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1. Introduction.

Bang-Yen Chen has introduced the notion of isometric immersion of finite
type and proved that an equivariant isometric immersion of a compact Riemannian
homogeneous manifold into a Euclidean space is of finite type [1].

In this paper we will prove the following theorem.

THEOREM. Let $M$ be a compact connected Riemannian homogeneous manifold
with irreducible isotropy action. For an equivariant isametric immersion $f$ of $M$

into $a$ Euclidean space $E^{N}$ (considered as $a$ Euclidean vector space) there exist a
finite number of vector subspaces $E_{0},$ $E_{1},$

$\cdots,$ $E_{r}$ of $E^{N}$ , isometric immersions $f_{i}$ of
l-type of $M$ into $E_{i}$ $(i=1, \cdots , r)$ , constant vector $v_{0}$ in $E_{0}$ and positive constant
$a_{1},$ $\cdots,$ $a_{r}$ so that

(1) $E^{N}=E_{0}+E_{1}+\cdots+E_{r}$ (Euclidean direct sum)

(2) $f=v_{0}+a_{1}f_{1}+\cdots+a_{r}f_{r}$ .

REMARK. $a_{1},$ $\cdots,$ $a_{r}$ satisfy $\Sigma_{i=1}^{r}a_{i^{2}}=1$ .

2. Proof of Theorem.

Let $M$ be a compact connected Riemannian homogeneous manifold with
irreducible isotropy action. Let $G=I_{0}(M)$ be the identity component of the
group of all isometries of M. $G$ is a compact Lie group and acts on $M$ transi-
tively.

Let $f$ be an equivariant isometric immersion of $M$ into a Euclidean space
$E^{N}$ . Then there exists a Lie homomorphism $\phi$ of $G$ into the isometry group
$I(E^{N})$ of $E^{N}$ such that

$f(g(p))=\phi(g)(f(p))$

for any $g\in G$ and $p\in M$.
Since an isometric transformation of $E^{N}$ is decomposed into a product of an

orthogonal transformation and a parallel translation, we have a Lie homomorphism
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$\rho$ of $G$ into $SO(E^{N})$ and an $E^{N}$ -valned function $\alpha$ on $M$ such that

$f(g(p))=\rho(g)(f(p))+\alpha(g)$

for any $g\in G$ and $p\in M$, where $SO(E^{N})is$ the special orthogonal group of $E^{N}$ .
Since $(\rho, E^{N})$ is a representation of a compact Lie group $G,$ $(\rho, E^{N})$ is de-

composed into the sum of irreducible subrepresentations $(\rho_{1}, E_{1}),$ $\cdots,$ $(\rho_{m}, E_{m})$

such that
$E^{N}=E_{1}+\cdots+E_{m}$ (Euclidean direct sum).

Let $f_{i}^{\prime}$ and $\alpha_{i}$ be the $E_{i}$-components of $f$ and $\alpha$ respectively. Then we have

$f_{i}^{\prime}(g(p))=\rho_{i}(g)(f_{i}^{\prime}(p))+\alpha_{i}(g)$ $(i=1, \cdots, m)$

for any $g\in G$ and $p\in M$.
The function $\alpha_{i}$ satisfies

$\alpha_{i}(g_{1}g_{2})=\rho_{i}(g_{1})(\alpha_{i}(g_{2}))+\alpha_{i}(g_{1})$

for $g_{1},$ $g_{2}\in G$ . Define a vector $v_{i}\in E_{i}$ by

$v_{i}=\int_{G}\alpha_{i}(g)dg$

where $dg$ is the normalized Haar measure on $G$ . Then we have

$v_{i}=\rho_{i}(g)(v_{i})+\alpha_{i}(g)$

for $g\in G$ . Put $h_{i}(p)=f_{i}^{\prime}(p)-v_{i}$ . $h_{i}$ is an $E_{i}$-valued function on $M$ and satisfies

$h_{i}(g(p))=\rho_{i}(g)(h_{i}(p))$

for $g\in G$ and $p\in M$.
Take a point $0\in M$ fixed and let $K$ be the isotropy subgroup of $G$ at the

point $0$ . In the following of this paper we identify $M$ with the homogeneous
space $G/K$ in a natural way. In order to calculate the Laplacian $\Delta h_{i}$ of the
function $h_{i}$ , we introduce a biinvariant Riemannian metric on $G$ so that the
canonical projection of $G$ onto $M=G/K$ to be a Riemannian submersion. Let
$X_{1},$

$\cdots,$ $X_{n}(n=\dim G)$ be orthonormal basis of the Lie algebra of $G$ which is
the tangent space $T_{e}(G)$ of $G$ at the unit element $e$ as a vector space. Then
the Laplacian $\Delta h_{i}$ is calculated in the following way (See [2]):

$\Delta h_{i}(p)=-\Sigma_{a=1}^{n}\frac{d^{2}}{dt^{2}}|_{l=0}h_{i}(\exp tX_{\alpha}(p))$

$=-\Sigma_{\alpha=1}^{n}\rho_{i}(X_{\alpha})^{2}(h_{i}(p))$

where we denote the induced homomorphism of the Lie algebra $T_{e}(G)$ into the
Lie algebra $Bo(E_{i})$ of $SO(E_{i})$ by the same $\rho_{i}$ . Then $\rho_{i}(X_{\alpha})$ is a skew-symmetric
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linear transformation of $E_{i}$ and $\Sigma_{\alpha}\rho_{i}(X_{\alpha})^{2}$ is a symmetric linear transformation.
For $g\in G$ we write $(a_{\alpha\beta})$ the matrix representation of Ad $(g)$ with respect

to the basis $X_{1},$
$\cdots,$

$X_{n}$ , that is,

Ad $(g)X_{\beta}=\Sigma_{\alpha}a_{\alpha\beta}X_{\alpha}$ .

Then the matrix $(a_{\alpha\beta})$ is an orthogonal matrix and we have

$\rho_{i}(g)(\Sigma_{\alpha}\rho_{i}(X_{\alpha})^{2})\rho_{i}(g^{-1})=\Sigma_{\alpha}\rho_{i}(Ad(g)X_{\alpha})^{2}$

$=\Sigma_{\alpha,\beta.\gamma}a_{\beta\alpha}a_{\gamma\alpha}\rho_{i}(X_{\beta})\rho_{i}(X_{\gamma})$

$=\Sigma_{\alpha}\rho_{i}(X_{\alpha})^{2}$ .
Therefore, by Schur’s lemma, there exists a constant $\lambda_{i}$ such that

$\Sigma_{\alpha}\rho_{i}(X_{\alpha})^{2}=-\lambda_{i}I_{i}$

where $I_{i}$ is the identity of $E_{i}$ . Since $\rho_{i}(X_{\alpha})$ is skew-symmetric, $\lambda_{i}$ is non-
negative. Then we obtain

$\Delta h_{i}=\lambda_{i}h_{i}$ .
If $\lambda_{i}=0,$ $h_{i}$ is constant and thus $f_{i}^{\prime}$ is also constant. We denote by $E_{0}$ the sum
of these $E_{i}$ and $v_{0}$ the sum of these constant $f_{i}^{\prime}$ for which $\lambda_{i}=0$ . If $\lambda_{i}$ is posi-

tive, the induced metric $|df_{i}^{\prime}|^{2}$ on $M$ is invariant under the action of $G$ . Since
the linear isotropy representation is irreducible, $|df_{t}^{\prime}|^{2}$ is a constant multiple of
the original Riemannian metric on $M$, that is, there exists a positive constant
$a_{i}$ such that $|df_{i}^{\prime}|^{2}=a_{i^{2}}|df|^{2}$ . Put $f_{i}=a_{b}^{-1}f_{i}^{\prime}$ . Then $f_{i}$ is an isometric immer-
sion of l-type of $M$ into $E_{i}$ . Reordering those $E_{i}$ and $f_{i}$ for which $\lambda_{i}>0$ , we
complete the proof of the theorem.
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