TSUKUBA J. MATH. Vol. 12 No. 1, (1988) 231-233

ISOMETRIC IMMERSION OF RIEMANNIAN HOMOGENEOUS MANIFOLDS

By

Tsunero TAKAHASHI

1. Introduction.

Bang-Yen Chen has introduced the notion of isometric immersion of finite type and proved that an equivariant isometric immersion of a compact Riemannian homogeneous manifold into a Euclidean space is of finite type [1].

In this paper we will prove the following theorem.

THEOREM. Let M be a compact connected Riemannian homogeneous manifold with irreducible isotropy action. For an equivariant isametric immersion f of Minto a Euclidean space E^N (considered as a Euclidean vector space) there exist a finite number of vector subspaces E_0 , E_1 , \cdots , E_τ of E^N , isometric immersions f_i of 1-type of M into E_i ($i=1, \cdots, r$), constant vector v_0 in E_0 and positive constant a_1, \cdots, a_τ so that

(1) $E^N = E_0 + E_1 + \dots + E_r$ (Euclidean direct sum)

(2)
$$f = v_0 + a_1 f_1 + \dots + a_r f_r$$

REMARK. a_1, \dots, a_r satisfy $\sum_{i=1}^r a_i^2 = 1$.

2. Proof of Theorem.

Let M be a compact connected Riemannian homogeneous manifold with irreducible isotropy action. Let $G=I_0(M)$ be the identity component of the group of all isometries of M. G is a compact Lie group and acts on M transitively.

Let f be an equivariant isometric immersion of M into a Euclidean space E^N . Then there exists a Lie homomorphism ϕ of G into the isometry group $I(E^N)$ of E^N such that

$$f(g(p)) = \phi(g)(f(p))$$

for any $g \in G$ and $p \in M$.

Since an isometric transformation of E^N is decomposed into a product of an orthogonal transformation and a parallel translation, we have a Lie homomorphism

Received April 21, 1987.

 ρ of G into $SO(E^N)$ and an E^N -valued function α on M such that

 $f(g(p)) = \rho(g)(f(p)) + \alpha(g)$

for any $g \in G$ and $p \in M$, where $SO(E^N)$ is the special orthogonal group of E^N .

Since (ρ, E^N) is a representation of a compact Lie group G, (ρ, E^N) is decomposed into the sum of irreducible subrepresentations $(\rho_1, E_1), \dots, (\rho_m, E_m)$ such that

 $E^N = E_1 + \dots + E_m$ (Euclidean direct sum).

Let f'_i and α_i be the E_i -components of f and α respectively. Then we have

$$f'_{i}(g(p)) = \rho_{i}(g)(f'_{i}(p)) + \alpha_{i}(g)$$
 (*i*=1, ..., *m*)

for any $g \in G$ and $p \in M$.

The function α_i satisfies

$$\alpha_i(g_1g_2) = \rho_i(g_1)(\alpha_i(g_2)) + \alpha_i(g_1)$$

for $g_1, g_2 \in G$. Define a vector $v_i \in E_i$ by

$$v_i = \int_G \alpha_i(g) dg$$

where dg is the normalized Haar measure on G. Then we have

$$v_i = \rho_i(g)(v_i) + \alpha_i(g)$$

for $g \in G$. Put $h_i(p) = f'_i(p) - v_i$. h_i is an E_i -valued function on M and satisfies

$$h_i(g(p)) = \rho_i(g)(h_i(p))$$

for $g \in G$ and $p \in M$.

Take a point $o \in M$ fixed and let K be the isotropy subgroup of G at the point o. In the following of this paper we identify M with the homogeneous space G/K in a natural way. In order to calculate the Laplacian Δh_i of the function h_i , we introduce a biinvariant Riemannian metric on G so that the canonical projection of G onto M=G/K to be a Riemannian submersion. Let X_1, \dots, X_n $(n=\dim G)$ be orthonormal basis of the Lie algebra of G which is the tangent space $T_e(G)$ of G at the unit element e as a vector space. Then the Laplacian Δh_i is calculated in the following way (See [2]):

$$\begin{aligned} \Delta h_i(p) &= -\sum_{\alpha=1}^n \frac{d^2}{dt^2} \Big|_{t=0} h_i(\exp t X_\alpha(p)) \\ &= -\sum_{\alpha=1}^n \rho_i(X_\alpha)^2(h_i(p)) \end{aligned}$$

where we denote the induced homomorphism of the Lie algebra $T_e(G)$ into the Lie algebra $\mathfrak{so}(E_i)$ of $SO(E_i)$ by the same ρ_i . Then $\rho_i(X_\alpha)$ is a skew-symmetric

232

linear transformation of E_i and $\sum_{\alpha} \rho_i (X_{\alpha})^2$ is a symmetric linear transformation.

For $g \in G$ we write $(a_{\alpha\beta})$ the matrix representation of $\operatorname{Ad}(g)$ with respect to the basis X_1, \dots, X_n , that is,

Ad
$$(g)X_{\beta} = \sum_{\alpha} a_{\alpha\beta} X_{\alpha}$$
.

Then the matrix $(a_{\alpha\beta})$ is an orthogonal matrix and we have

$$\rho_{i}(g)(\sum_{\alpha}\rho_{i}(X_{\alpha})^{2})\rho_{i}(g^{-1}) = \sum_{\alpha}\rho_{i}(\operatorname{Ad}(g)X_{\alpha})^{2}$$
$$= \sum_{\alpha,\beta,\gamma}a_{\beta\alpha}a_{\gamma\alpha}\rho_{i}(X_{\beta})\rho_{i}(X_{\gamma})$$
$$= \sum_{\alpha}\rho_{i}(X_{\alpha})^{2}.$$

Therefore, by Schur's lemma, there exists a constant λ_i such that

$$\sum_{\alpha} \rho_i (X_{\alpha})^2 = -\lambda_i I_i$$

where I_i is the identity of E_i . Since $\rho_i(X_{\alpha})$ is skew-symmetric, λ_i is non-negative. Then we obtain

 $\Delta h_i = \lambda_i h_i$.

If $\lambda_i=0$, h_i is constant and thus f'_i is also constant. We denote by E_0 the sum of these E_i and v_0 the sum of these constant f'_i for which $\lambda_i=0$. If λ_i is positive, the induced metric $|df'_i|^2$ on M is invariant under the action of G. Since the linear isotropy representation is irreducible, $|df'_i|^2$ is a constant multiple of the original Riemannian metric on M, that is, there exists a positive constant a_i such that $|df'_i|^2 = a_i^2 |df|^2$. Put $f_i = a_i^{-1}f'_i$. Then f_i is an isometric immersion of 1-type of M into E_i . Reordering those E_i and f_i for which $\lambda_i > 0$, we complete the proof of the theorem.

References

- [1] Bang-Yen Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific (1984).
- [2] Wallach, N., Minimal immersions of symmetric spaces into spheres, Symmetric Spaces, Pure and Applied Math. Series B, Dekker (1972).

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan