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CONSTANT CURVATURE
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§1. Introduction

An almost Hermitian manifold M = (M,J,g) is called an almost Kéhler
manifold if the corresponding Kihler form is closed (or equivalently
Sx,vzg(VxJ)Y,Z) =0 for X,Y,Z e X(M), where © and X(M) denotes the
cyclic sum and the Lie algebra of all differentiable vector fields on M
respectively). A Kihler manifold, which is defined by VJ = 0, is necessarily an
almost Kihler manifold. It is well-known that an almost Kéhler manifold with
integrable almost complex structure is a Kadhler manifold. A non-Kéhler almost
Kihler manifold is called a strictly almost Kidhler manifold. Concerning the
integrability of almost Kihler manifolds, the following conjecture by S. I.
Goldberg is known ([2]):

CONJECTURE. A compact almost Kdihler Einstein manifold is a Kdahler
manifold.

K. Sekigawa proved the above conjecture is true for the case where the
scalar curvature is nonnegative ([7]). However, the above conjecture is still open
in the case where the scalar curvature is negative.

Concerning the above conjecture, Z. Olszak proved that, in dimensions > 8,
an almost Kihler manifold of constant curvature is a flat Kidhler manifold ([6]).
In dimension 4, D. E. Blair claimed that the same assertion is valid by making
use of quaternionic analysis. However, there is a gap in the final step of
his proof. The statement “each a; = 0" is not correct ([1], p. 1038). Recently,
K. Sekigawa and the author proved that a 2n(> 4)-dimensional complete
almost Kihler manifold of constant sectional curvature is a flat Kaéhler
manifold ([5]). The proof in is essentially dependent on the completeness.
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The aim of the present paper is to prove that the hypothesis of completeness in
the above result is needless, namely we prove the following.

THEOREM. In dimensions > 4, there are no almost Kdhler manifolds of
constant curvature unless the constant is 0, in which case the manifold is
Kdhlerian.

In dimensions > 8, above is nothing but the result of Z. Olszak, but we
shall give a proof which does not depend on the dimension.

The author express his thanks to Professor K. Sekigawa for his many
valuable suggestions and advices.

§2. Preliminaries

Let M = (M,J,g) be a 2n-dimensional almost Kihler manifold. We denote
by V and R the Riemannian connection and the curvature tensor of M with
respect to the Riemannian metric g. Here, we assume that the curvature tensor
R is defined by R(X,Y)=[Vx,Vy]-Vxy for X,Y e X(M). Further, we
assume that M is oriented by the volume form dM = (—1)"Q"/n!, where Q is
the Kéhler form defined by Q(X,Y) = g(X,JX) for X,Y € X(M). We recall a
curvature identity for almost Kdhler manifold due to A. Gray ([3]):

(2.1) R(w,x,y,z) — R(w,x,Jy,Jz) — R(Jw,Jx,y,z) + R(Jw,Jx,Jy, Jz)
+ R(Jw, x,Jy,z) — R(Jw, x,Jz,y) — R(Jx,w,Jy,z) + R(Jx,w,Jz,)
= 29((VwJ)x — (VxD)w, (VyJ), — (V2])y)

for w,x,y,ze T,M,pe M. If M is also a space of constant curvature c, then the
equality (2.1) becomes

2c{g(x,)9(w,z) — g(x,2)g(w,y) — g(x,Jy)g(w, Jz) + g(x, Jz)g(w, Jy)}
= g((Vud)x — (Vxl)w, (V) )z — (V2J)y)

and hence, we have
(2.2) IVJ||> = —8cn(n — 1).

Since we may assume that n > 2, this implies that ¢ < 0 and that ¢ =0 if and
only if M is a flat Kihler manifold.
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In the present paper, unless otherwise specified, we assume that all
manifolds are connected and of class C® and that all tensor fields are of
class C™.

§3. Proof of the theorem

If there exists a strictly almost Kéhler structure on a space of constant
curvature, then we have, in the view of the argument in section 2, that locally
hyperbolic space must carry such a structure. We denote by H?" the 2n-
dimensional hyperbolic space of constant curvature —1. As a model of H?, we

take the upper half space R> = {(xi,...,X2n) € R”"|x; > 0} of R and the
metric g given by

1 2n
=—zZ %i @ dx;
X1 =1

Let {X; = x1(0/0xi)};_;,. ., be a global orthonormal frame field. Then
(X1, Xi] = —[Xi;, Xh] = X; for i=2,...,2n,

and are otherwise zero. If we put I';jx = g(Vx, Xj, Xi), then

(3.1) Fin=-Tq;=1 for i=2,...,2n,

and are otherwise zero.

Now, we assume that there exists a compatible almost Kéahler structure
(J,g) on a connected open neighborhood U of a point p e H*. If we put
Ji = 9(JX;, X;), then

2n
Jij = —Jj, Z Jinju = 6jj.
u=

We can choose isometries @y, ...,#n, of a neighborhood of p in U such that
(1) ¢(a)(p) =pfora=1,...,2n
) (éq1)).p, is the identity mapping of the tangent space at p;
(3) (¢(“))*P(Xl) = (Xa)ps ($(a))sp(Xa) = (X1), and (J(s)) ., (Xi) = (Xi),(i # 1,0)
for a=2,...,2n.

We note that ¢, is the identity mapping. For brevity, we shall write ¢, instead
of ($4)s We put ¢, (X;) = 2 B(“)X Then, from (2) and (3), we have

1
(BY (p ))—( )
1
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and
( (@) )
0 1
1 0
( _
(B,‘;)(P)) = 1 0 fora =2,
«f1 0 --- 0 0 0 --- 0
0 1
| 0 1)
Thus, it is easy to verify that
(3.2) B (p)B(p) = B (p)B) (p) = 6idu.

Since @) (VxiXj) = Vg, (x)#(5) (X)), we have

2n 2n
S ruBY =3 BY(X.BY) + Z B BT
=1

u=1 u,v=1
and hence
2n
(3.3) X:BY = Z TyBYBE — 3" TuBY.
u,v=1 u=1

Thus, from (3.1) ~ (3.3), we have
(BY)(p) = B‘“’(p)B%) for Jjk>2,
(3.4) (X1B2)(p) = (X;BY)(p) = for k>2,

(1 B9)(p) = (B (p) —1=67 — 1.

We put J@ = g} o J o ¢, and J,-ﬁ.“) = g(J9X;, X;). We note that each (J@,g) is

also a compatible almost Kéhler structure. It is obvious that

T = Z BYBD ).

u,p=1

Thus, we have

J(a) Z ( Xl (a) B(:) Juw + z B(a) B(a)) Juw + Z B(a) B(-:) X1 .

uv— uv— uv—
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From this equality, by direct calculation, we have

(3.5)

i(X1J§ja))2 _ Z(Xl‘ll.l) +2 Z(X B@)?

i,j=1 i,j=1 iu=1
2n
+2 Y (xiBY)(X1BY))BY B T
i,j.uu o,v'=1
2n
+4 3" (XB)(X1uy) B uo.
Juu,=1

From ((3.4), we have

E(XB‘“’) (p) = (X1B)) () + D (XiBY)2(p) = 2(85 — 1)%.

iu=1 =2

Now, we set

2n
& = Z BB N, 19 =Y (X1J1)B) u

u,v=1 u,v=1

Then, from and [3.4), by direct calculation, we can derive

2n
> (x1BD)(p)(X1B)(p)BY (p)BY () Jur(P) v (p)
i, juu ov'=1

2n
= S (B2)(p)(X1BY)(p)BY (p) B (p)T16(P) 1 (P)
=1

+ Zl ;Z(XIB<“) )(P)(X1B7)(P) B, (P)BI) (P)1o(P) v (P)
wo=1jv >

2n
+ 3 S (xaBD)(p)(X1BY)(p)BY (p)BY ()T £) 1 (P)

woo=1iu>2

2n
+3° 3 B (p)(X1BE)(p)BY (p)BY () us(p) v (p)
wo=1i,jur>2

= —(8 — 1’69 (p) + (1 - 69 3 B (p)B)(p)Ju1 (p)J1v(P)

u v =2

= —2(61 - 1€ (p),
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and

2n
W=

3 (B (p)(X1Jur)(P) B (P)us(P)
1

j7u1v
2n

= Y (B (p)(X1Jur) (P)B(P) T (P)
u,v'=1

2n
+ 3 3" (XiB)(p) (X1 ) (P)B) (P) s P)
uv=1jv>2

2n
= (3 = D1 9(p) + (1 =89 33" (X19:)(2) B () u(p)

u=1 v>2
=2(6 — )9 (p).

Therefore, from [3.5), we obtain

2n 2n
(3.6) S (VI () = 3 (Vidy)(p) + 485 — 1)°
ij=1 ij=1

— 4(8% — 1)2E@(p) + 8(65 — 1)1 (p).

Thus, taking account of

E9(p) = (i)’ (p),  19(p) == (ViJ1)(P)au(P),

u

we have
2n 2n
(3.7) 3" (Vi) (p) =20 (V1) (p) + 8(n — 1)
a,i,j=1 ij=1
2n
+8 Z (ViJ1u) (P)au(P)-
a,u=1
Since
(3.8) 9(VxID)Y,Z) = g((V4yx)))b(a) (), $(0)(2)),
we have

STV () = S (Vady)? (p).
i,j

LJ
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Thus, becomes

2n 2n
IVII2(p) =21 Y (Vidy)*(p) + 8(n— 1) +8 D (ViJ1)(P)au(D)-

i,j=1 a,u=1

Therefore, from [2.2), we have

2n 2n
(3.9) n Y (ViJy)*(p) =4(n—1)* =4 Y~ (ViJu)(p)au(P)-

i,j=1 a,u=1

Since the above argument does not depend on the choice of the almost complex
structure J, corresponding to [3.9), we can obtain

(3.10) n Z(Vﬂ“’ —4(n—17%-4 Z (V1) (p)IQ(p).

a,u=1

for ¢ =2,...,2n. Therefore, from and [3.10), we have

n Z(v T (p) =8(n—1)* -4 Z (ViI ) ()T (p).

c,ij=1 c,au=1
Again from (3.8), the above equality becomes
2 2 &
n Z VeJy) (p) =8n(n— 1) =4 >~ (VeJu)(P)Jau(P),
c,ij=1 c,a,u=1

namely,

(3.11) n|| VI (p) = 8n(n —1)* — 4 Y (Vo) (P)au(P).

c,a,u

Since an almost Kédhler manifold is necessarily a semi-Kdhler manifold, the
second term in the right-hand-side of must vanish. Therefore, yields

IVI1*(p) = 8(n— 1)*.
Hence, from (2.2), we have
8n(n—1) =8(n—1)>%

This implies n = 1.
Therefore, we have finally our [Theoreml
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