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SELFINJECTIVITY OF RINGS
RELATIVE TO LAMBEK TORSION THEORY

By

Mitsuo HOSHINO

Throughout this note $R$ stands for an associative ring with identity, modules
are unitary modules and torsion theories are Lambek torsion theories. We use
the prefix $\tau-$ to mean “relative to Lambek torsion theory”.

In this note we call a ring $R$ left $\tau$-selfinjective if $Ext_{R}^{1}(X, R)$ is torsion for
every left R-module $X$ . Our main aim is to characterize left $\tau$-selfinjective rings
$R$ by a certain kind of linear compactness. Recall that a module $X$ is called
absolutely pure if $Ext_{R}^{1}($-, $X)$ vanishes on the finitely presented modules. Also,
let us call a module $X$ semicompact if Iim $\pi_{\lambda}$ is an epimorphism for every
inverse system of epimorphisms $\{\pi_{\lambda} : X\rightarrow Y_{\lambda}\}_{\lambda\in\Lambda}$ with the $Y_{\lambda}$ torsionless. Then,
as pointed out by Stenstr\"om [18], the argument of Matlis [13, Propositions 2
and 3] yields that a ring $R$ is left selfinjective if and only if it is left absolutely
pure and right semicompact. It is shown in [9] that $Ext_{R}^{1}(R/I, R)$ is torsion
for every left ideal $I$ of $R$ if and only if $R$ is $\tau$-absolutely pure and right
$\tau$-semicompact. However, since $\tau$-epimorphisms are not necessarily set-theoretic
surjections, Baer’s lemma does not work. Namely, even if $Ext_{R}^{1}(R/I, R)$ is
torsion for every left ideal $I$ of $R,$ $R$ is not necessarily left $\tau$-selfinjective. So
we need a rather strong notion of linear compactness to characterize left $\tau-$

selfinjective rings $R$ .
We are also concemed with an arbitrary class of left R-modules $\mathscr{C}$ which

contains $RR$ and is closed under taking factor modules and extensions. We ask
when every submodule $X$ of $E(RR)$ , the injective envelope of $RR$, with $X\in \mathscr{C}$ is
torsionless. In various situations, this problem has been considered by several
authors (e.g., [3], [1], [16], [20], [2], [6], [7], [4], [15] and [8]). As a particular
case, we study the class of all $\tau- finitely$ generated modules.

In the following, we denote by Mod $R$ the category of left R-modules.
Right R-modules are considered as left $R^{op}$-modules, where $R^{op}$ denotes the
opposite ring of $R$ . Sometimes, we use the notation $RX(resp. X_{R})$ to stress that
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the module $X$ considered is a left (resp. right) R-module. For a module $X$ we
denote by $E(X)$ its injective envelope. We denote by $($ $)^{*}$ both the R-dual
functors and for a module $X$ we denote by $\epsilon_{X}$ : $X\rightarrow X^{**}$ the usual evaluation
map. A module $X$ is called torsionless (resp. reflexive) if $\epsilon_{X}$ is a monomorphism
(resp. an isomorphism). For a module $X\in ModR$ we denote by $\tau(X)$ its
Lambek torsion submodule. Namely, $\tau(X)$ is a submodule of $X$ such that
$Hom_{R}(\tau(X),E(RR))=0$ and $X/\tau(X)$ is cogenerated by $E(RR)$ . Then a module
$X$ is called torsion (resp. torsionfree) if $\tau(X)=X$ (resp. $\tau(X)=0$). Note that
torsionless modules are torsionfree. Finally, a submodule $Y$ of a module $X$

is called a dense (resp. closed) submodule of $X$ if $X/Y$ is torsion (resp.
torsionfree).

1. $Pre\lim\dot{n}aries$

In this section, we collect several basic results which we need in later
sections.

Note first that $Ker\epsilon_{X}\subset Y$ (resp. $\tau(X)\subset Y$) for every submodule $Y$ of $X$

with $X/Y$ torsionless (resp. torsionfree). In particular, since torsionless modules
are torsionfree, $\tau(X)\subset Ker\epsilon_{X}$ for every module $X$ .

The first three lemmas are obvious.

LEMMA 1.1. A module $X$ is torsion if and only if $Y^{*}=0$ for every (cyclic)

submodule $Y$ of X. $\square $

LEMMA 1.2. For a module $X$ the following are equivalent.
(a) $\tau(X)=Ker\epsilon_{X}$ .
(b) $Ker\epsilon_{X}$ is torsion.
(c) $X/\tau(X)$ is torsionless. $\square $

LEMMA 1.3. Let $\mu:X\rightarrow Y$ be a monomorphism. Then the following hold.
(1) $\mu^{*}=0$ if and only if $\epsilon_{Y}\circ\mu=0$ .
(2) If $Ker\epsilon_{Y}$ is torsion, so is $Ker\epsilon_{X}$ . $\square $

LEMMA 1.4 ([7, Theorem $A]$ ). For a ring $R$ the following are equivalent.
(a) $\tau(X)=Ker\epsilon_{X}$ for every finitely presented $X\in ModR$ .
(a)op $\tau(M)=Ker\epsilon_{M}$ for every finitely presented $M\in ModR^{op}$ . $\square $

We call a ring $ R\tau$-absolutely pure if it satisfies the equivalent conditions in
Lemma 1.4. Recall that a homomorphism $\pi:X\rightarrow Y$ is called a $\tau$-epimorphism
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if $Cok\pi$ is torsion. We call a module $ X\tau$-semicompact if Iim $\pi_{\lambda}$ is a $\tau-$

epimorphism for every inverse system of $\tau$-epimorphisms $\{\pi_{\lambda} : X\rightarrow Y_{\lambda}\}_{\lambda\in\Lambda}$ with
the $Y_{\lambda}$ torsionless (see [9] for details).

LEMMA 1.5 ([8, Theorem 1.2]). For a ring $R$ the following are equivalent.
(a) $\tau(X)=Ker\epsilon_{X}$ for every finite $ly$ generated $X\in ModR$ .
(b) $R$ is $\tau$-absolutely pure and right $\tau$-semicompact. $\square $

LEMMA 1.6 (cf. [10, Theorem 1.1]). Let $\pi:F\rightarrow X$ be an epimorphism with
$F$ finitely generated free and put $M=Cok\pi^{*}$ . Then the following hold.

(1) Cok $\epsilon_{X}\cong Ext_{R}^{1}(M, R)$ .
(2) $(Ker\epsilon_{X})^{*}$ embeds in $Cok\epsilon_{M}$ .

PROOF. (1) Obvious.
(2) Let $\phi:F^{*}\rightarrow M$ denote the canonical epimorphism and put $Y=Cok\phi^{*}$ .

Then $Y\cong{\rm Im}\epsilon_{X}$ and by the part (1) $Ext_{R}^{1}(Y, R)\cong Cok\epsilon_{M}$ . Thus by Lemma
1.3(1) the exact sequence $0\rightarrow Ker\epsilon_{X}\rightarrow X\rightarrow Y\rightarrow 0$ yields the desired
embedding. $\square $

LEMMA 1.7. Let $0\rightarrow X\rightarrow\mu Y\rightarrow Z\rightarrow 0$ be an exact sequence with $Ker\epsilon_{Z}$

and $Cok\mu^{*}$ torsion. Then, if $Cok\epsilon_{Y}$ is torsion, so is $Cok\epsilon_{X}$ .

PROOF. Since $\mu^{**}$ is monic, we have the following commutative diagram
with exact rows:

$ 0\rightarrow$ $X\rightarrow^{\mu}Y$ $\rightarrow^{\pi}Z\rightarrow 0$

$\epsilon_{X}$

$\epsilon_{Y}$ $\alpha$

$0\rightarrow X^{**}\rightarrow^{\mu^{**}}Y^{**}\rightarrow^{\phi}W\rightarrow 0$ .

By Snake lemma we get an exact sequence $Ker\alpha\rightarrow Cok\epsilon_{X}\rightarrow Cok\epsilon_{Y}$ , so that it
suffices to show that $Ker\alpha$ is torsion. Since $\pi^{**}\circ\mu^{**}=0,$ $\pi^{**}=\beta\circ\phi$ for some
$\beta:W\rightarrow Z^{**}$ . Then $\beta\circ\alpha 0\pi=\beta\circ\phi\circ\epsilon_{Y}=\pi^{**}0\epsilon_{Y}=\epsilon_{Z}\circ\pi$ , thus $\beta 0\alpha=\epsilon_{Z}$

because $\pi$ is epic. Hence $Ker\alpha\subset Ker\epsilon_{Z}$ and $Ker\alpha$ is torsion. $\square $

LEMMA 1.8. Let $\pi:X\rightarrow Y$ be a $\tau$-epimorphism. Then, if $X$ is $\tau$-semi-
compact, so is $Y$.
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PROOF. Let $\{\pi_{\lambda} : Y\rightarrow Z_{\lambda}\}_{\lambda\in\Lambda}$ be an inverse system of $\tau$-epimorphisms with
the $Z_{\lambda}$ torsionless. For each $\lambda\in\Lambda$ we have an exact sequence $Cok\pi\rightarrow$

$Cok(\pi_{\lambda}0\pi)\rightarrow Cok\pi_{\lambda}\rightarrow 0$ and thus $Cok(\pi_{\lambda}\circ\pi)$ is torsion, so that
$Cok(\lim_{\leftarrow}\pi_{\lambda}\circ\pi)$ is torsion. Next, since Iim $\pi_{\lambda}\circ\pi=(\lim_{\leftarrow}\pi_{\lambda})\circ\pi$ , we have an
epimorphism $Cok(\lim_{\leftarrow}\pi_{\lambda}\circ\pi)\rightarrow Cok(\lim_{\leftarrow}\pi_{\lambda})$ . Thus $Cok(\lim_{\leftarrow}\pi_{\lambda})$ is torsion.

$\square $

The next lemma has been shown in the proof of [9, Proposition 2.4].
However, for completeness, we include a proof.

LEMMA 1.9. Let $X$ be a module with $Cok\epsilon_{X}$ torsion. Suppose $Cok\mu^{*}$ is
torsion for every monomorphism $\mu$ : $M\rightarrow X^{*}$ . Then $X$ is $\tau$-semicompact.

PROOF. Let $\{\pi_{\lambda} : X\rightarrow Y_{\lambda}\}_{\lambda\in\Lambda}$ be an inverse system of $\tau$-epimorphisms with
the $Y_{\lambda}$ torsionless. Since each $\pi_{\lambda}^{*}$ is monic, so is $\lim_{\rightarrow}\pi_{\lambda}^{*}$ . Thus $Cok(\lim_{\leftarrow}\pi_{\lambda}^{**})\cong$

$Cok((\lim_{\rightarrow}\pi_{\lambda}^{*})^{*})$ is torsion. Since $(\lim_{\leftarrow}\epsilon_{Y_{\lambda}})\circ(\lim_{\leftarrow}\pi_{\lambda})=(\lim_{\leftarrow}\pi_{\lambda}^{**})\circ\epsilon_{X},$ $\lim_{\leftarrow}\epsilon_{Y_{\lambda}}$

induces homomorphisms $\alpha:{\rm Im}(\lim_{\leftarrow}\pi_{\lambda})\rightarrow{\rm Im}(\lim_{\leftarrow}\pi_{\lambda}^{**})$ and $\beta:Cok(\lim_{\leftarrow}\pi_{\lambda})\rightarrow$

$Cok(\lim_{\leftarrow}\pi_{\lambda}^{**})$ . We have an epimorphism $Cok\epsilon_{X}\rightarrow Cok\alpha$ . Also, since $\lim_{\leftarrow}\epsilon_{Y_{\lambda}}$ is
monic, by Snake lemma we have a monomorphism $Ker\beta\rightarrow Cok\alpha$ . Con-
sequently, $Ker\beta$ is torsion, so is $Cok(\lim_{\leftarrow}\pi_{\lambda})$ . $\square $

2. Strongly exact full subcategories

Throughout this section $\mathscr{C}$ stands for a class of modules in Mod $R$ . We ask
when every submodule $X$ of $E(RR)$ with $X\in \mathscr{C}$ is torsionless. In various sit-
uations, this problem has been considered by several authors (e.g., [3], [1], [16],
[20], [2], [6], [7], [4], [15] and [8]).

The next lemma is obvious (cf. Lemma 1.2).

LEMMA 2.1. Suppose $\mathscr{C}$ is closed under taking factor modules. Then the
following are equivalent.

(a) Every submodule $X$ of $E(RR)$ with $X\in \mathscr{C}$ is torsionless.
(b) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}$ . $\square $

LEMMA 2.2 (cf. [8, Theorem 1.2]). Suppose $RR\in \mathscr{C}$ and $\mathscr{C}$ is closed under
taking factor modules and extensions. Then the following are equivalent.

(a) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}$ .
(b) $Ext_{R}^{1}(X, R)$ is torsion for every $X\in \mathscr{C}$ .
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PROOF. $(a)\Rightarrow(b)$ . Let $0\rightarrow K\rightarrow F\rightarrow X\rightarrow 0$ be an exact sequence with $F$

free and $X\in \mathscr{C}$ . Let $\pi:K^{*}\rightarrow Ext_{R}^{1}(X, R)$ denote the canonical epimorphism and
let $h\in K^{*}$ . It suffices to show $(\pi(h)R_{R})^{*}=0$ . Let us form a push-out diagram:

$0-K\rightarrow F\rightarrow X\rightarrow 0$

$h$

$0\rightarrow R\rightarrow^{\phi}Y\rightarrow X\rightarrow 0$ .

Then $\pi(h)R_{R}$ is a homomorphic image of Cok $\phi^{*}$ . Since $X\in \mathscr{C}$ and $RR\in \mathscr{C},$ $Y\in \mathscr{C}$

and $Ker\epsilon_{Y}$ is torsion. Thus ${\rm Im}\phi\cap Ker\epsilon_{Y}=0$ and $\phi^{**}\circ\epsilon_{R}=\epsilon_{Y}\circ\phi$ is monic.
Hence $\phi^{**}$ is monic and $(Cok\phi^{*})^{*}=0$ .

$(b)\Rightarrow(a)$ . Let $X\in \mathscr{C}$ and let $Y$ be a submodule of $Ker\epsilon_{X}$ . We have only to
show $Y^{*}=0$ . By Lemma 1.3(1) the exact sequence $0\rightarrow Y\rightarrow X\rightarrow X/Y\rightarrow 0$

yields an embedding $Y^{*}\rightarrow Ext_{R}^{1}(X/Y, R)$ with $X/Y\in \mathscr{C}$, so that $Y^{*}$ is torsion
and $Y^{*}=0$ . $\square $

LEMMA 2.3 (cf. [8, Theorem 1.2]). Suppose $RR\in \mathscr{C}$ and $\mathscr{C}$ is closed under
taking factor modules and finite direct sums. Then the following are equivalent.

(a) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}$ .
(b) Cok $\mu^{*}$ is torsion for every monomorphism $\mu$ : $Y\rightarrow X$ in Mod $R$ with

$X\in \mathscr{C}$ .

PROOF. $(a)\Rightarrow(b)$ . Let $\mu:Y\rightarrow X$ be a monomorhism in Mod $R$ with
$X\in \mathscr{C}$ . Let $\pi:Y^{*}\rightarrow Cok\mu^{*}$ denote the canonical epimorphism and let $h\in Y^{*}$ .
Form a push-out square:

$Y\rightarrow^{\mu}X$

$h$

$R\rightarrow^{\phi}$ Z.

Then $\pi(h)R_{R}$ is a homomorphic image of Cok $\phi^{*}$ . Also, since $RR\oplus X\in \mathscr{C}$ and $Z$

is a factor module of $RR\oplus X,$ $Z\in \mathscr{C}$ . Thus, as in the proof of $(a)\Rightarrow(b)$ in
Lemma 2.2, $(\pi(h)R_{R})^{*}=0$ and $Cok\mu^{*}$ is torsion.

$(b)\Rightarrow(a)$ . Let $X\in \mathscr{C}$ and let $Y$ be a submodule of $Ker\epsilon_{X}$ . Let $\mu:Y\rightarrow X$

denote the inclusion. Then by Lemma 1.3(1) $Y^{*}\cong Cok\mu^{*}$ , so that $Y^{*}$ is torsion
and $Y^{*}=0$ . $\square $
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LEMMA 2.4. Suppose $\mathscr{C}$ is closed under taking factor modules and extensions.
Let $\hat{\mathscr{C}}$ be the class of all modules $X\in ModR$ which can be embedded in some
$Y\in \mathscr{C}$ . Then the following hold.

(1) $\hat{\mathscr{C}}$ is closed under taking submodules, factor modules and finite direct
sums.

(2) For an exact sequence $0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$ in Mod $R$ with $Z\in \mathscr{C}$ ,
$X\in\hat{\mathscr{C}}$ implies $Y\in\hat{\mathscr{C}}$ .

PROOF. (1) Obvious.
(2) Let $\mu:X\rightarrow X^{\prime}$ be a monomorphism with $X^{\prime}\in \mathscr{C}$ and form a push-out

diagram:

$0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$

$\mu$
$v$

$0-X^{\prime}\rightarrow Y^{\prime}\rightarrow Z-0$ .

Then $v$ is monic with $Y^{\prime}\in \mathscr{C}$ . $\square $

THEOREM 2.5. Suppose $RR\in \mathscr{C}$ and $\mathscr{C}$ is closed under taking factor modules
and extensions. Let $\hat{\mathscr{C}}$ be the class of all modules $X\in ModR$ which can be
embedded in some $Y\in \mathscr{C}$ . Then the following are equivalent.

(a) Every submodule $X$ of $E(RR)$ with $X\in \mathscr{C}$ is torsionless.
(b) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}$ .
(c) $\tau(X)=Ker\epsilon_{X}$ for every $X\in\hat{\mathscr{C}}$ .
(d) $Ext_{R}^{1}(X, R)$ is torsion for every $X\in \mathscr{C}$ .
(e) $Cok\mu^{*}$ is torsion for every monomorphism $\mu$ : $X\rightarrow Y$ in $\hat{\mathscr{C}}$ .

$PR\infty F$ . $(a)\Leftrightarrow(b)$ . By Lemma 2.1.
$(b)\Rightarrow(c)$ . By Lemma 1.3(2).
$(c)\Rightarrow(b)$ . Obvious.
$(b)\Leftrightarrow(d)$ . By Lemma 2.2.
$(c)\Leftrightarrow(e)$ . By Lemmas 2.4(1) and 2.3. $\square $

PROPOSITION 2.6 (cf. [20, Theorem 2]). Suppose $\mathscr{C}$ is closed under taking
submodules and factor modules. Then the following are equivalent.

(1) Every submodule $X$ of $E(RR)$ with $X\in \mathscr{C}$ is torsionless.
(2) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}$ .
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(3) (a) Every $X\in \mathscr{C}$ with $X^{*}=0$ is torsion.
(b) For an exact sequence $0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$ in Mod $R$ with $Y\in \mathscr{C}$ ,

$lf$ both $X$ and $Z$ are torsionless, so is $Y$.

PROOF. (1) $\Leftrightarrow(2)$ . By Lemma 2.1.
(2) $\Rightarrow(3)$ . Obvious.
(3) $\Rightarrow(2)$ . Let $X\in \mathscr{C}$ and $h\in(Ker\epsilon_{X})^{*}$ . It suffices to show $h=0$ . Let

$\mu:Ker\epsilon_{X}\rightarrow X$ denote the inclusion and form the push-out of $\mu$ and $h$ :

$0-Ker\epsilon_{X}\rightarrow^{\mu}X$ —- ${\rm Im}\epsilon_{X}$ —- $0$

$f$

$0\rightarrow{\rm Im} h$ $\rightarrow Y$ —- ${\rm Im}\epsilon_{X}$ — $0$ .

Then $Y$ is torsionless. Thus $f\circ\mu=0$ because $\epsilon_{Y}\circ fo\mu=f^{**}o\epsilon_{X}\circ\mu=0$ , so that
${\rm Im} h=0$ . $\square $

3. $\tau$-Finitely generated modules

Recall that a module $X$ is called $\tau- finitely$ generated if it contains a finitely
generated dense submodule. In particular, every torsion module is $\tau- finitely$

generated. Throughout this section, we denote by $\mathscr{C}(R)$ the class of all $\tau-$

finitely generated $X\in ModR$ and by $\hat{\mathscr{C}}(R)$ the class of all $X\in ModR$ which can
be embedded in some $Y\in \mathscr{C}(R)$ .

Note that a module $X$ is $\tau- finitely$ generated if and only if there exists a
$\tau$-epimorphism $\pi:F\rightarrow X$ with $F$ finitely generated free, and that composites of
$\tau$-epimorphisms are also $\tau$-epimorphisms. Thus the next lemma follows.

LEMMA 3.1. The class $\mathscr{C}(R)$ is closed under taking factor modules and
extensions. $\square $

Since the class of all finitely generated $ X\in$ Mod $R$ is also closed under
taking factor modules and extensions, in the following we apply results in
Section 2 to finitely generated modules as well as $\tau- finitely$ generated modules.

LEMMA 3.2. Let $Q$ be a maximal lefl quotient ring of R. Then the following
are equivalent.

(a) $RQ$ is torsionless.
(b) $Ext_{R}^{1}(X, R)$ is torsion for every torsion $X\in ModR$ .
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PROOF. Let $\mu:_{R}R\rightarrow RQ$ denote the inclusion. Since $\mu$ is an essential
monomorphism and $\epsilon_{Q}\circ\mu=\mu^{**}\circ\epsilon_{R}$ , it follows that $RQ$ is torsionless if and
only if $\mu^{**}$ is monic.

$(a)\Rightarrow(b)$ . Let $0\rightarrow K\rightarrow F\rightarrow X\rightarrow 0$ be an exact sequence in Mod $R$ with $X$

torsion and $F$ free, and let $\pi:K^{*}\rightarrow Ext_{R}^{1}(X, R)$ denote the canonical epi-
morphism. Let $h\in K^{*}$ and form a push-out diagram:

$0\rightarrow K\rightarrow F\rightarrow X\rightarrow 0$

$h$

$0\rightarrow R\rightarrow^{\phi}Y-X\rightarrow 0$ .

Then $\pi(h)R_{R}$ is a homomorphic image of $Cok\phi^{*}$ , so that it suffices to show
$(Cok\phi^{*})^{*}=0$ . Since $Hom_{R}(\phi, Q)$ is a bijection, $\mu=f\circ\phi$ for some $f;_{R}Y\rightarrow RQ$ .
Thus $\mu^{*}=\phi^{*}\circ f^{*}$ and we get an epimorphism $Cok\mu^{*}\rightarrow Cok\phi^{*}$ . Since $\mu^{**}$ is
monic, $(Cok\mu^{*})^{*}=0$ and thus $(Cok\phi^{*})^{*}=0$ .

$(b)\Rightarrow(a)$ . Since $Cok\mu^{*}$ embeds in $Ext_{R}^{1}(RQ/R, R),$ $Cok\mu^{*}$ is torsion and
thus $\mu^{**}$ is monic. $\square $

REMARK. Let $Q$ be a maximal left quotient ring of $R$ . It follows from [11,

Proposition 2] and [19, Proposition 6] that every finitely generated submodule of
$RQ$ is torsionless if and only if $Ext_{R}^{1}(X, R)$ is torsion for every finitely generated
torsion $X\in ModR$ . A slight modification of the proof above provides a direct
proof of this fact. Also, it follows from Lemma 1.1 and [8, Lemma 5.2] that $RQ$

is torsionless if and only if arbitrary direct products of copies of $(Q/R)_{R}$ are
torsion.

PROPOSITION 3.3. Let $Q$ be a maximal left quotient ring of R. Then the
following are equivalent.

(1) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}(R)$ .
(2) (a) $\tau(X)=Ker\epsilon_{X}$ for every finitely generated $X\in ModR$ .

(b) $RQ$ is torsionless.

PROOF. (1) $\Rightarrow(2)$ . Obvious.
(2) $\Rightarrow(1)$ . Let $0\rightarrow X\rightarrow Y\rightarrow Z\rightarrow 0$ be an exact sequence in Mod $R$ with $X$

finitely generated and $Z$ torsion. By Lemmas 3.1 and 2.2 it suffices to show that
$Ext_{R}^{1}(Y, R)$ is torsion. Since $Ext_{R}^{1}(X, R)$ is torsion by Lemma 2.2 and $Ext_{R}^{1}(Z, R)$

is torsion by Lemma 3.2, it follows that $Ext_{R}^{1}(Y, R)$ is torsion. $\square $
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Recall that a dense right ideal $I$ of $R$ is called a minimal dense right ideal of
$R$ if it is contained in every dense right ideal of $R$ . Note that $R$ has a minimal
dense right ideal if and only if arbitrary direct products of torsion right modules
are torsion.

COROLLARY 3.4. Suppose $R$ has a minimal dense right ideal. Then the
following are equivalent.

(a) $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}(R)$ .
(b) $\tau(X)=Ker\epsilon_{X}$ for every finitely generated $X\in ModR$ .

PROOF. $(a)\Rightarrow(b)$ . Obvious.
$(b)\Rightarrow(a)$ . Let $Q$ be a maximal left quotient ring of $R$ . Since $RQ$ embeds in

$E(RR)$ , by Lemma 2.1 every finitely generated submodule of $RQ$ is torsionless.
Thus by [9, Proposition 5.6] $RQ$ is torsionless and Proposition 3.3 applies. $\square $

LEMMA 3.5. Suppose $R$ is $\tau$-absolutely pure and left $\tau$-semicompact. Then the
following hold.

(1) $Cok\epsilon_{X}$ is torsion for every $X\in \mathscr{C}(R)$ .
(2) Every $X\in \mathscr{C}(R)$ is $\tau$-semicompact.

PROOF. (1) Let $\pi$ : $F\rightarrow X$ be a $\tau$-epimorphism with $F$ finitely generated
free and put $M=Cok\pi^{*}$ . Since $\pi^{*}$ is monic, $Cok\pi^{**}\cong Ext_{R}^{1}(M, R)$ , so that by
Lemmas 1.5 and 2.2 $Cok\pi^{**}$ is torsion. Since $F$ is reflexive, we have an
epimorphism $Cok\pi^{**}\rightarrow Cok\epsilon_{X}$ and thus $Cok\epsilon_{X}$ is torsion.

(2) Let $Y$ be a finitely generated dense submodule of $X$ . Then by [8,

Corollary 1.5] $Y$ is $\tau$-semicompact and hence by Lemma 1.8 so is X. $\square $

PROPOSITION 3.6. Suppose $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}(R)$ . Then
$X^{*}\in\hat{\mathscr{C}}(R^{op})$ for every $X\in\hat{\mathscr{C}}(R)$ .

PROOF. Let $\pi:F\rightarrow Y$ be a $\tau$-epimorphism with $F$ finitely generated free.
Then $\pi^{*}$ is monic with $p*\in \mathscr{C}(R^{op})$ , so that $Y^{*}\in\hat{\mathscr{C}}(R^{op})$ . Next, let $\mu:X\rightarrow Y$ be
a monomorphism in Mod $R$ with $Y\in \mathscr{C}(R)$ . Since $Y^{*}\in\hat{\mathscr{C}}(R^{op})$ , by Lemma 2.4
(1) ${\rm Im}\mu^{*}\in\hat{\mathscr{C}}(R^{op})$ . Also, by Lemma 2.3 $Cok\mu^{*}$ is torsion and $Cok\mu^{*}\in \mathscr{C}(R^{op})$ .
Thus by Lemma 2.4(2) $X^{*}\in\hat{\mathscr{C}}(R^{op})$ . $\square $

THEOREM 3.7. Suppose $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}(R)$ and $R$ is lefl $\tau-$

semicompact. Then the following hold.
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(1) Both $Ker\epsilon_{X}$ and Cok $\epsilon_{X}$ are torsion for every $X\in\hat{\mathscr{C}}(R)$ .
(2) $($ $)^{**}$ induces a mono-preserving endofunctor of $\hat{\mathscr{C}}(R)$ .
(3) A module $X\in\hat{\mathscr{C}}(R)$ is reflexive if $Ext_{R}^{i}($-, $X)$ vanishes on the torsion

modules for $i=0$ and 1.

PROOF. Let $X\in\hat{\mathscr{C}}(R)$ .
(1) By Theorem 2.5 $Ker\epsilon_{X}=\tau(X)$ is torsion. Next, let $ 0\rightarrow X\rightarrow\mu Y\rightarrow$

$Z\rightarrow 0$ be an exact sequence in Mod $R$ with $Y\in \mathscr{C}(R)$ . Since $Z\in \mathscr{C}(R),$ $Ker\epsilon_{Z}$ is
torsion. Also, by Lemma 2.3 $Cok\mu^{*}$ is torsion. Thus, since by Lemma 3.5(1)
$Cok\epsilon_{Y}$ is torsion, by Lemma 1.7 so is $Cok\epsilon_{X}$ .

(2) By Lemma 2.4(1) ${\rm Im}\epsilon_{X}\in\hat{\mathscr{C}}(R)$ . Also, since $Cok\epsilon_{X}$ is torsion,
$Cok\epsilon_{X}\in \mathscr{C}(R)$ . Thus by Lemma 2.4(2) $X^{**}\in\hat{\mathscr{C}}(R)$ . It then follows by Theorem
2.5 that the functor $($ $)^{**}$ : $\hat{\mathscr{C}}(R)\rightarrow\hat{\mathscr{C}}(R)$ is mono-preserving.

(3) Suppose $Ext_{R}^{i}($-, $X)$ vanishes on the torsion modules for $i=0$ and 1.
Then $Hom_{R}(Ker\epsilon_{X}, X)=0$ implies $Ker\epsilon_{X}=0$ and $Ext_{R}^{1}(Cok\epsilon_{X}, X)=0$ implies
$\epsilon_{X}$ a splitting monomorphism. Finally, $Hom_{R}(Cok\epsilon_{X}, X^{**})=0$ implies Cok
$\epsilon_{X}=0$ . $\square $

PROPOSITION 3.8. Suppose $\tau(X)=Ker\epsilon_{X}$ for every $X\in \mathscr{C}(R)$ and $\tau(M)=$

$Ker\epsilon_{M}$ for every $M\in \mathscr{C}(R^{op})$ . Then every $X\in\hat{\mathscr{C}}(R)$ is $\tau$-semicompact.

PROOF. Let $X\in\hat{\mathscr{C}}(R)$ and let $\mu:M\rightarrow X^{*}$ be a monomorphism. Then by
Theorem 3.7(1) $Cok\epsilon_{X}$ is torsion. Also, since by Proposition 3.6 $X^{*}\in\hat{\mathscr{C}}(R^{op})$ ,
by Theorem 2.5 $Cok\mu^{*}$ is torsion. Thus by Lemma 1.9 $X$ is $\tau$-semicompact.

$\square $

4. $\tau$-Selfinjective rings

We call a ring $R$ left $\tau$-selfinjective if $Ext_{R}^{1}(X, R)$ is torsion for every
$X\in ModR$ . We characterize left $\tau$-selfinjective rings $R$ by a certain kind of
linear compactness.

For a module $X$ and a set $A$ , we denote by $X^{(A)}$ (resp. $X^{A}$ ) the direct sum
(resp. direct product) of copies of $X$ indexed by the elements of $A$ .

THEOREM 4.1. For a ring $R$ the following are equivalent.
(1) $R$ is left $\tau$-selfinjective.
(2) (a) $R$ is $\tau$-absolutely pure.

(b) $\lim_{\leftarrow}\pi_{\lambda}$ is a $\tau$-epimorphism for every inverse system of $\tau$-epimorphisms
$\{\pi_{\lambda} : F_{\lambda}\rightarrow M_{\lambda}\}_{\lambda\in\Lambda}$ in Mod $R^{op}$ with the $F_{\lambda}$ finite $ly$ generatedfree and
the $M_{\lambda}$ torsionless.
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PROOF. (1) $\Rightarrow(2)$ . By Lemma 2.2 $R$ is $\tau$-absolutely pure. Next, let
$\{\pi_{\lambda} : F_{\lambda}\rightarrow M_{\lambda}\}_{\lambda\in\Lambda}$ be an inverse system of $\tau$-epimorphisms in Mod $R^{op}$ with the

$F_{\lambda}$ reflexive and the $M_{\lambda}$ torsionless. Since each $\pi_{\lambda}^{*}$ is monic, so is $\lim_{\rightarrow}\pi_{\lambda}^{*}$ . Thus by
Theorem 2.5 $Cok(\lim_{\leftarrow}\pi_{\lambda}^{**})\cong Cok((\lim_{\rightarrow}\pi_{\lambda}^{*})^{*})$ is torsion. Since $\lim_{\leftarrow}\epsilon_{F_{\lambda}}$ is an
isomorphism and $\lim_{\leftarrow}\epsilon_{M_{\lambda}}$ is monic, $Cok(\lim_{\leftarrow}\pi_{\lambda})$ embeds in $Cok(\lim_{\leftarrow}\pi_{\lambda}^{**})$ , so that
$Cok(\lim_{\leftarrow}\pi_{\lambda})$ is torsion.

(2) $\Rightarrow(1)$ . By Lemmas 1.5 and 2.2 $Ext_{R}^{1}(X, R)$ is torsion for every finitely
generated $X\in ModR$ . Next, let $0\rightarrow K\rightarrow\mu F\rightarrow X\rightarrow 0$ be an exact sequence in
Mod $R$ with $F=RR^{(A)}$ free. Let $\Lambda$ be the directed set of all nonempty finite
subsets of $\Lambda$ . For each $\lambda\in\Lambda$ , put $F_{\lambda}=RR^{(\lambda)}$ and let $j_{\lambda}$ : $F_{\lambda}\rightarrow F$ denote the
inclusion. Then $\lim_{\rightarrow}j_{\lambda}$ is an isomorphism. For each $\lambda\in\Lambda$ , form the pull-buck of
$\mu$ and $j_{\lambda}$ :

$0\rightarrow K\rightarrow^{\mu}F\rightarrow X\rightarrow 0$

$i_{\lambda}$

$j_{\lambda}$

$0-K_{\lambda}F_{\lambda}\underline{\mu_{\lambda}}-X_{\lambda^{-}}0$ .

Since $Cok\mu_{\lambda}^{*}\cong Ext_{R}^{1}(X_{\lambda},R)$ is torsion, we get an inverse system of $\tau$-epi-
morphisms $\{\mu_{\lambda}^{*} : F_{\lambda}^{*}\rightarrow K_{\lambda}^{*}\}_{\lambda\in\Lambda}$ with the $F_{\lambda}^{*}$ finitely generated free and the $K_{\lambda^{*}}$

torsionless, so that $Cok(\lim_{\leftarrow}\mu_{\lambda}^{*})$ is torsion. Since $\lim_{\rightarrow}j_{\lambda}$ is an isomorphism, so is
$\lim_{\leftarrow}j_{\lambda}^{*}$ . Also, by the exactness of $\lim_{\rightarrow},$ $\lim_{\rightarrow}i_{\lambda}$ is an isomorphism, so is $\lim_{\leftarrow}i_{\lambda}^{*}$ . Thus
$Cok\mu^{*}\cong Cok(\lim_{\leftarrow}\mu_{\lambda}^{*})$ and $Ext_{R}^{1}(X, R)\cong Cok\mu^{*}$ is torsion. $\square $

LEMMA 4.2. Suppose $R$ is right $\tau$-selfinjective. Then every $X\in ModR$ with
Cok $\epsilon_{X}$ torsion is $\tau$-semicompact.

PROOF. By Theorem 2.5 and Lemma 1.9. $\square $

LEMMA 4.3. Let $F=RR^{(A)}$ with $A$ an infinite set. Then $F$ is not $\tau$-semicompact.

PROOF. Put $G=RR^{A}$ and let $\mu:F\rightarrow G$ denote the inclusion. Then $\mu$ is not
an essential monomorphism and $Cok\mu$ is not torsion. Let $\Lambda$ be the directed set
of all nonempty finite subsets of $A$ . For each $\lambda\in\Lambda$, put $G_{\lambda}=RR^{\lambda}$ and let
$\pi_{\lambda}$ : $G\rightarrow G_{\lambda}$ denote the projection. Then $\lim_{\leftarrow}\pi_{\lambda}$ is an isomorphism, so that we
get an inverse system of epimorphisms $\{\pi_{\lambda}\circ\mu:F\rightarrow G_{\lambda}\}_{\lambda\in\Lambda}$ with the $G_{\lambda}$

torsionless such that Cok(Iim $\pi_{\lambda}0\mu$) $\cong Cok\mu$ is not torsion. $\square $
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PROPOSITION 4.4. Suppose $R$ is right $\tau$-selfinjective. Let $F=RR^{(A)}$ with $A$ an
infinite set. Then $Cok\epsilon_{F}$ is not torsion. In particular, $F$ is not reflexive.

PROOF. By Lemmas 4.2 and 4.3. $\square $

PROPOSITION 4.5. Suppose $R$ is right $\tau$-selfinjective and right $\tau$-semicompact.
Then for a module $X\in ModR$, Cok $\epsilon_{X}$ is torsion if and only if $X$ is $\tau$-semicompact.

PROOF. By Lemma 4.2, [8, Theorem 1.2] and [9, Corollary 2.2]. $\square $

We end with making the following remarks on reflexive modules.

REMARKS. (1) As remarked in [9], a module $X\in ModR$ is reflexive if and
only if Cok $\epsilon_{X}$ is torsion and $X$ can be embedded as a closed submodule in a
direct product of copies of $RR$ .

(2) Even if $R$ is $\tau$-absolutely pure and left and right $\tau$-semicompact, a
reflexive module $X\in ModR$ is not necessarily $\tau$-semicompact. For example, let
$R$ be the ring of rational integers and let $F=RR^{(A)}$ with $A$ a countably infinite
set. Then by Lemma 1.5 $R$ is $\tau$-absolutely pure and (left and right) $\tau$-semi-
compact. Also, by Lemma 4.3 $F$ is not $\tau$-semicompact. On the other hand, it
follows from a theorem of Specker [17] that $F$ is reflexive.

(3) It follows from [14, Theorem 1] that in case $R$ is a left and right PF
ring, a module $X\in ModR$ is reflexive if and only if it is linearly compact.
Proposition 4.5 above generalizes this fact (cf. also [12, Theorem 3] and
[5, Corollary 2.6]).
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