rightarrow[X, \Omega B]$ , [10;\S 1.2]. In this case,
since $X=S^{5}$ is a suspension, it follows from [10; Corollary 1.4.4] that $f$ is
equivalent to $\eta_{3*}^{2}$ : $\pi_{6}(S^{5})\rightarrow\pi_{6}(S^{3})$ . Since $\pi_{6}(S^{3})\approx Z_{4}\oplus Z_{3}$ , with $2v^{\prime}=\eta_{3}^{3}[12]$ ,
we have coker $(f.)\approx Z_{2}\oplus Z_{3}$ . Moreover, $\overline{\mathscr{E}}_{f}(S^{5})\approx Z_{2}$ generated by the degree
minus one class $-\iota$ . Then we have:

1.7. 1. PROPOSITION. $\mathscr{E}(f/S^{3})\approx Z_{2}\oplus Z_{2}\oplus Z_{3}$ .

PROOF. Before indicating certain generators of $\mathscr{E}(f/S^{3})$ we develop an
appropriate notation. Since the homotopy set $\pi(w,f/B)$ depends (up to
bijection) only on the homotopy classes of $f$ and $w$ [ $7$ ; Corollary 1.4], we may
replace maps by homotopy classes when using diagrams to indicate elements.
We obtain generators as follows. Since $2\eta_{3}=0$ there is an element

(1.7.2)

$\beta=\pi_{4}\downarrow_{4^{\underline{\iota_{4}}}}^{5}\downarrow\pi 4SS^{4}S\frac{-\iota_{f}}{f}S^{5}$

$Vs\{$ $\downarrow\eta s$

$s^{3}-s^{3}$ .
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Cells of the diagram that do not contain a curving arrow are understood to carry
the identity track. Strictly speaking diagram 1.7.2 does not define a unique
element but rather a coset determined by the possible tracks that could occupy
the position of the curving arrow. We nevertheless regard 1.7.2 as representing a
typical element of the coset. We have another generator

$S^{5}S^{5}\underline{-\iota_{f}}$

(1.7.3) $\beta^{\prime}=\eta^{4}\pi\downarrow_{4}\downarrow\pi s\downarrow^{\vec{f^{-\iota}}}\downarrow\pi^{4}SS^{4}$

$S^{3}-S^{3}$ .
Although it may not be obvious a priori that $\beta\neq\beta^{\prime}$ , this will be verified. Now
recall that there is an element $\alpha$ of $\pi_{6}(S^{3})$ of order three. Since the $f$-based track
group $\pi_{1}^{S^{5}}(S^{3}; f)$ is isomorphic with $\pi_{6}(S^{3})$ there is a generator of $\pi_{1}^{S^{5}}(S^{3}; f)$

corresponding to $\alpha$ . We claim that $\beta.\beta^{\prime}\neq 1$ , $\beta.\beta=1$ , $\beta^{\prime}.\beta^{\prime}=1$ and
$\beta m(\alpha)\beta^{-1}=\beta m(\alpha)\beta=m(\alpha)$ . In view of the nature of the possible extensions these
are sufficient to prove 1.7.1. In order to establish 1.7.1 we utilise Proposition
1.6 and the discussion preceding the proposition. First note that the composite
track

(1.7.4) $\pi_{4}\downarrow^{\overline{\prime}}\downarrow_{4}s\frac{2\iota}{y}\neq s^{*}S^{5}\downarrow^{4}\downarrow Vs$

$*\rightarrow S^{3}$

represents the Toda bracket $\{\eta_{3},2\iota_{4}, \eta_{4}\}$ [ $12$ ; Proposition 1.3] (see also [4]), and
hence the two elements $v^{\prime}$ and $-v^{\prime},$ $[12;(5.4)]$ . Note that, regarded as a coset in
$\pi_{1}^{S^{5}}(S^{3}; *)$ , we can re-express 1.7.4 as

(1.7.5)
$\pi 4\downarrow_{4}^{\overline{\overline{y}}}\downarrow oo\downarrow^{\vec{\prime^{2\iota_{4}}}}\downarrow\pi SS^{4}S^{5}S^{5}$

$S^{3}-S^{3}$ .
The diagram 1.7.5 can be modified (while still representing the same coset) by
subtracting the same element from each route from source to sink. Applying this
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principle to 1.7.5 we see that 1.7.4 can also represented by the diagram

$\eta_{41_{4}^{5}\downarrow^{5}-\eta_{4}}s\rightarrow Ss\overline{\overline{y_{\iota_{4}}}}^{S_{4}}$

$-\eta s\downarrow y0s\downarrow$

$S^{3}-S^{3}$ .
(The general principle can be justified by considering Rutter’s isomorphism $f_{b}$ ,
see [10; p381].) Moreover, arranging the position of the tracks a little differently,
we see that 1.7.4 also represents the element

$s^{5}\wedge S^{5}\underline{-\iota_{f}}S^{5}$

$\pi_{4}\downarrow_{4}\pi_{4}\downarrow S- S\underline{-\iota_{\{}}$

4

$y_{\underline{\iota_{4}}S^{4}}\downarrow\eta_{4}$

$\eta s|y_{\pi s}\downarrow$

$\downarrow\eta s\downarrow$

$S^{3}-S^{3}-S^{3}$ ,

and hence coincides with $\beta.\beta^{\prime}$ . As for $\beta.\beta$, we note that it is represented by a
diagram of form

$S^{5}\rightarrow^{\iota_{f}}S^{5}$

$\pi_{4}\downarrow y$ n4

$S^{4}-S^{4}$

$Vs\{$ $\downarrow\eta\epsilon$

$S^{3}-S^{3}$

and hence lies in the image of the homomorphism $\eta_{3_{*}}$ : $\mathscr{E}(f^{\prime}/S^{4})\rightarrow \mathscr{E}(f/S^{3})$ ,
where $f^{\prime}$ is a representative of $\eta_{4}$ . Considering the sequence 0.5 associated with
$\mathscr{E}(f^{\prime}/S^{4})$ , it is clear that $\beta.\beta=1$ . Similarly for $\beta^{\prime}.\beta^{\prime}$ which belongs to the image
of the homomorphism $\eta_{4}^{*}:$ $\mathscr{E}(f^{\prime\prime}/S^{3})\rightarrow \mathscr{E}(f/S^{3})$ , where $f^{\prime\prime}$ is a representative of
$\eta_{3}$ . Since $\beta.\beta\neq\beta.\beta^{\prime}$ , it follows that $\beta\neq\beta^{\prime}$ as claimed earlier.

It remains to verify that $\beta m(\alpha)\beta^{-1}=\beta m(\alpha)\beta=m(\alpha)$ . To achieve this we
need to recall that $\alpha$ is detected by the Toda-Hopf invariant. There is a
homotopy equivalence $S_{\infty}^{2}\cong\Omega S^{3}$ between the James space and the space of
loops on $S^{3}$ . Via the adjoint isomorphism $\alpha$ is equivalent to a class in $\pi_{5}(S_{\infty}^{2})$

and it is known that $\alpha=i_{*}\overline{\alpha}$, where $\overline{\alpha}\in\pi_{5}(S_{2}^{2})$ and ct is of infinite order, with
$3\overline{\alpha}=[\iota_{2}]^{3}$ , the attaching class of the 6-cell of $S_{\infty}^{2}$ . (We have used $i$ to represent
the class of the inclusion map $S^{2}\rightarrow S_{\infty}^{2}.$ ) As described in [8] the Toda-Hopf
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invariant is a homomorphism $\overline{H}_{p}$ of homotopy groups associated with an odd
prime $p$ (in our case $p=3$ and $n=1$ ), induced by a map

$\overline{h}$ : $\Omega S_{p-1}^{2n}\rightarrow\Omega S^{2np-1}$

which, composed with the inclusion map $S^{2n-1}\rightarrow\Omega S^{2n}\rightarrow\Omega S_{p-1}^{2n}$ is trivial. Then
(with $p=3$ and $n=1$ ) $\overline{H}_{3}$ : $\pi_{r}(S_{2}^{2})\rightarrow\pi_{r}(S^{5})$ detects $\alpha$ in the sense that $\overline{H}_{3}(\overline{\alpha})=\iota_{5}$

in $\pi_{5}(S^{5})$ . Let $\overline{\eta}$ in $\pi_{2}(\Omega S_{2}^{2})$ denote the adjoint of $i_{2}\circ\eta_{2}$ in $\pi_{3}(S_{2}^{2})$ . (Here $i_{2}$ refers
to the class of the inclusion $S^{2}\rightarrow S_{2}^{2}.$ ) It follows that the adjoint of $\overline{\alpha}$ is rep-
resented by a diagram

$ S^{3}\rightarrow\Omega S_{2}^{2}\pi\circ\eta$
’

$\iota ty$ $\Vert$

$ S^{3}\pi r_{\Omega S_{2}^{2}}^{2}\circ$ ,

regarded as an element of $\pi_{1}^{S^{3}}(\Omega S_{2}^{2};f^{\prime\prime\prime})$ , where $f^{\prime\prime\prime}$ is a representative of $\overline{\eta}\circ\eta_{2}$ .
Moreover, denoting by $\overline{\beta}$ the corestriction to $\Omega S_{2}^{2}$ of the adjoint of $\beta$, the
following diagram represents $\overline{H}_{3}\overline{\beta}\overline{\alpha}\overline{\beta}$ .

$S^{3}\rightarrow^{V2}S^{2}\rightarrow^{\eta\overline}\Omega S_{2}^{2}\Omega S^{5}\underline{t^{\overline{h}\}}}$

$-\iota|_{3}^{f_{2}}t_{2}^{\iota}\Vert\Vert s\underline{\pi}s\underline{\overline{\pi}}\Omega s_{2}^{2\overline{\lrcorner}_{\Omega S^{5}}}\{h$

(1.7.6) $\Vert f$ $\Vert$ $\Vert$

$-\iota s\underline{\frac{\eta_{2}}{y_{02}}}S\Omega S_{2}^{2}s^{3}s\rightarrow\Omega S^{2}\uparrow^{3}|_{2^{\overline{\eta}}}^{2_{\iota}}||_{2}\underline{\pi}\rightarrow\Omega S_{5}\underline{t_{\hslash\}}t^{\hslash\}}}\Omega S^{5}\Vert$

Note that the top three rectangles of 1.7.6 can be rewritten

$S^{3}\rightarrow-\eta 2S^{2}\rightarrow^{\pi}\Omega S_{2}^{2}\rightarrow^{\{\hslash\}}\Omega S^{5}$

(1.7.7)
$SS^{2}\iota t_{3}^{\underline{y_{\pi 2}}}\uparrow\iota\rightarrow^{\eta\overline}\Omega S_{2}^{2\lrcorner_{\Omega S^{5}}^{h}}||\Vert t^{-}$

.

Now certainly both $\{\overline{h}\}\circ\overline{\eta}\circ\eta_{2}=0$ and $\{\overline{h}\}\circ\overline{\eta}\circ(-\eta_{2})=0$ in $\pi_{3}(\Omega S^{5})$ . It
follows that 1.7.7 represents a class in $\pi_{5}(S^{5})$ that one might describe as the
Toda-Hopf invariant of the track $\overline{\beta}$ . Moreover it is clear that the class represented
by 1.7.7 is zero since it belongs to $\{\overline{h}\}\circ\overline{\eta}\circ\pi_{4}(S^{2})$ . In fact each row of rectangles
in 1.7.6 represents an element of $\pi_{5}(S^{5})$ , with 1.7.6 itself the sum of these, which
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is 15. Therefore $\beta\alpha\beta=\alpha$ . A similar argument shows that $\beta^{\prime}\alpha\beta^{\prime}=\alpha$ , completing the
proof of Proposition 1.7.1.

2. Track self-equivalences under $A$

Let $v:A\rightarrow W,$ $g:A\rightarrow X$ be (pointed or unpointed) continuous maps.
Recall [6], [7] that the morphism set $\pi(A/v, g)$ from $v$ to $g$ in the track homotopy
category $\mathscr{H}^{A}$ under $A$ is obtained from the set of track commutative diagrams
under $A$ by factoring out by the equivalence relation

$A-A$

(2.1) $ v\downarrow\overline{\overline{\}d}}\downarrow 9\sim W_{\{}^{\{}\frac{w_{1f}w\}}{w_{\iota f}^{l}\}}X^{g}W_{\vec{w}}^{\{w}X\Vert\Vert AAv|\downarrow$

$W\rightarrow_{/}Xw$

We may express the relation 2.1 in the non-diagramatic form $(\{w_{l}\}, w)\sim$

$(\{w_{t}^{\prime}v+w_{t}\}, w^{\prime})$ , and use $\{w_{t}, w\}$ to denote the equivalence class concemed.
Let $\mathscr{E}(A/g)$ be the self-equivalence group of $g$ under $A$ and consider the

operators $n$ : $\pi_{1}^{A}(X;g)\rightarrow \mathscr{E}(A/g)$ and $c:\mathscr{E}(A/g)\rightarrow\underline{\mathscr{E}}^{g}(X)$ given by the rules

$A-A$
(2.2) $g|\overline{\overline{\{h_{*d\downarrow}\}}}AA_{gg|^{\{h}f}\underline{n}$}

$\downarrow$ $g$

$X-X$ $XX\underline{1}$

(2.3) $c\{w_{t}, w\}=\{w\}$ ,

where $\underline{\mathscr{E}}^{g}(X)$ is the subgroup of homotopy classes $\{w\}$ of self-equivalences
$w:X\rightarrow X$ satisfying $\{wg\}=\{g\}$ . Then we have

2.4. PROPOSITION. The following sequence of groups and homomorphisms is
exact.

$\pi_{1}^{X}(X;1)\rightarrow^{..g}\pi_{1}^{A}(X;g)\rightarrow^{n}\mathscr{E}(A/g)\rightarrow>\underline{\mathscr{E}}^{g}(X)c$

The proof is dual to that of Proposition 1.2. As a corollary we obtain a short
exact sequence dual to 0.5

(2.5) coker $(.g)\succ\rightarrow \mathscr{E}(A/g)\rightarrow>\mathscr{E}^{g}(X)$

and a remark dual to 1.3 can be made.
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To formulate a dual to Proposition 1.6, let $\gamma=\{w_{l}, w\}$ and $\gamma^{\prime}=\{w_{l}^{\prime}, w^{\prime}\}$ be
elements of $\mathscr{E}(A/g)$ such that

$g|^{\{w_{1}^{l}}\overline{\overline{f}}|^{\overline{\overline{\{w_{1f}}}}\downarrow AAA_{g}c\gamma.c\gamma_{\}^{\prime}}=_{g}1in_{1}\underline{\mathscr{E}}^{g}(X)$

and consider the element

(2.6) $S=\delta(k_{t})=X\rightarrow^{w^{\prime}}X\underline{w}X\in\pi_{1}^{A}(X;g)$ ,

$\Vert\{k_{1f}\}$ $\Vert$

$X-X$
where $k_{t}$ : $1\simeq ww^{\prime}$ . Let

(2.7) $\{\gamma, \gamma^{\prime}\}^{A}=\{\delta|k_{t} : 1 \simeq ww^{\prime}\}\subseteq\pi_{1}^{A}(X;g)$ .

Then we have

2.8. PROPOSITION. The subset $\{\gamma, \gamma^{\prime}\}^{A}$ is a coset in $\pi_{1}^{A}(X;g)$ of the image of
the homomorphism. $g$ and is independent of the choice of representatives $(\{w_{t}\}, w)$

and $(\{w_{t}^{\prime}\}, w^{\prime})$ . Moreover $n\{\gamma, \gamma^{\prime}\}^{A}=\gamma.\gamma^{\prime}$ .

The proof is dual to that of Proposition 1.6.

2.9 EXAMPLE. Take $A=S^{5},$ $X=S^{3}$ and let $g:S^{5}\rightarrow S^{3}$ be a represen-
tative of $\eta_{3}^{2}$ in $\pi_{5}(S^{3})$ . The homomorphism. $g:\pi_{1}^{X}(X;1)\rightarrow\pi_{1}^{\Lambda}(X;g)$ is equivalent
to Rutter’s homomorphism $\Gamma(1_{S^{3}}, g):\pi_{4}(S^{3})\rightarrow\pi_{6}(S^{3}),$ $[10]$ . Since $S^{3}$ is an H-
space it follows from [10; Corollary 3.3.4] that $\Gamma(1_{S^{3}}, g)=(Sg)^{*}=(\eta_{4}^{2})^{*}$ , where
$S$ denotes suspension, so that we have coker $(.g)\approx Z_{2}\oplus Z_{3}$ . Moreover since
( $-l_{3)\circ\eta_{3}}=-\eta_{3}=\eta_{3}$ , we have $\underline{i}^{g}(S^{3})\approx Z_{2}$ and we have an extension

(2.9.1) $Z_{2}\oplus Z_{3}\mapsto \mathscr{E}(S^{5}/g)\rightarrow>Z_{2}$ .

As with Proposition 1.7.1, we again find it to be split.

2.9.2. PROPOSITION. $\mathscr{E}(S^{5}/g)\approx Z_{2}\oplus Z_{2}\oplus Z_{3}$ .

PROOF. The following generators of $\mathscr{E}(S^{5}/g)$ can be identified.

$S^{5}-S^{5}$ $S^{5}-S^{5}$

$L4\{$ $\eta_{4}\{$

(2.9.3) $\gamma=$

$S^{4}--Sn_{4}\downarrow_{4}$

$\gamma^{\prime}=$ $S$

$\eta s\downarrow f$ $\downarrow\pi$

$\pi\downarrow^{4}f_{\vec{-\iota_{4}}}\pi_{4}\downarrow_{4}S$

$\downarrow\eta\epsilon$

$S^{3}\overline{-\iota_{S}}S^{3}$ , $S^{3}\overline{-\iota_{8}}S^{3}$ .
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We claim that $\{\gamma, \gamma^{\prime}\}^{s^{5}}$ in $\pi_{6}(S^{3})$ is the coset containing the elements $\mathcal{V}^{\prime}$ and $-v^{\prime}$ .
To see this, note that $\{\gamma, \gamma^{\prime}\}^{s^{5}}$ contains the element

$\eta^{4}\pi\downarrow_{4}\overline{\overline{y^{S--s}\pi}}\downarrow_{4}\downarrow_{3^{\eta_{4}}}^{5}\epsilon\downarrow^{5}\eta^{4}a\downarrow_{3}^{5}\overline{\overline{f_{3}}}^{S}\pi\theta\downarrow^{4}S_{\vec{-\iota_{3}}}s^{\underline{-\iota\backslash _{- S}}}S_{\vec{-\iota}}SSS$ $=$ $\pi^{41\downarrow_{\eta^{4}}^{5}}\pi_{s\downarrow_{3}^{4}\downarrow_{3^{\eta_{S}}}^{4}}SSs\overline{\overline{\underline{\underline{\frac{f_{\iota_{\backslash }}-}{Z^{-}}}}}}SS^{5}S$

which we may interpret as an element of $\pi_{1}^{S^{5}}(S^{3};g)$ . Subtracting $\eta_{3}^{2}$ from each
route, according to the

$\pi\downarrow_{-2\iota_{4}}^{5}\overline{\overline{f}}^{S^{5}}\downarrow op_{4}rin_{\vec{Z}}cip1e_{S}s_{\eta}t_{3}ated_{=}earliero\downarrow^{4}\downarrow^{4}ss$

we obtain the element

$S^{3}-S^{3}$

$\pi 4\downarrow_{-2\iota_{4}}^{\overline{f}}\downarrow_{4}S^{4}S^{*}S_{*\rightarrow S^{3}}^{5}\downarrow^{\vec{y}}\downarrow\eta\$ $

which belongs to the Toda bracket $\{\eta_{3},2\iota_{4}, \eta_{4}\}$ . The remainder of the proof is
similar to that for Proposition 1.7.1.

3. Homotopy pair self-equivalences

The objects of the category of homotopy pairs [5] are usually taken to be
pointed continuous maps but in this section (except for Example 3.8) all
considerations will apply equally to the basepoint free case. The morphisms
from $f$ to $g$ are equivalence classes of

$trac_{X^{w}\prime}kco_{t}mmutative\Vert^{w}f\Vert\rightarrow E$

squares, where

$X\rightarrow^{w}E$
$X\underline{w}E$

(3.1) $f|h_{t}f$ $\downarrow g$

$f|h_{1}f$ $\downarrow g$

$Y\overline{v}B$ $Y\underline{v}B$

$\Vert v_{t}$’ $\Vert$

$Y\underline{v^{\prime}}B$ .

In non-diagramatic form the relation can be expressed:

(3.2) $(v, \{h_{t}\}, w)\sim(v^{\prime}, \{v_{t}f+h_{t}+gw_{\iota}\}, w^{\prime})$

and $\{v,h_{t}, w\}\in\pi(f, g)$ used to denote the corresponding equivalence class.
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Let $\mathscr{E}(f)$ be the homotopy pair self-equivalence group of $f:X\rightarrow Y$ and
consider the operators $d:\pi(f, g)\rightarrow\pi(X, X),$ $c:\pi(f, g)\rightarrow\pi(Y, Y)$ such that
$d\{v,h_{l}, w\}=\{w\},$ $c\{v,h_{t}, w\}=\{v\}$ . Consider also the pull-back diagram (in the
category of pointed sets)

$ d(X)\cap d(Y)-d(Y_{f})d(X)^{\underline{f}}\pi(X,Y)|\downarrow\cdot$

,

where 8(X) and $\mathscr{E}(Y)$ denote the self-equivalence groups of $X$ and $Y$ respectively.
By [5; Theorem 1.3], for every $\{v,h_{t}, w\}$ in $\ovalbox{\tt\small REJECT}(f)$ we have $\{v\}\in \mathscr{E}(Y)$ and
$\{w\}\in d(X)$ so that the operators $d$ and $c$ define a function

$(d, c)$ : 8 $(f)\rightarrow d(X)\cap \mathscr{E}(Y)$ .

Moreover it is easy to check that the operations in $\ovalbox{\tt\small REJECT}(X)$ and $\mathscr{E}(Y)$ induce a
group stmcture in $8(X)\cap \mathscr{E}(Y)$ and that $(d, c)$ is a homomorphism. Let
$\nabla$ : $\pi_{1}^{\chi}(Y;f)\rightarrow \mathscr{E}(f)$ be the operator such that $\nabla\{h_{t}\}=\{1_{Y},h_{t}, 1_{X}\}$ and let
$(f,f.):\pi_{1^{Y}}(Y;1)\oplus\pi_{1}^{X}(X;1)\rightarrow\pi_{1}^{X}(Y;f)$ be the function (in general not a
homomorphism) such that $(f,f.)(\{v_{t}\}, \{w_{\iota}\})=\{vf+fw_{t}\}$ .

3.3 REMARK. $\pi_{1}^{Y}(Y;1)$ and $\pi_{1}^{X}(X;1)$ are abelian and, if $Y^{X}$ is an $H_{0}$-space
[10; p381], then $\pi_{1}^{X}(Y;f)$ is abelian and $(f,f.)$ is equivalent to the homo-
morphism

$(\Gamma(1_{Y},f),$ $\Delta(f, 1_{X}))$ : $\pi(Y, \Omega Y)\oplus\pi(\sum X, X)\rightarrow\pi(\sum X, Y)$ ,

where $\Gamma$ and $\Delta$ are the homomorphisms described in [10; 3.2, 1.2].

3.4. PROPOSITION. The following sequence in which $\nabla$ and $(d, c)$ are (group)
homomorphisms is exact in the category of pointed sets. If $Y^{X}$ is an $H_{0}$-space
then it is exact in the category of groups.

$\pi_{1}^{Y}(Y;1)\oplus\pi_{1}^{X}(X;1)^{(.f,f\cdot)}\rightarrow\pi_{1}^{X}(Y;f)\rightarrow^{\nabla}\mathscr{E}(f)^{(d,c)}-\rangle>d(X)\cap \mathscr{E}(Y)$

PROOF. Clearly $\nabla(f,f.)=0$ . Suppose that $\nabla\{h_{t}\}=\{1,f, 1\}$ . Then in view
of 3.2 there exist homotopies $v_{t}$ : $1_{Y}\simeq 1_{Y}$ and $w_{t}$ : $1_{X}\simeq 1_{X}$ such that $\{1, f, 1\}=$

$\{1, h_{\iota}, 1\}=\{1, v_{t}f+fw_{\iota}, 1\}$ and $\{h_{t}\}=\{v_{t}f+fw_{t}\}=(f, f.)(\{w_{t}\}, \{v_{t}\})$ . Clearly
$(d, c)\nabla=0$ . Suppose that $(d, c)\{v, h_{t}, w\}=(\{1_{X}\}, \{1_{Y}\})$ . Then there exist
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homotopies $w_{t}$ : $w\simeq 1_{X}$ and $v_{t}$ : $1_{Y}\simeq v$ so that $\{v, h_{l}, w\}=\nabla\{v_{t}f+h_{l}+fw_{l}\}$ ,

completing the proof.
As a corollary of Proposition 3.4, we obtain the short exact sequence

(3.5) $\pi_{1}^{x}(Y;f)/ker(\nabla)\mapsto \mathscr{E}(f)\rightarrow>\mathscr{E}(X)\cap \mathscr{E}(Y)$ .

To obtain an analogue of Proposition 1.6, let $\delta=\{v, h_{t}, w\}$ and
$\delta^{\prime}=\{v^{\prime}, h_{t}^{\prime}, w^{\prime}\}$ be elements of $\mathscr{E}(f)$ such that $c\delta.c\delta^{\prime}=\{1_{Y}\}$ and $d\delta.d\delta^{\prime}=\{1_{X}\}$ .
Then there exist homotopies $g_{l}$ : $1_{Y}\simeq vv^{\prime}$ and $k_{\iota}$ : $ww^{\prime}\simeq 1_{X}$ giving rise to an
element

$ XX\Vert^{k}\overline{\overline{yt}}\Vert$

(3.6)
$\mu=\mu(g_{t}, k_{t})=f\downarrow_{v}^{\vec{f}_{f\downarrow}^{X}}xYY\Vert^{g_{1}^{l}}\vec{Z^{\prime}}hw\rightarrow^{1}Y\vec{hf}^{X}wv\downarrow f\Vert$

$\in\pi_{1}^{X}(Y;f)$ .

$Y-Y$
Let

(3.7) $\{\delta, \delta^{\prime}\}=\{\mu|g_{t} : 1 Y\simeq vv^{\prime}, k_{t} : ww^{\prime}\simeq 1_{X}\}\subseteq\pi_{1}^{X}(Y;f)$ .

Then we have

3.8. PROPOSITION. The subset $\{\delta, \delta^{\prime}\}$ is a coset in $\pi_{1}^{X}(Y;f)$ of $ker(\nabla)$ .
Moreover $\nabla\{\delta, \delta^{\prime}\}=\delta.\delta^{\prime}$ .

PROOF. The second assertion is a consequence of the homotopy pair
relation 3.2. For the first assertion, it is sufficient to observe that $\{\delta, \delta^{\prime}\}=$

$\nabla^{-1}(\delta.\delta^{\prime})$ .

3.9 EXAMPLE. Take $X=S^{5},$ $Y=S^{3}$ and again let $f$ be a representative of
$\eta_{3}^{2}$ . As indicated in Example 1.7 (respectively Example 2.9), the homomorphism
$f$ (respectively the homomorphism $f.$ ) is equivalent to $\eta_{4^{*}}^{2}$ (respectively to $\eta_{3_{*}}^{2}$ ).

Since coker $(\eta_{4^{*}}^{2}, \eta_{3_{*}}^{2})\approx Z_{2}\oplus Z_{3}$ and since $-\iota_{3}\circ\eta_{3}^{2}=\eta_{3}^{2}\circ(-\iota_{5})=\eta_{3}^{2}$ , we have
$\mathscr{E}(X)\cap \mathscr{E}(Y)\approx Z_{2}\oplus Z_{2}$ and the sequence 3.5 becomes

$Z_{2}\oplus Z_{3}-\mathscr{E}(f)\rightarrow>Z_{2}\oplus Z_{2}$ .

3. 10. PROPOSITION. $\mathscr{E}(f)\approx Z_{2}\oplus Z_{2}\oplus Z_{2}\oplus Z_{3}$ .
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The style of proof is similar to that for Propositions 1.7.1 and 2.9.2. The
following elements can be identified.

$\hat{y^{\iota}}-\bullet\downarrow\eta_{4}$

$\bullet\underline{-\iota_{f\bullet}}\eta_{4}$

$\gamma=\pi^{4}l_{\bullet\bullet^{\bullet}}^{\bullet}|_{\vec{-\iota_{\theta^{-}}}}\downarrow\pi^{4}\pi\downarrow\downarrow\pi_{s}\bullet\frac{\iota_{f}}{\underline f_{\iota_{\{}}-}\bullet$ $\gamma^{\prime}=\pi s_{\bullet\bullet^{\bullet}}^{\bullet}\downarrow_{\vec{-\iota_{3}}}\downarrow\pi^{4}\pi 4_{\bullet\frac{\iota_{4}}{y}\bullet}\downarrow^{\underline{\iota_{f}}}\downarrow\pi_{l}\beta=\eta^{4_{\bullet\rightarrow}}\pi\downarrow_{\iota}s|_{\vec{\iota_{l}^{4}}}\downarrow\eta\bullet\bullet\bullet^{\bullet}$

$\beta^{\prime}=\bullet\eta^{4_{\bullet\bullet^{\bullet}}}\pi_{s}\downarrow_{\vec{y_{\vec{\iota}}^{\iota}}}\downarrow I^{-},\downarrow\pi s$

Then we find $\beta\beta^{\prime}=\beta^{\prime}\beta=\gamma\gamma^{\prime}=\gamma^{\prime}\gamma=\nabla(v^{\prime})$ ,

$\pi 4^{\bullet}\downarrow^{\bigwedge_{-\iota}}\downarrow\eta_{4}\bullet\rightarrow\bullet-\iota\bullet$

,
$\beta\gamma^{\prime}=\gamma^{l}\beta=\beta^{\prime}\gamma=\gamma\beta^{\prime}=\pi 4_{\bullet}^{\bullet\bullet}\downarrow\hat{I}\downarrow-\iota$ $\pi 4$

$\beta\gamma=\gamma\beta=\beta^{\prime}\gamma^{\prime}=\gamma^{\prime}\beta^{\prime}=$
$\rightarrow^{\iota_{4}}\bullet$

$\eta s$ $\eta\iota$

$\bullet|_{\vec{-\iota_{S}}}\downarrow^{\pi s}$ $\downarrow_{\vec{-\iota s}}^{\prime}\bullet\downarrow\eta s$

with each element above of order 2 and the elements of order 3 commuting with
them. One possible choice of representatives of generators of the $Z_{2}$ summands
would be $\gamma,$

$\beta$ and $\nabla(v^{\prime})$ .

4. The self-equivalence group of a mapping cone

In this final section we consider the relation between the homotopy pair
self-equivalence group $\mathscr{E}(f)$ of a map $f$ and the self-equivalence group $\mathscr{E}(C_{f})$ of
the associated mapping cone. Given a pointed map $f$ : $X\rightarrow Y$, let $Pf$ : $Y\rightarrow C_{f}$

denote the inclusion of $Y$ into the mapping cone of $f$. It is well known that a
homotopy commutative diagram, such as the left hand diagram of 3.1 induces a
map $\chi$ : $C_{f}\rightarrow C_{g}$ given by equations

(4.1) $\chi(x, t)=(wx, t)+h_{1-t}x,$ $(x\in X, t\in I)$ , $\chi\gamma=vy(y\in Y)$ .

In particular the assignment $\Theta\{v,h_{t}, w\}=\{\chi\}\in\pi(C_{f}, C_{g})$ is functorial and
restricts further to a homomorphism

$\Theta:\mathscr{E}(f)\rightarrow \mathscr{E}(C_{f})$ .

We shall be interested in conditions under which $\Theta$ becomes an isomorphism.

4.2. THEOREM. Suppose that $X$ and $Y$ are CW-complexes whose homotopy
groups (based $at*$ ) $\pi_{i}(X, *),$ $\pi_{i}(Y, *)$ vanish for all $i\leq a-1$ andfor all $i\leq b-1$ ,
respectively. If $dim(X)\leq{\rm Min}(a+b-2,2a-1)$ and $dim(Y)\leq a$ then the
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homomorphism $\Theta$ : $\mathscr{E}(f)\rightarrow g(C_{f})$ is a surjection. If, further, $dim(X)<2a-1$ ,

$dim(Y)<a$ and $f=\sum f^{\prime}$ : $\sum X^{\prime}\rightarrow\sum Y^{\prime}$ then $\Theta$ is an isomorphism.

PROOF. The homomorphism is surjective if and only if every map $C_{f}\rightarrow C_{f}$

is principal, see [1; Chapter V.2], and according to [1; $V,$ $7.7,7.8$ , and 7.9], this
is the case under the conditions given. Furthermore if $f=\sum f^{\prime}$ : $\sum X^{\prime}\rightarrow\sum Y^{\prime}$

then injectivity is a consequence of the cofibre sequence (Puppe sequence) since
$\Theta$ is compatible with the extension in (3.5), compare the extension [1; V.7.19].

4.3. REMARK. In the case of Example 3.9 it is easy to check that the
conditions of Theorem 4.2 are satisfied. It follows that Proposition 3.10 also
computes the self-equivalence group $\mathscr{E}(C_{f})$ , for $f$ a representative of the class $\eta_{3}^{2}$ .
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