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ON ALMOST K\"AHLER MANIFOLDS OF
CONSTANT CURVATURE
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\S 1. Introduction

An almost Hermitian manifold $M=(M,J, g)$ is called an almost K\"ahler

manifold if the corresponding K\"ahler form is closed (or equivalently
$\mathfrak{S}_{X,Y,Z}g((\nabla_{X}J)Y, Z)=0$ for $X,$ $Y,$ $Z\in X(M)$ , where $\mathfrak{S}$ and $X(M)$ denotes the
cyclic sum and the Lie algebra of all differentiable vector fields on $M$

respectively). A K\"ahler manifold, which is defined by $\nabla J=0$ , is necessarily an
almost K\"ahler manifold. It is well-known that an almost K\"ahler manifold with
integrable almost complex structure is a K\"ahler manifold. A non-K\"ahler almost
K\"ahler manifold is called a strictly almost K\"ahler manifold. Conceming the
integrability of almost K\"ahler manifolds, the following conjecture by S. I.
Goldberg is known ([2]):

CONJECTURE. A compact almost Kahler Einstein manifold is a Kahler
manifold.

K. Sekigawa proved the above conjecture is true for the case where the
scalar curvature is nonnegative ([7]). However, the above conjecture is still open
in the case where the scalar curvature is negative.

Conceming the above conjecture, Z. Olszak proved that, in dimensions $\geq 8$ ,
an almost K\"ahler manifold of constant curvature is a flat K\"ahler manifold ([6]).

In dimension 4, D. E. Blair claimed that the same assertion is valid by making
use of quatemionic analysis. However, there is a gap in the final step of
his proof. The statement “each $a_{i}=0$

’ is not correct ([1], p. 1038). Recently,
K. Sekigawa and the author proved that a $2n(\geq 4)$ -dimensional complete
almost K\"ahler manifold of constant sectional curvature is a flat K\"ahler

manifold ([5]). The proof in [5] is essentially dependent on the completeness.
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The aim of the present paper is to prove that the hypothesis of completeness in
the above result is needless, namely we prove the following.

THEOREM. In dimensions $\geq 4$ , there are no almost Kahler manifolds of
constant curvature unless the constant is $0$ , in which case the manifold is
K\"ahlerian.

In dimensions $\geq 8$ , above Theorem is nothing but the result of Z. Olszak, but we
shall give a proof which does not depend on the dimension.

The author express his thanks to Professor K. Sekigawa for his many
valuable suggestions and advices.

\S 2. Preliminaries

Let $M=(M, J, g)$ be a $2n$-dimensional almost K\"ahler manifold. We denote
by $\nabla$ and $R$ the Riemannian connection and the curvature tensor of $M$ with
respect to the Riemannian metric $g$ . Here, we assume that the curvature tensor
$R$ is defined by $R(X, Y)=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$ for $X,$ $Y\in X(M)$ . Further, we
assume that $M$ is oriented by the volume form $dM=(-1)^{n}\Omega^{n}/n!$ , where $\Omega$ is
the K\"ahler form defined by $\Omega(X, Y)=g(X, JX)$ for $X,$ $Y\in X(M)$ . We recall a
curvature identity for almost K\"ahler manifold due to A. Gray ([3]):

(2.1) $R(w,x,y, z)-R(w, x,Jy,Jz)-R(Jw,Jx,y, z)+R(Jw,Jx, Jy,Jz)$

$+R(Jw, x,Jy, z)-R(Jw, x,Jz,y)-R(Jx, w,Jy,z)+R(Jx, w,Jz,y)$

$=2g((\nabla_{w}J)x-(\nabla_{X}J)w, (\nabla_{y}J)_{z}-(\nabla_{Z}J)y)$

for $w,$ $x,y,$ $z\in T_{p}M,p\in M$ . If $M$ is also a space of constant curvature $c$, then the
equality (2. 1) becomes

$2c\{g(x,y)g(w,z)-g(x, z)g(w,y)-g(x, Jy)g(w, Jz)+g(x,Jz)g(w, Jy)\}$

$=g((\nabla_{w}J)x-(\nabla_{x}J)w, (\nabla_{y}J)z-(\nabla_{z}J)y)$

and hence, we have

(2.2) $\Vert\nabla J\Vert^{2}=-8cn(n-1)$ .

Since we may assume that $n\geq 2$ , this implies that $c\leq 0$ and that $c=0$ if and
only if $M$ is a flat K\"ahler manifold.
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In the present paper, unless otherwise specified, we assume that all
manifolds are connected and of class $C^{\infty}$ and that all tensor fields are of
class $C^{\infty}$ .

\S 3. Proof of the theorem

If there exists a strictly almost K\"ahler structure on a space of constant
curvature, then we have, in the view of the argument in section 2, that locally
hyperbolic space must carry such a stmcture. We denote by $H^{2n}$ the 2n-
dimensional hyperbolic space of constant curvature $-1$ . As a model of $H^{2n}$ , we
take the upper half space $R_{+}^{2n}=\{(x_{1}, \ldots,x_{2n})\in R^{2n}|x_{1}>0\}$ of $R^{2n}$ and the
metric $g$ given by

$g=\frac{1}{x_{1}^{2}}\sum_{i=1}^{2n}dx_{j}\otimes dx_{i}$ .

Let $\{X_{i}=x_{1}(\partial/\partial x_{i})\}_{i=1,\ldots,2n}$ be a global orthonormal frame field. Then

$[X_{1}, X_{i}]=-[X_{i}, X_{1}]=X_{i}$ for $i=2,$
$\ldots,$

$2n$ ,

and are otherwise zero. If we put $\Gamma_{ijk}=g(\nabla_{X_{i}}X_{j}, X_{k})$ , then

(3.1) $\Gamma_{ii1}=-\Gamma_{i1i}=1$ for $j=2,$
$\ldots,$

$2n$ ,

and are otherwise zero.
Now, we assume that there exists a compatible almost K\"ahler stmcture

$(J, g)$ on a connected open neighborhood $U$ of a point $p\in H^{2n}$ . If we put
$J_{ij}=g(JX_{i}, X_{j})$ , then

$J_{ij}=-J_{ji}$ , $\sum_{u=1}^{2n}J_{iu}J_{ju}=\delta_{ij}$ .

We can choose isometries $\phi_{(1)},$
$\ldots,$

$\phi_{(2n)}$ of a neighborhood of $p$ in $U$ such that
(1) $\phi_{(a)}(p)=p$ for $a=1,$ $\ldots,$

$2n$ ;
(2) $(\phi_{(1)})_{*p}$ is the identity mapping of the tangent space at $p$ ;
(3) $(\phi_{(a)})_{*p}(X_{1})=(X_{a})_{p},$ $(\phi_{(a)})_{*p}(X_{a})=(X_{1})_{p}$ and $(\phi_{(a)})_{*p}(X_{i})=(X_{i})_{p}(i\neq 1, a)$

for $a=2,$ $\ldots,$
$2n$ .

We note that $\phi_{(1)}$ is the identity mapping. For brevity, we shall write $\phi_{(a)}$ instead
of $(\phi_{(a)})_{*}$ . We put $\phi_{(a)}(X_{i})=\sum_{j=1}^{2n}B_{ij}^{(a)}X_{j}$ . Then, from (2) and (3), we have

$(B_{ij}^{(1)}(p))=\left(\begin{array}{lll}1 & & \\ & . & 1\end{array}\right)$
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and

$(B_{ij}^{(a)}(p))=_{(a)}\ovalbox{\tt\small REJECT}^{0}1$

$0^{1}$

$01$

$(a)0^{1}0000$

$01$

$..$ .

$01\ovalbox{\tt\small REJECT}$ for $a=2,$ $\ldots,$
$2n$ .

Thus, it is easy to verify that

(3.2) $B_{11}^{(a)}(p)B_{1k}^{(a)}(p)=B_{11}^{(a)}(p)B_{k1}^{(a)}(p)=\delta_{1}^{a}\delta_{1k}$ .

Since $\phi_{(a)}(\nabla_{Xi}X_{j})=\nabla_{\phi_{(a)}(X_{i})}\phi_{(a)}(X_{j})$ , we have

$\sum_{u=1}^{2n}\Gamma_{iju}B_{uk}^{(a)}=\sum_{u=1}^{2n}B_{iu}^{(a)}(X_{u}B_{jk}^{(a)})+\sum_{u,v=1}^{2n}B_{iu}^{(a)}B_{jv}^{(a)}\Gamma_{uvk}$ ,

and hence

(3.3) $X_{i}B_{jk}^{(a)}=\sum_{u,v=1}^{2n}\Gamma_{ujv}B_{ui}^{(a)}B_{vk}^{(a)}-\sum_{u=1}^{2n}\Gamma_{iuk}B_{ju}^{(a)}$ .

Thus, from $(3.1)\sim(3.3)$ , we have

$(X_{1}B_{jk}^{(a)})(p)=B_{j1}^{(a)}(p)B_{1k}^{(a)}(p)$ for $j,k\geq 2$ ,

(3.4) $(X_{1}B_{1k}^{(a)})(p)=(X_{1}B_{k1}^{(a)})(p)=0$ for $k\geq 2$ ,

$(X_{1}B_{11}^{(a)})(p)=(B_{11}^{(a)})^{2}(p)-1=\delta_{1}^{a}-1$ .

We put $J^{(a)}=\phi_{(a)}^{-1}\circ J\circ\phi_{(a)}$ and $J_{ij}^{(a)}=g(J^{(a)}X_{i}, X_{j})$ . We note that each $(J^{(a)}, g)$ is
also a compatible almost K\"ahler stmcture. It is obvious that

$J_{ij}^{(a)}=\sum_{u,v=1}^{2n}B_{iu}^{(a)}B_{jv}^{(a)}J_{uv}$ .

Thus, we have

$X_{1}J_{ij}^{(a)}=\sum_{u,v=1}^{2n}(X_{1}B_{iu}^{(a)})B_{jv}^{(a)}J_{uv}+\sum_{u,v=1}^{2n}B_{iu}^{(a)}(X_{1}B_{jv}^{(a)})J_{uv}+\sum_{u,v=1}^{2n}B_{iu}^{(a)}B_{jv}^{(a)}X_{1}J_{uv}$ .
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From this equality, by direct calculation, we have

(3.5) $\sum_{i,j=1}^{2n}(X_{1}J_{ij}^{(a)})^{2}=\sum_{i,j=1}^{2n}(X_{1}J_{tj})^{2}+2\sum_{i,u=1}^{2n}(X_{1}B_{iu}^{(a)})^{2}$

$+2\sum_{i,j,u,u}^{2n}(X_{1}B_{iu}^{(a)})(X_{1}B_{jv}^{(a)})B_{jv}^{(a)}B_{iu}^{(a)}J_{uv}J_{u!v^{t}}$

$+4\sum_{j,u,v,v^{\prime}=1}^{2n}(X_{1}B_{jv}^{(a)})(X_{1}J_{uv^{l}})B_{jv}^{(a)}J_{uv}$ .

From (3.4), we have

$\sum_{i,u=1}^{2n}(X_{1}B_{iu}^{(a)})^{2}(p)=(X_{1}B_{11}^{(a)})^{2}(p)+\sum_{i,u\geq 2}(X_{1}B_{iu}^{(a)})^{2}(p)=2(\delta_{1}^{a}-1)^{2}$ .

Now, we set

$\xi^{(a)}=\sum_{u,v=1}^{2n}B_{1u}^{(a)}J_{1u}B_{1v}^{(a)}J_{1v}$ , $\eta^{(a)}=\sum_{u,v=1}^{2n}(X_{1}J_{1u})B_{1v}^{(a)}J_{uv}$ .

Then, from (3.2) and (3.4), by direct calculation, we can derive

$\sum_{i,j,u,\iota l,v,v^{\prime}=1}^{2n}$ $(X_{1}B_{iu}^{(a)})(p)(X_{1}B_{jv}^{(a)})(p)B_{jv}^{(a)}(p)B_{iu}^{(a)}(p)J_{uv}(p)J_{u^{\prime}v^{\prime}}(p)$

$=\sum_{u,v=1}^{2n}(X_{1}B_{11}^{(a)})(p)(X_{1}B_{11}^{(a)})(p)B_{1v}^{(a)}(p)B_{1u}^{(a)},(p)J_{1v}(p)J_{u^{\prime}1}(p)$

$+\sum_{u,v=1j}^{2n}\sum_{v^{\prime}\geq 2}(X_{1}B_{11}^{(a)})(p)(X_{1}B_{jv^{\prime}}^{(a)})(p)B_{jv}^{(a)}(p)B_{1u}^{(a)},(p)J_{1v}(p)J_{u^{\prime}v^{\prime}}(p)$

$+\sum_{u,v=1i}^{2n}\sum_{u\geq 2}(X_{1}B_{iu}^{(a)})(p)(X_{1}B_{11}^{(a)})(p)B_{1v}^{(a)}(p)B_{iu}^{(a)}(p)J_{uv}(p)h_{1}(p)$

$+\sum_{u,v=1i,j}^{2n}\sum_{u,v^{\prime}\geq 2}(X_{1}B_{iu}^{(a)})(p)(X_{1}B_{jv^{\prime}}^{(a)})(p)B_{jv}^{(a)}(p)B_{iu}^{(a)}(p)J_{uv}(p)J_{u^{\prime}v^{\prime}}(p)$

$=-(\delta_{1}^{a}-1)^{2}\xi^{(a)}(p)+(1-\delta_{1}^{a})^{2}\sum_{u,v^{\prime}\geq 2}B_{1u}^{(a)}(p)B_{1v}^{(a)}(p)J_{u1}(p)J_{1v^{\prime}}(p)$

$=-2(\delta_{1}^{a}-1)^{2}\xi^{(a)}(p)$ ,
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and

$\sum_{j,u,v,v^{\prime}=1}^{2n}(X_{1}B_{jv}^{(a)})(p)(X_{1}J_{uv^{\prime}})(p)B_{jv}^{(a)}(p)J_{uv}(p)$

$=\sum_{u,v=1}^{2n}(X_{1}B_{11}^{(a)})(p)(X_{1}J_{uv^{\prime}})(p)B_{1v}^{(a)}(p)J_{u1}(p)$

$+\sum_{u,v=1}^{2n}\sum_{j,v\geq 2}(X_{1}B_{jv}^{(a)})(p)(X_{1}J_{uv^{\prime}})(p)B_{jv}^{(a)}(p)J_{uv}(p)$

$=(\delta_{1}^{a}-1)\eta^{(a)}(p)+(1-\delta_{1}^{a})\sum_{u=1}^{2n}\sum_{v\geq 2}(X_{1}J_{u1})(p)B_{1v}^{(a)}(p)J_{uv}(p)$

$=2(\delta_{1}^{a}-1)\eta^{(a)}(p)$ .

Therefore, from (3.5), we obtain

(3.6) $\sum_{ij=1}^{2n}(\nabla_{1}J_{ij}^{(a)})^{2}(p)=\sum_{ij=1}^{2n}(\nabla_{1}J_{ij})^{2}(p)+4(\delta_{1}^{a}-1)^{2}$

$-4(\delta_{1}^{a}-1)^{2}\xi^{(a)}(p)+8(\delta_{1}^{a}-1)\eta^{(a)}(p)$ .

Thus, taking account of

$\xi^{(a)}(p)=(J_{1a})^{2}(p)$ , $\eta^{(a)}(p)=-\sum_{u}(\nabla_{1}J_{1u})(p)J_{au}(p)$ ,

we have

(3.7) $\sum_{a,i,j=1}^{2n}(\nabla_{1}J_{ij}^{(a)})^{2}(p)=2n\sum_{ij=1}^{2n}(\nabla_{1}J_{ij})^{2}(p)+8(n-1)$

$+8\sum_{a,u=1}^{2n}(\nabla_{1}J_{1u})(p)J_{au}(p)$ .

Since

(3.8) $g((\nabla_{X}J^{(a)})Y,Z)=g((\nabla_{\phi_{(a)}(X)}J)\phi_{(a)}(Y), \phi_{(a)}(Z))$ ,

we have

$\sum_{i,j}(\nabla_{1}J_{ij}^{(a)})^{2}(p)=\sum_{i,j}(\nabla_{a}J_{lj})^{2}(p)$ .
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Thus, (3.7) becomes

$\Vert\nabla J\Vert^{2}(p)=2n\sum_{i,j=1}^{2n}(\nabla_{1}J_{ij})^{2}(p)+8(n-1)+8\sum_{a,u=1}^{2n}(\nabla_{1}J_{1u})(p)J_{au}(p)$ .

Therefore, from (2.2), we have

(3.9) $n\sum_{i,j=1}^{2n}(\nabla_{1}J_{ij})^{2}(p)=4(n-1)^{2}-4\sum_{a,u=1}^{2n}(\nabla_{1}J_{1u})(p)J_{au}(p)$ .

Since the above argument does not depend on the choice of the almost complex
structure $J$, corresponding to (3.9), we can obtain

(3.10) $n\sum_{ij=1}^{2n}(\nabla_{1}J_{ij}^{(c)})^{2}(p)=4(n-1)^{2}-4\sum_{a,u=1}^{2n}(\nabla_{1}J_{1u}^{(c)})(p)J_{au}^{(c)}(p)$ .

for $c=2,$
$\ldots,$

$2n$ . Therefore, from (3.9) and (3.10), we have

$n\sum_{ic,i_{1}=1}^{2n}(\nabla_{1}J_{ij}^{(c)})^{2}(p)=8(n-1)^{2}-4\sum_{c,a,u=1}^{2n}(\nabla_{1}J_{1u}^{(c)})(p)J_{au}^{(c)}(p)$ .

Again from (3.8), the above equality becomes

$n\sum_{c,i_{1}i=1}^{2n}(\nabla_{c}J_{tj})^{2}(p)=8n(n-1)^{2}-4\sum_{c,a,u=1}^{2n}(\nabla_{c}J_{cu})(p)J_{au}(p)$ ,

namely,

(3.11) $n\Vert\nabla J\Vert^{2}(p)=8n(n-1)^{2}-4\sum_{c,a,u}(\nabla_{c}J_{cu})(p)J_{au}(p)$ .

Since an almost K\"ahler manifold is necessarily a semi-K\"ahler manifold, the
second term in the right-hand-side of (3.11) must vanish. Therefore, (3.11) yields

$\Vert\nabla J\Vert^{2}(p)=8(n-1)^{2}$ .

Hence, from (2.2), we have

$8n(n-1)=8(n-1)^{2}$ .

This implies $n=1$ .
Therefore, we have finally our Theorem.
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