ON ALMOST KÄHLER MANIFOLDS OF CONSTANT CURVATURE

By

Takashi Oguro

§ 1. Introduction

An almost Hermitian manifold $M=(M, J, g)$ is called an almost Kähler manifold if the corresponding Kähler form is closed (or equivalently $\mathfrak{S}_{X, Y, Z} g\left(\left(\nabla_{X} J\right) Y, Z\right)=0$ for $X, Y, Z \in \mathfrak{X}(M)$, where \mathcal{S} and $\mathfrak{X}(M)$ denotes the cyclic sum and the Lie algebra of all differentiable vector fields on M respectively). A Kähler manifold, which is defined by $\nabla J=0$, is necessarily an almost Kähler manifold. It is well-known that an almost Kähler manifold with integrable almost complex structure is a Kähler manifold. A non-Kähler almost Kähler manifold is called a strictly almost Kähler manifold. Concerning the integrability of almost Kähler manifolds, the following conjecture by S. I. Goldberg is known ([2]):

Conjecture. A compact almost Kähler Einstein manifold is a Kähler manifold.
K. Sekigawa proved the above conjecture is true for the case where the scalar curvature is nonnegative ([7]). However, the above conjecture is still open in the case where the scalar curvature is negative.

Concerning the above conjecture, Z. Olszak proved that, in dimensions ≥ 8, an almost Kähler manifold of constant curvature is a flat Kähler manifold ([6]). In dimension 4, D. E. Blair claimed that the same assertion is valid by making use of quaternionic analysis. However, there is a gap in the final step of his proof. The statement "each $a_{i}=0$ " is not correct ([1], p. 1038). Recently, K. Sekigawa and the author proved that a $2 n(\geq 4)$-dimensional complete almost Kähler manifold of constant sectional curvature is a flat Kähler manifold ([5]). The proof in [5] is essentially dependent on the completeness.

[^0]The aim of the present paper is to prove that the hypothesis of completeness in the above result is needless, namely we prove the following.

Theorem. In dimensions ≥ 4, there are no almost Kähler manifolds of constant curvature unless the constant is 0 , in which case the manifold is Kählerian.

In dimensions ≥ 8, above Theorem is nothing but the result of Z. Olszak, but we shall give a proof which does not depend on the dimension.

The author express his thanks to Professor K. Sekigawa for his many valuable suggestions and advices.

§ 2. Preliminaries

Let $M=(M, J, g)$ be a $2 n$-dimensional almost Kähler manifold. We denote by ∇ and R the Riemannian connection and the curvature tensor of M with respect to the Riemannian metric g. Here, we assume that the curvature tensor R is defined by $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ for $X, Y \in \mathfrak{X}(M)$. Further, we assume that M is oriented by the volume form $d M=(-1)^{n} \Omega^{n} / n!$, where Ω is the Kähler form defined by $\Omega(X, Y)=g(X, J X)$ for $X, Y \in \mathfrak{X}(M)$. We recall a curvature identity for almost Kähler manifold due to A. Gray ([3]):

$$
\begin{align*}
& R(w, x, y, z)-R(w, x, J y, J z)-R(J w, J x, y, z)+R(J w, J x, J y, J z) \tag{2.1}\\
& \quad+R(J w, x, J y, z)-R(J w, x, J z, y)-R(J x, w, J y, z)+R(J x, w, J z, y) \\
&= 2 g\left(\left(\nabla_{w} J\right) x-\left(\nabla_{x} J\right) w,\left(\nabla_{y} J\right)_{z}-\left(\nabla_{z} J\right) y\right)
\end{align*}
$$

for $w, x, y, z \in T_{p} M, p \in M$. If M is also a space of constant curvature c, then the equality (2.1) becomes

$$
\begin{aligned}
& 2 c\{g(x, y) g(w, z)-g(x, z) g(w, y)-g(x, J y) g(w, J z)+g(x, J z) g(w, J y)\} \\
& \quad=g\left(\left(\nabla_{w} J\right) x-\left(\nabla_{x} J\right) w,\left(\nabla_{y} J\right) z-\left(\nabla_{z} J\right) y\right)
\end{aligned}
$$

and hence, we have

$$
\begin{equation*}
\|\nabla J\|^{2}=-8 c n(n-1) \tag{2.2}
\end{equation*}
$$

Since we may assume that $n \geq 2$, this implies that $c \leq 0$ and that $c=0$ if and only if M is a flat Kähler manifold.

In the present paper, unless otherwise specified, we assume that all manifolds are connected and of class C^{∞} and that all tensor fields are of class C^{∞}.

§ 3. Proof of the theorem

If there exists a strictly almost Kähler structure on a space of constant curvature, then we have, in the view of the argument in section 2 , that locally hyperbolic space must carry such a structure. We denote by $\boldsymbol{H}^{2 n}$ the $2 n$ dimensional hyperbolic space of constant curvature -1. As a model of $\boldsymbol{H}^{2 n}$, we take the upper half space $\boldsymbol{R}_{+}^{2 n}=\left\{\left(x_{1}, \ldots, x_{2 n}\right) \in \boldsymbol{R}^{2 n} \mid x_{1}>0\right\}$ of $\boldsymbol{R}^{2 n}$ and the metric g given by

$$
g=\frac{1}{x_{1}^{2}} \sum_{i=1}^{2 n} d x_{i} \otimes d x_{i}
$$

Let $\left\{X_{i}=x_{1}\left(\partial / \partial x_{i}\right)\right\}_{i=1, \ldots, 2 n}$ be a global orthonormal frame field. Then

$$
\left[X_{1}, X_{i}\right]=-\left[X_{i}, X_{1}\right]=X_{i} \quad \text { for } \quad i=2, \ldots, 2 n
$$

and are otherwise zero. If we put $\Gamma_{i j k}=g\left(\nabla_{X_{i}} X_{j}, X_{k}\right)$, then

$$
\begin{equation*}
\Gamma_{i i 1}=-\Gamma_{i 1 i}=1 \quad \text { for } \quad i=2, \ldots, 2 n \tag{3.1}
\end{equation*}
$$

and are otherwise zero.
Now, we assume that there exists a compatible almost Kähler structure (J, g) on a connected open neighborhood U of a point $p \in \boldsymbol{H}^{2 n}$. If we put $J_{i j}=g\left(J X_{i}, X_{j}\right)$, then

$$
J_{i j}=-J_{j i}, \quad \sum_{u=1}^{2 n} J_{i u} J_{j u}=\delta_{i j} .
$$

We can choose isometries $\phi_{(1)}, \ldots, \phi_{(2 n)}$ of a neighborhood of p in U such that
(1) $\phi_{(a)}(p)=p$ for $a=1, \ldots, 2 n$;
(2) $\left(\phi_{(1)}\right)_{* p}$ is the identity mapping of the tangent space at p;
(3) $\left(\phi_{(a)}\right)_{* p}\left(X_{1}\right)=\left(X_{a}\right)_{p},\left(\phi_{(a)}\right)_{* p}\left(X_{a}\right)=\left(X_{1}\right)_{p}$ and $\left(\phi_{(a)}\right)_{* p}\left(X_{i}\right)=\left(X_{i}\right)_{p}(i \neq 1, a)$ for $a=2, \ldots, 2 n$.
We note that $\phi_{(1)}$ is the identity mapping. For brevity, we shall write $\phi_{(a)}$ instead of $\left(\phi_{(a)}\right)_{*}$. We put $\phi_{(a)}\left(X_{i}\right)=\sum_{j=1}^{2 n} B_{i j}^{(a)} X_{j}$. Then, from (2) and (3), we have

$$
\left(B_{i j}^{(1)}(p)\right)=\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

and

$$
\left(B_{i j}^{(a)}(p)\right)={ }_{(a)}\left(\begin{array}{cccccccc}
\\
0 & & & & & (a) \\
& & & & \\
& 1 & & & 0 & & & \\
& & \ddots & & \vdots & & & \\
& & & 1 & 0 & & & \\
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
& & & & 0 & 1 & & \\
& & & & \vdots & & \ddots & \\
& & & & 0 & & & 1
\end{array}\right) \quad \text { for } a=2, \ldots, 2 n .
$$

Thus, it is easy to verify that

$$
\begin{equation*}
B_{11}^{(a)}(p) B_{1 k}^{(a)}(p)=B_{11}^{(a)}(p) B_{k 1}^{(a)}(p)=\delta_{1}^{a} \delta_{1 k} \tag{3.2}
\end{equation*}
$$

Since $\phi_{(a)}\left(\nabla_{X i} X_{j}\right)=\nabla_{\phi_{(a)}\left(X_{i}\right)} \phi_{(a)}\left(X_{j}\right)$, we have

$$
\sum_{u=1}^{2 n} \Gamma_{i j u} B_{u k}^{(a)}=\sum_{u=1}^{2 n} B_{i u}^{(a)}\left(X_{u} B_{j k}^{(a)}\right)+\sum_{u, v=1}^{2 n} B_{i u}^{(a)} B_{j v}^{(a)} \Gamma_{u v k}
$$

and hence

$$
\begin{equation*}
X_{i} B_{j k}^{(a)}=\sum_{u, v=1}^{2 n} \Gamma_{u j v} B_{u i}^{(a)} B_{v k}^{(a)}-\sum_{u=1}^{2 n} \Gamma_{i u k} B_{j u}^{(a)} \tag{3.3}
\end{equation*}
$$

Thus, from (3.1) ~ (3.3), we have

$$
\begin{array}{lrr}
\left(X_{1} B_{j k}^{(a)}\right)(p)=B_{j 1}^{(a)}(p) B_{1 k}^{(a)}(p) \quad \text { for } \quad j, k \geq 2 \\
\left(X_{1} B_{1 k}^{(a)}\right)(p)=\left(X_{1} B_{k 1}^{(a)}\right)(p)=0 \quad \text { for } & k \geq 2 \tag{3.4}\\
\left(X_{1} B_{11}^{(a)}\right)(p)=\left(B_{11}^{(a)}\right)^{2}(p)-1=\delta_{1}^{a}-1 . &
\end{array}
$$

We put $J^{(a)}=\phi_{(a)}^{-1} \circ J \circ \phi_{(a)}$ and $J_{i j}^{(a)}=g\left(J^{(a)} X_{i}, X_{j}\right)$. We note that each $\left(J^{(a)}, g\right)$ is also a compatible almost Kähler structure. It is obvious that

$$
J_{i j}^{(a)}=\sum_{u, v=1}^{2 n} B_{i u}^{(a)} B_{j v}^{(a)} J_{u v} .
$$

Thus, we have

$$
X_{1} J_{i j}^{(a)}=\sum_{u, v=1}^{2 n}\left(X_{1} B_{i u}^{(a)}\right) B_{j v}^{(a)} J_{u v}+\sum_{u, v=1}^{2 n} B_{i u}^{(a)}\left(X_{1} B_{j v}^{(a)}\right) J_{u v}+\sum_{u, v=1}^{2 n} B_{i u}^{(a)} B_{j v}^{(a)} X_{1} J_{u v} .
$$

From this equality, by direct calculation, we have

$$
\begin{align*}
\sum_{i, j=1}^{2 n}\left(X_{1} J_{i j}^{(a)}\right)^{2}= & \sum_{i, j=1}^{2 n}\left(X_{1} J_{i j}\right)^{2}+2 \sum_{i, u=1}^{2 n}\left(X_{1} B_{i u}^{(a)}\right)^{2} \tag{3.5}\\
& +2 \sum_{i, j, u, u^{\prime}, v, v^{\prime}=1}^{2 n}\left(X_{1} B_{i u}^{(a)}\right)\left(X_{1} B_{j v^{\prime}}^{(a)}\right) B_{j v}^{(a)} B_{i u^{\prime}}^{(a)} J_{u v} J_{u^{\prime} v^{\prime}} \\
& +4 \sum_{j, u, v, v^{\prime}=1}^{2 n}\left(X_{1} B_{j v}^{(a)}\right)\left(X_{1} J_{u v^{\prime}}\right) B_{j v^{\prime}}^{(a)} J_{u v} .
\end{align*}
$$

From (3.4), we have

$$
\sum_{i, u=1}^{2 n}\left(X_{1} B_{i u}^{(a)}\right)^{2}(p)=\left(X_{1} B_{11}^{(a)}\right)^{2}(p)+\sum_{i, u \geq 2}\left(X_{1} B_{i u}^{(a)}\right)^{2}(p)=2\left(\delta_{1}^{a}-1\right)^{2}
$$

Now, we set

$$
\xi^{(a)}=\sum_{u, v=1}^{2 n} B_{1 u}^{(a)} J_{1 u} B_{1 v}^{(a)} J_{1 v}, \quad \eta^{(a)}=\sum_{u, v=1}^{2 n}\left(X_{1} J_{1 u}\right) B_{1 v}^{(a)} J_{u v} .
$$

Then, from (3.2) and (3.4), by direct calculation, we can derive

$$
\begin{aligned}
& \sum_{i, j, u, u^{\prime}, v, v^{\prime}=1}^{2 n}\left(X_{1} B_{i u}^{(a)}\right)(p)\left(X_{1} B_{j v^{\prime}}^{(a)}\right)(p) B_{j v}^{(a)}(p) B_{i u^{\prime}}^{(a)}(p) J_{u v}(p) J_{u^{\prime} v^{\prime}}(p) \\
& =\sum_{u^{\prime}, v=1}^{2 n}\left(X_{1} B_{11}^{(a)}\right)(p)\left(X_{1} B_{11}^{(a)}\right)(p) B_{1 v}^{(a)}(p) B_{1 u^{\prime}}^{(a)}(p) J_{1 v}(p) J_{u^{\prime} 1}(p) \\
& \quad+\sum_{u^{\prime}, v=1}^{2 n} \sum_{j, v^{\prime} \geq 2}\left(X_{1} B_{11}^{(a)}\right)(p)\left(X_{1} B_{j v^{\prime}}^{(a)}\right)(p) B_{j v}^{(a)}(p) B_{1 u^{\prime}}^{(a)}(p) J_{1 v}(p) J_{u^{\prime} v^{\prime}}(p) \\
& \quad+\sum_{u^{\prime}, v=1}^{2 n} \sum_{i, u \geq 2}\left(X_{1} B_{i u}^{(a)}\right)(p)\left(X_{1} B_{11}^{(a)}\right)(p) B_{1 v}^{(a)}(p) B_{i u^{\prime}}^{(a)}(p) J_{u v}(p) J_{u^{\prime} 1}(p) \\
& \quad+\sum_{u^{\prime}, v=1}^{2 n} \sum_{i, j, u, v^{\prime} \geq 2}\left(X_{1} B_{i u}^{(a)}\right)(p)\left(X_{1} B_{j v^{\prime}}^{(a)}\right)(p) B_{j v}^{(a)}(p) B_{i u^{\prime}}^{(a)}(p) J_{u v}(p) J_{u^{\prime} v^{\prime}}(p) \\
& =-\left(\delta_{1}^{a}-1\right)^{2} \xi^{(a)}(p)+\left(1-\delta_{1}^{a}\right)^{2} \sum_{u, v^{\prime} \geq 2} B_{1 u}^{(a)}(p) B_{1 v^{\prime}}^{(a)}(p) J_{u 1}(p) J_{1 v^{\prime}}(p) \\
& =-2\left(\delta_{1}^{a}-1\right)^{2} \xi^{(a)}(p),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j, u, v, v^{\prime}=1}^{2 n}\left(X_{1} B_{j v}^{(a)}\right)(p)\left(X_{1} J_{u v}\right)(p) B_{j v^{\prime}}^{(a)}(p) J_{u v}(p) \\
& =\sum_{u, v^{\prime}=1}^{2 n}\left(X_{1} B_{11}^{(a)}\right)(p)\left(X_{1} J_{u v}\right)(p) B_{1 v}^{(a)}(p) J_{u 1}(p) \\
& \quad+\sum_{u, v=1, j_{j v \geq 2}^{2 n}} \sum_{1}\left(X_{1} B_{j v}^{(a)}\right)(p)\left(X_{1} J_{u v}\right)(p) B_{j v^{\prime}}^{(a)}(p) J_{u v}(p) \\
& =\left(\delta_{1}^{a}-1\right) \eta^{(a)}(p)+\left(1-\delta_{1}^{a}\right) \sum_{u=1}^{2 n} \sum_{v \geq 2}\left(X_{1} J_{u 1}\right)(p) B_{1 v}^{(a)}(p) J_{u v}(p) \\
& =2\left(\delta_{1}^{a}-1\right) \eta^{(a)}(p) .
\end{aligned}
$$

Therefore, from (3.5), we obtain

$$
\begin{align*}
\sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}^{(a)}\right)^{2}(p)= & \sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}\right)^{2}(p)+4\left(\delta_{1}^{a}-1\right)^{2} \tag{3.6}\\
& -4\left(\delta_{1}^{a}-1\right)^{2} \xi^{(a)}(p)+8\left(\delta_{1}^{a}-1\right) \eta^{(a)}(p)
\end{align*}
$$

Thus, taking account of

$$
\xi^{(a)}(p)=\left(J_{1 a}\right)^{2}(p), \quad \eta^{(a)}(p)=-\sum_{u}\left(\nabla_{1} J_{1 u}\right)(p) J_{a u}(p)
$$

we have

$$
\begin{align*}
\sum_{a, i, j=1}^{2 n}\left(\nabla_{1} J_{i j}^{(a)}\right)^{2}(p)=2 n & \sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}\right)^{2}(p)+8(n-1) \tag{3.7}\\
& +8 \sum_{a, u=1}^{2 n}\left(\nabla_{1} J_{1 u}\right)(p) J_{a u}(p)
\end{align*}
$$

Since

$$
\begin{equation*}
g\left(\left(\nabla_{X} J^{(a)}\right) Y, Z\right)=g\left(\left(\nabla_{\phi_{(a)}(X)} J\right) \phi_{(a)}(Y), \phi_{(a)}(Z)\right) \tag{3.8}
\end{equation*}
$$

we have

$$
\sum_{i, j}\left(\nabla_{1} J_{i j}^{(a)}\right)^{2}(p)=\sum_{i, j}\left(\nabla_{a} J_{i j}\right)^{2}(p) .
$$

Thus, (3.7) becomes

$$
\|\nabla J\|^{2}(p)=2 n \sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}\right)^{2}(p)+8(n-1)+8 \sum_{a, u=1}^{2 n}\left(\nabla_{1} J_{1 u}\right)(p) J_{a u}(p)
$$

Therefore, from (2.2), we have

$$
\begin{equation*}
n \sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}\right)^{2}(p)=4(n-1)^{2}-4 \sum_{a, u=1}^{2 n}\left(\nabla_{1} J_{1 u}\right)(p) J_{a u}(p) \tag{3.9}
\end{equation*}
$$

Since the above argument does not depend on the choice of the almost complex structure J, corresponding to (3.9), we can obtain

$$
\begin{equation*}
n \sum_{i, j=1}^{2 n}\left(\nabla_{1} J_{i j}^{(c)}\right)^{2}(p)=4(n-1)^{2}-4 \sum_{a, u=1}^{2 n}\left(\nabla_{1} J_{1 u}^{(c)}\right)(p) J_{a u}^{(c)}(p) . \tag{3.10}
\end{equation*}
$$

for $c=2, \ldots, 2 n$. Therefore, from (3.9) and (3.10), we have

$$
n \sum_{c, i, j=1}^{2 n}\left(\nabla_{1} J_{i j}^{(c)}\right)^{2}(p)=8(n-1)^{2}-4 \sum_{c, a, u=1}^{2 n}\left(\nabla_{1} J_{1 u}^{(c)}\right)(p) J_{a u}^{(c)}(p) .
$$

Again from (3.8), the above equality becomes

$$
n \sum_{c, i, j=1}^{2 n}\left(\nabla_{c} J_{i j}\right)^{2}(p)=8 n(n-1)^{2}-4 \sum_{c, a, u=1}^{2 n}\left(\nabla_{c} J_{c u}\right)(p) J_{a u}(p),
$$

namely,

$$
\begin{equation*}
n\|\nabla J\|^{2}(p)=8 n(n-1)^{2}-4 \sum_{c, a, u}\left(\nabla_{c} J_{c u}\right)(p) J_{a u}(p) . \tag{3.11}
\end{equation*}
$$

Since an almost Kähler manifold is necessarily a semi-Kähler manifold, the second term in the right-hand-side of (3.11) must vanish. Therefore, (3.11) yields

$$
\|\nabla J\|^{2}(p)=8(n-1)^{2}
$$

Hence, from (2.2), we have

$$
8 n(n-1)=8(n-1)^{2}
$$

This implies $n=1$.
Therefore, we have finally our Theorem.

References

[1] Blair, D. E., Non existence of 4-dimensional almost Kähler manifolds of constant curvature, Proc. Amer. Math. Soc. 110 (1990), 1033-1039.
[2] Goldberg, S. I., Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96100.
[3] Gray, A., Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976), 601-612.
[4] Libermann, P., Classification and conformal properties of almost Hermitian structures, Colloquia Math. Soc. János Bolyai 31, Differential Geom., Budapest (Hungary) 1979, 371391, North-Holland Publ.
[5] Oguro, T. and Sekigawa, K., Non-existence of almost Kähler structure on hyperbolic spaces of dimension $2 n(\geq 4)$, Math. Ann. 300 (1994), 317-329.
[6] Olszak, Z., A Note on almost Kähler manifolds, Bull. Acad. Polon. Sci. 26 (1978), 139-141.
[7] Sekigawa, K., On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677-684.

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata, 950-21, Japan

[^0]: Received March 22, 1995.
 Revised July 10, 1995.

