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UNITARY-SYMMETRIC K\"AHLERIAN MANIFOLDS
AND POINTED BLASCHKE MANIFOLDS

By

Yoshiyuki WATANABE

Introduction.

A unitary-symmetric K\"ahlerian manifold is a K\"ahlerian version of a rota-
tionally symmetric (Riemannian) manifold (cf. Choi [3], Greene-Wu [5]). Precisely,
a K\"ahlerian manifold $(M, g, J)$ of complex dimension $n$ is unitary-symmetric at
a point $p$ of $M$ if the linear isotropy group at $p$ of the automorphism group of
$(M, g, J)$ is the unitary group $U(n)$ . Of course, the complex space form is
unitary-symmetric at every point.

The first purpose of this paper is to give one characterization of a con-
nected, simply-connected, complete, unitary-symmetric K\"ahlerian manifold. If $M$

is compact, then the tangential cut locus $C_{p}$ of $p$ is spherical. Hence ( $M,$ $g,$ $ J\rangle$

is a Blaschke manifold at $p$ and has a $SL^{p}$-structure (cf. Besse [1]). Then the
second purpose is to give a sufficient condition in order that a connected, compact,
unitary-symmetric K\"ahlerian manifold has a $SC^{p}$-structure (Theorem D) (see

Besse [1, p. 181]).

On the other hand, Greene-Wu [5, p. 85] introduced the notion of a Hermitian
rotationally symmetric manifold of complex dimension 1 and Shiga [12] studied
a K\"ahlerian model, which is by defintion a K\"ahlerian manifold with a pole $p$

such that the linear isotropy group at $p$ of the isometry group is $U(n)$ . Note
that their manifolds are unitary-symmetric K\"ahlerian manifolds. The unitary-
symmetric condition is a fairly strong one, because the result of Kaup [8,

Folgerung 1.10] implies that a connected, unitary-symmetric K\"ahlerian manifold
is biholomorphic to one of the complex space forms. But there exist many
complete unitary-symmetric K\"ahlerian metrics, which are not isometric to them
(see Mori-Watanabe [10]).

$Thr^{\backslash }oughout$ this paper, $(M, g, J)$ is assumed to be a connected, complete
K\"ahlerian manifold of complex dimension $n\geqq 1$ . To state our results, we
prepapre the following. By $\Omega$ we denote the K\"ahlerian form of
$(M, g, J)$ . We frequently identify the tangent space $T_{p}(M)$ at a point $p$ of $M$

with the complex number n-space $C^{n}$ . Let $\exp_{p}$ be the exponential map of $T_{p}(M)$
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to $M$ and $\delta$ be the distance from the origin $0$ of $T_{p}(M)$ to the first conjugate

locus $Q_{p}$ in $T_{p}(M)$ of $p$ . If $M$ is simply-connected and $\delta=\infty,$ $i.e.,$ $p$ has no con-
jugate points, then $M$ is diffeomorphic to $R^{2n}$ (cf. Kobayashi-Nomizu [9, I, $p$ .
105]). We put $S_{\delta}^{2n-1}=\{X\in T_{p}(M);|X|=\delta\}\tilde{B}_{\delta}=\{X\in T_{p}(M);|X|<\delta\}$ , where $|X|$

is the norm $\sqrt{g_{p}(X,X)}$ of $X$. On the other hand, it is well known (cf. Sasaki-
Hatakeyama [11]) that there exists a Sasakian structure $(d\Theta^{2}, \phi, \xi, \eta)$ on the
sphere $S_{1}^{2n-1}$ in $C^{n}$ , called the standard one, where $d\Theta^{2}$ denotes the canonical
metric of constant curvature 1. We set $\Psi(, )=d\Theta^{2}(\phi , )$ .

THEOREM A. Let $(M, g, J)$ be a connected, complete Kahlerian manifold of
complex dimension $n$ . If $(M, g, J)$ is unitary-symmetric at a point $p$, then the
Kahlerian metric $\tilde{g}$ and the Kahlerian from $\tilde{\Omega}$ , pulled back under the exponential
map $\exp_{p}$ , are given by

$\tilde{g}=\exp_{p}^{*}g=dr^{2}+f(r)^{2}d\Theta^{2}+f(r)^{2}(f^{\prime}(r)^{2}-1)\eta\otimes\eta$

$\langle*)$

$\tilde{\Omega}=\exp_{p}^{*}\Omega=2f(r)f^{\prime}(r)\eta\wedge dr+f(r)^{2}\Psi$

on $\tilde{B}_{\delta}-\{O\}$ for some function $f(r)$ such that $f(r)>0$, $f^{\prime}=dr/dr>0$ on $(0, \delta)$ ,

where $(r, \Theta)$ is the usual polar coordinate system of $R^{2n}$ and $(d\Theta^{2}, \phi, \xi, \eta)$ is the
standard Sasakian structure on $S_{1}^{2n-1}$ .

THEOREM B. Let $(M, g, J)$ be a connected, simply-connected, complete
Kahlerian manifold of complex dimension $n\geqq 2$ . If there exists a point $p$ in $M$

such that $\exp_{p}^{*}g$ and $\exp_{p}^{*}\Omega$ satisfy $(*)$ , then $(M, g, J)$ is unitary-symmetric at $p$.

COROLLARY C. Under the assumption of Theorem $B$ , if $M$ is compact, then
$(M, g, J)$ is a Blaschke manifold at $p$ and the cut locus $C(p)$ of $p$ in $M$ is a totally
geodesic, complex hypersurface of $M$.

REMARK. Let us consider $S_{1}^{2n-1}$ as a principal circle bundle over the com-
plex projective space $CP^{n-1}$ with the canonical K\"ahlerian metric $d\sigma^{2}$ of constant
holomorphic curvature 4. Then, since $d\Theta^{2}=\pi^{*}d\sigma^{2}+\eta\otimes\eta,\tilde{g}$ may be represented
by

$(*)^{\prime}$ $\tilde{g}=dr^{2}+f(r)^{2}f^{\prime}(r)^{2}\eta\otimes\eta+f(r)^{2}\pi^{*}d\sigma^{2}$ ,

where $\pi$ denotes the canonical projection: $S_{1}^{2n-1}\rightarrow CP^{n-1}$ . Note that when $n=1$ ,
$\tilde{g}=dr^{2}+f(r)^{2}f^{\prime}(r)^{2}d\Theta^{2}$ .

THEOREM D. Let $(M, g, J)$ be a connected, simply-connected, compact Kahlerian
manifold. Suppose that there exists a point $p$ in $M$ such that $\exp_{p}^{*}g$ and $\exp_{p}^{*}\Omega$ ,

pulled back under $\exp_{p}$ , satisfy the condition $(*)$ . If its function $f(r)$ satisfies
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$f(\delta)f^{\parallel}(\delta)=-1$ , then any geodesic issuing from the point $p$ is always closed.

In \S 1, we introduce some basic facts about K\"ahlerian manifolds, complex
hypersurfaces, almost contact metric manifolds and Sasakian manifolds. In \S 2,
by using the results of Ziller [16] and Kato-Motomiya [8] we study $U(n)-$

invariant K\"ahlerian structures on the open ball $\tilde{B}_{\delta}$ , centered at the origin in $C^{n}$

and then prove Theorem A in \S 3. In \S 4, we investigate the conjugate locus
$Q(p)=\exp_{p}Q_{p}$ of a point $p$ of a K\"ahlerian manifold satisfying the conditions of
Theorem $B$ , and give a proof of Corollary C. \S 5 is devoted to construct an
automorphism $F_{A}$ of $M$ for each $A$ of $U(n)$ and complete the proof of Theorem B.
In the last section, we prove Theorem $D$ , concerning with the closedness of
geodesics issuing from one point.

The author would like to express his sincere thanks to Professor H. Kita-
hara for valuable suggestions and guidances.

1. Preliminaries.

Let $M$ be a complex manifold of complex dimension $n$ . Then $M$ admits an
almost complex structure $J$ on $M$, i.e., a tensor field $J$ on $M$ of type $(1, 1)$ such
that $J^{2}X=-X$ for any vector field $X$ on $M$. A Riemannian metric $g$ on $M$ is
a Hermitian metric if

(1.1) $g(JX, JY)=g(X, Y)$

holds for any vector fields $X$ and $Y$ on $M$. Here we define a 2-form $\Omega$ on $M$,

called the fundamental 2-form; $\Omega(X, Y)=g(JX, Y)$ . If in addition, $J$ is parallel
with respect to the Riemannian connection $\nabla$ of $g$ , then $g(resp. \Omega)$ is called a
K\"ahlerian metric (resp. a K\"ahlerian form); $(M, g, J)$ (resp. $(g,$ $J)$) is then called
a K\"ahlerian manifold (resp. a K\"ahlerian structure).

Let $(M, g, J)$ be a connected K\"ahlerian manifold of complex dimension $n$

and let $\hat{M}$ be a connected complex hypersurface of $M$, i.e., there exists a com-
plex analytic mapping $e:\hat{M}\rightarrow M$, whose differential $e_{*}$ is 1-1 at each point of $\hat{M}$.
All metric properties on $\hat{M}$ refer to the Hermitian metric $\hat{g}$ induced on $\hat{M}$ by

the immersion $e$ . In order to simplify the representation, we identify for each
$\hat{x}\in\hat{M}$, the tangent space $T_{\hat{x}}(\hat{M})$ with $e_{*}(T_{\hat{x}}(\hat{M}))(\subset T_{e(\hat{x})}(M))$ by means of $e_{*}$ .
Since $e^{*}g=\hat{g}$ and $J\circ e_{*}=e_{*}\circ\hat{J}$, where $\hat{J}$ is the almost complex structure of $\hat{M}$,

the structures $\hat{g}$ and $\hat{J}$ on $T_{\hat{x}}(\hat{M})$ are identified with restrictions of the structures
$g$ and $J$ to the subspace $e_{*}(T_{\hat{x}}(\hat{M}))$ respectively. Then it follows that there
exists a coordinate neighborhood $U(\hat{x})$ of $\hat{x}$ in $\hat{M}$ on which there is a field $\zeta$ of
unit vectors normal to $\hat{M}$. Now, if $X$ and $Y$ are vector fields on $O(\hat{x})$ , we
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may write
$\nabla_{X}Y=\hat{\nabla}_{X}Y+h(X, Y)\zeta+k(X, Y)J\zeta$ ,

where $\hat{\nabla}_{X}Y$ denotes the components of $\nabla_{X}Y$ tangent to $\hat{M}$. Then we have the
Weingarten’s formula (for example, cf. Smyth [13])

(1.2) $\nabla_{X}\zeta=-HX+s(X)J\zeta$ ,

where $HX$ is tangent to $\hat{M}$. Then $H$ and $s$ are tensor fields on $O(\hat{x})$ of type
$(1, 1)$ and $(0,1)$ , respectively. Further, $H$ satisfies

(1.3) $h(X, Y)=\hat{g}(HX, Y)$ , $k(X, Y)=\hat{g}(\hat{J}HX, Y)$

for any vectors $X$ and $Y$ tangent to $\hat{M}$ at a point of $0(\hat{x})$ .
On the other hand, an almost contact structure on an odd-dimensional mani-

fold $N$ is by definition a triple $(\phi, \xi, \eta)$ , where $\phi$ is a tensor field of type $(1, 1)$

on $N,$ $\xi$ is a vector field on $N$ and $\eta$ is a l-form on $N$ satisfying

(1.4) $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ , $\phi^{2}X=-X+\eta(X)\xi$

for any vector field $X$ on $N$. An almost contact structure is said to be normal
if the torsion tensor $N_{Jk}^{i}$ (see [11, p. 255]) vanishes. If $N$ has an associated Rie-
mannian metric $g$ such that

(1.5) $g(\xi, X)=\eta(X)$ , $g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$

for any vector fields $X$ and $Y$ on $N$, then $(N, g, \phi, \xi, \eta)$ is called an almost
contact Riemannian manifold: $(g, \phi, \xi, \eta)$ is then called an almost contact metric
structure. If they satisfy

(1.6) $d\eta(X, Y)=2g(\phi X, Y)$ , $(\nabla_{X}\phi)Y=\eta(Y)X$ $ g(X, Y)\xi$

for any vector fields $X$ and $Y$ on $N,$ $(N, g, \phi, \xi, \eta)$ is called a Sasakian mani-
fold: $(g, \phi, \xi, \eta)$ is then called a Sasakian structure.

2. A $U(n)$-invariant K\"ahlerian structure on an open ball in $C^{n}$ .
In this section, we consider a $U(n)$-invariant K\"ahlerian structure $(\tilde{g},\tilde{J})$ on

an open ball $\tilde{B}_{l}$ of radius $l$ in $C^{n}$ , centered at the origin $O$ . Then, by the
result of Kaup stated in the Introduction we may regard $\tilde{J}$ as the complex

structure induced from the canonical one $J_{0}$ of $C^{n}$ . Identifying $C^{n}$ with $R^{8n}$

naturally, we introduce the usual polar coordinate system $(r, \Theta)$ on $\tilde{B}_{\iota}-\{O\}$ ,

centered at $O$ . Then $\tilde{g}$ can be expressed in the form

(2.1) $\tilde{g}=dr^{2}+\overline{h}_{jk}(r, \Theta)d\theta^{j}\otimes d\theta^{k}$

where $(\theta^{i})$ denotes a local coordinate system of $S_{1}^{2n-1}$ and small Latin indices
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$\mathfrak{g}_{2}=\{$

run on the range 1, $\cdots$ , $2n-1$ . Note that for each fixed $r\overline{h}=\overline{h}_{jk}d\theta^{j}\otimes d\theta^{k}$ de-
fines a Riemannian metric on $S_{r}^{2n-1}$ .

On the other hand, if we set

(2.2) $\overline{\phi}_{j}^{i}=d\theta^{i}(\tilde{J}(\frac{\partial}{\partial\theta^{j}}))$ , $\overline{\xi}^{\iota}=d\theta^{i}(J(\frac{\partial}{\partial r}))$ and $\overline{\eta}_{j}=dr(\tilde{J}(\frac{\partial}{\partial\theta^{j}}))$ ,

then $\tilde{J}$ is represented by

(2.3) $J=\left(\begin{array}{ll}\overline{\phi}_{j^{i}} & -\overline{\eta}_{j}\\\overline{\xi}^{i} & O\end{array}\right)$

with respect to the coordinate system. Since $(\tilde{g}, J)$ is Hermitian, by (1.1) we
have

$\overline{\phi}_{j^{k}}\overline{\phi}_{k^{i}}=-\delta_{j}^{i}+\overline{\eta}_{j}\overline{\xi}^{i}$ , $\overline{\phi}_{j^{i}}\overline{\xi}^{j}=\overline{\phi}_{J}^{i}\overline{\eta}_{i}=0$ , $\overline{\eta}i\overline{\xi}^{i}=1$ ,

$\overline{h}_{kh}\overline{\phi}_{J^{k}}\overline{\phi}_{i^{h}}=\overline{h}_{J^{i}}-\overline{\eta}_{J}\overline{\eta}i$ $\overline{\eta}_{i}=\overline{h}_{ji}\xi^{j}$ , $\overline{h}_{ji}\xi^{j}\overline{\xi}^{i}=1$ .
Therefore, this implies that $\overline{\xi}=\overline{\xi}^{i}(\partial/\partial\theta^{i}),\overline{\eta}=\overline{\eta}_{i}d\theta^{i}$ and $\overline{\phi}=\overline{\phi}_{j^{i}}(\partial/\partial\theta^{i})\otimes d\theta^{j}$ define
an almost contact metric structure on $S_{r}^{2n-1}$ . Therefore, from the assumption
that $(\tilde{g},\tilde{J})$ is $U(n)$-invariant we see that $U(n)$ acts transitively on $S_{r}^{2n-1}$ as a
group of diffeomorphisms which leave the structure $(\overline{h},\overline{\phi},\overline{\xi},\overline{\eta})$ invariant and
from a result of Tanno [14, p. 25] that $(S_{r}^{2n-1},\overline{h},\overline{\phi}, \xi,\overline{\eta})$ is normal and homo-
geneous. Thus, for each $r\in(O, l)$ we can regard $S_{r}^{2n-1}\cong U(n)/U(n-1)$ as a mani-
fold having a normal almost contact metric structure $(\overline{h},\overline{\phi},\overline{\xi},\overline{\eta})$ where $U(n-1)$

is the isotropy subgroup at the point $q_{r}=(r, 0, \cdots , 0)$ of $S_{r}^{2n-1}$ .
We now are going to show that a splitting of the Lie algebra $\mathfrak{g}$ of $U(n)$

induces another $U(n)$-invariant almost contact metric structure on the homo-
geneous space $U(n)/U(n-1)$ and $(\overline{h},\overline{\phi},\overline{\xi},\overline{\eta})$ is described by means of it. Let $\mathfrak{g}_{0}$

be the Lie algebra of $U(n-1)$ . Then the splitting

(2.4) $\mathfrak{g}=\mathfrak{g}_{0}\oplus \mathfrak{m}$

is an $ad\mathfrak{g}_{0}$-invariant, $i.e.,$ $[\mathfrak{g}_{0}, \mathfrak{m}]\subset \mathfrak{m}$ . Then $\mathfrak{m}$ can be identified with the tangent
space of $U(n)/U(n-1)$ at the coset $(U(n-1))$ . The isotropy subgroup $U(n-1)$

acts on $\mathfrak{m}$ by the adjoint map and induces a splitting $\mathfrak{m}=\mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$ :

(2.5) $\mathfrak{g}_{1}=\{(0b$
$-\overline{b}O^{l}$ ; $b\in C^{n-1}$ , $\rho$ ( $0\sqrt{-1}$ $00$), $\rho\in R\}$

where $\overline{b}$ means the complex conjugate of $b$ . Let $\mathfrak{B}$ be a bi-invariant metric on
$U(n)$ . The $U(n)$-invariant metric $\overline{h}$ on $U(n)/U(n-1)$ can be uniquely described
by giving its value on $\mathfrak{m}$ , and is of the form

(2.6) $\langle, \rangle=\alpha \mathfrak{B}|_{\mathfrak{g}_{1}}+\mathfrak{k}|_{\mathfrak{g}_{2}}$ ,

where $\alpha>0$ and $f$ is an arbitrary metric on $\mathfrak{g}_{2}$ (cf. Ziller [16]). The inclusion of
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$1\times U(n-1)$ in $U(n)$ is the standard one. The metric (2.6) is identical with the
one on the homogeneous space $SU(n)/SU(n-1)$ , since $U(n)$ clearly also acts by

isometries on the metrics in $SU(n)/SU(n-1)$ (cf. Ziller [16, p. 352]). But since
$SU(n)$ is simple and $\mathfrak{B}|_{\mathfrak{g}_{1}}$ and the inner product

$-\frac{1}{2n}$ trace $XY=\frac{1}{2n}$ trace $X^{t}\overline{Y}$ (X, $Y\in 5u(n)$ )

are $Ad(SU(n))$-invariant, where \S u(n) is the Lie algebra of $SU(n)$ , we have

$\mathfrak{B}|_{\mathfrak{g}_{1}}(Z, W)=-\frac{1}{2n}$ trace $ZW={\rm Re}(b, c)(Z=(0b$ $-\overline{b}O^{t}$ $W=(0c$ $-\overline{c}O^{t}$

where ${\rm Re}(, )$ denotes the real part of the natural Hermitian inner product on
$C^{n-1}$ . Therefore, from (2.6) we have

(2.7) $\langle, \rangle=\alpha{\rm Re}(, )+\lambda^{*}u\otimes^{*}u$

for a positive constant $\lambda$ , where $u=(\sqrt{-1}000)$ and $*u$ is a l-form on $\mathfrak{g}_{2}$ defined

by $*u(u)=1,$ $*u(X)=0$ for all $X\in \mathfrak{g}_{1}$ .
After some long calculations, we can confirm that $\mathfrak{g}_{0},$ $\mathfrak{g}_{1}$ and $\mathfrak{g}_{2}$ satisfy all

conditions of Theorem 1 of Kato-Motomiya [7]. This implies that on the homo-
geneous space $U(n)/U(n-1)$ there is a unique $U(u)$-invariant normal almost con-
tact structure $(\phi, \xi, \eta)$ with the initial condition $(-ad_{\mathfrak{M}}u, u, *u)$ , where $ad_{\mathfrak{M}}u$

denotes the restriction of $adu$ on $\mathfrak{m}$ . In fact, let $q$ be an arbitrary point of $S_{r}^{2n-1}$ .
Choose $A\in U(n)$ such that $A(q_{r})=q$ . We define $\xi_{q}=(\tau_{A})_{*}u$ where $\tau_{A}$ denotes the
left translation on $U(n)/U(n-1)$ given by $\tau_{A}(B\cdot U(n-1))=AB\cdot U(n-1),$ $B\in U(n)$ .
Hence we have a $U(n)$-invariant vector field $\xi$ on $S_{r}^{2n-1}$ such that $\xi_{q_{r}}=u$ , where
$T_{q_{r}}(S_{r}^{2n-1})$ is canonically identified with $\mathfrak{m}$ . Similarly we can define a $U(n)-$

invariant tensor field $\phi$ of type $(1, 1)$ and a $U(n)$-invariant l-form $\eta$ on $S_{r}^{2n-1}$

satisfying the initial conditions $\phi_{q_{r}}=-ad_{\mathfrak{M}}n$ and $\eta_{q_{r}}=*u$ respectively. Since
$(\exp tu)q_{r}=(re^{\sqrt{-1}\downarrow}, 0, \cdots, 0)$ , we have $u=\xi_{q_{r}}=\sqrt{-1}q_{r}=J_{0}q_{r}$ . Moreover, since

$(-ad_{\mathfrak{M}}u)(X)=\sqrt{-1}(0b$ $0^{{}^{t}\overline{b}}$ $(X=(0b$ $-\overline{b}O^{t}\in \mathfrak{g}_{1}$

holds, we see that $\phi$ is nothing but the standard tensor field of type $(1, 1)$ on
$S_{r}^{2n-1}$ , introduced from $J_{0}$ by Sasaki-Hatakeyama [11]. Therefore, between the
two $U(n)$-invariant normal almost contact structures $(\overline{\phi},\overline{\xi},\overline{\eta})$ and $(\phi, \xi, \eta)$ we
obtain the following relations

(2.8) $\overline{\phi}=\phi$ , $\overline{\xi}=\frac{1}{\mu}\xi$ , $\overline{\eta}=\mu\eta$

where $\mu=\sqrt{\tilde{g}_{q}(q_{r},q_{r})}r$
’ by consequence of their initial conditions at the point
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$q_{r}=(r, 0, \cdots , 0)\in S_{r}^{2n-1}$ . Assigning $\phi,$ $\xi$ and $\eta$ to each sphere $S_{r}^{2n-1}$ of radius $r$ ,

we can naturally define a tensor field $\phi$ of type $(1, 1)$ , a vector field $\xi$ and a 1-
form $\eta$ on $\tilde{B}_{l}-\{O\}$ respectively though they are written in the same letters.
Then (2.8) implies that

(2.8) $\overline{\phi}=\phi$ , $\xi=\frac{1}{\mu(r)}\xi$ , $\overline{\eta}=\mu(r)\eta$ ,

where $\mu(r)=|q_{r}|=\sqrt{\tilde{g}(q_{r},q_{r})}$ is a function on $(0, l)$ , because of (2.1).

Let us turn to $\overline{h}$ in (2.1) again. Give an inner product

(2.9) $(, )={\rm Re}(, )+*u\otimes^{*}u$

on $\mathfrak{m}$ . Then by (2.7) and (2.9) we may put

(2.10) $\langle, \rangle=\alpha(, )+\beta^{*}u\otimes^{*}\iota\downarrow$ ,

where $\alpha+\beta>0$ , because $\langle, \rangle$ is positive definite. By $d\Theta^{2}$ we denote the $U(n)-$

invariant Riemannian metric of constant curvature 1 on $S_{r}^{2n-1}$ , induced from $(, )$ .
Then from (2.10) we may write

(2.11) $\overline{h}=\alpha(r, \Theta)d\Theta^{2}+\beta(r, \Theta)\eta\otimes\eta$ ,

where $d\Theta^{2}$ and $\eta\otimes\eta$ are usually regarded as tensor fields of type $(0,2)$ on
$\tilde{B}_{l}-\{O\}$ . Especially, we see from (2.9) and the statements of Example 10.5 in
Kobayashi-Nomizu [9, I] that $(d\Theta^{2}, \phi, \xi, \eta)$ is nothing but the standard Sasakian
structure on $S_{1}^{2n-1}$ . As each field on $\tilde{B}_{l}-\{O\}$ , induced from $(-ad_{\mathfrak{M}}u, u, *u)$ , is
defined independently of $r$ , we may think that $(d\Theta^{2}, \phi, \xi, \eta)$ assigns the stand-
ard Sasakian structure to each sphere $S_{r}^{2n-1}$ of radius $r$ . Since $(\tilde{g},\tilde{J})$ is Hermi-
tian, the above facts imply that

(2.12) $\mu(r)=\sqrt{\alpha(r,O)+\beta(r,\Theta)}$ ,

taking account of $(1.4)-(1.6),$ $(2.3)$ and (2.11). From (2.6), $\alpha(r, \Theta)$ is a function
of $r$ only. Hence we have $\alpha=\alpha(r),$ $\beta=\beta(r)$ and further,

(2.12) $\mu(r)=\sqrt{\alpha(r)+\beta(r)}$ ,

form which $\tilde{g}$ and $\tilde{\Omega}$ are given by

$\tilde{g}=dr^{2}+\alpha(r)d\Theta^{2}+\beta(r)\eta\otimes\eta$

(2.13)
$\tilde{\Omega}=\alpha(r)\Psi+2\sqrt{\alpha(r)+\beta(r)}\eta\wedge dr$

on $\tilde{B}_{l}-\{0\}$ , where $\Psi$ denotes $ d\Theta^{2_{o}}\phi$ . A direct computation of $\tilde{\nabla}\tilde{\Omega}$ , using (1.4),

(1.5) and (1.6), implies that $d\alpha/dr=\sqrt{\alpha+\beta}$ , where $\tilde{\nabla}$ denotes the Riemannian
connection of $\tilde{g}$ , because of the Kahlerian condition $\tilde{\nabla}\tilde{\Omega}=0$ . Putting $\alpha=f(r)^{2}$

we have that $f^{\prime}=df/dr$ is also positive on $(0, l)$ . This implies that



136 Yoshiyuki WATANABE

\langle 2.14) $\beta(r)=f(r)^{2}(f^{\prime}(r)^{2}-1)$ .
From (2.12), (2.13) and (2.14), we see that $\tilde{g}$ and $\tilde{\Omega}$ are given by

$\tilde{g}=dr^{2}+f(r)^{2}d\Theta^{2}+f(r)^{2}(f^{\prime}(r)^{2}-1)\eta\otimes\eta$

(2.15)
$\tilde{\Omega}=f(r)^{2}\Psi+2f(r)f^{\prime}(r)\eta\wedge dr$

on $\tilde{B}_{l}-\{O\}$ respectively, where $f(r)$ is a positive function on $(0, l)$ such that
$df/dr>0,$ $(r, \Theta)$ is the usual polar coordinate system of $R^{2n}$ and $(d\Theta^{2}, \phi, \xi, \eta)is$

the standard Sasakian structure on $S_{1}^{2n-1}$ . Thus our purpose has been established.

3. Proof of Theorem A.

We regard $T_{p}(M)$ as a unitary space with the Hermitian inner product $g_{p}$

and fix an orthonormal basis of $T_{p}(M)$ with respect to $g_{p}$ . By $\exp$ we denote
the exponential map of $T_{p}(M)$ to $M$. We define $\delta$ to be the distance from the
origin to the first conjugate locus $Q_{p}$ in $T_{p}(M)$ . If $\delta=\infty$ , then $M$ is diffeomo-
rphic to $C^{n}$ . At first, we shall show that for $\delta<\infty Q_{p}$ is the sphere $S_{\delta}^{2n-1}=$

$\{X\in T_{p}(M);|X|=\delta\}$ . Let $\tilde{q}=X$ be a point of $Q_{p},$ $|X|=\delta$ , and $Y$ an arbitrary
point of $S_{\delta}^{2n-1}$ . Then since $U(n)$ acts transitively on $S_{\delta}^{2n-1}$ , there exists $A\in U(n)$

such that $Y=AX$. From the assumption that $(M, g, J)$ is unitary-symmetric at
$p$ it follows that there exists an automorphism $\Phi$ such that $\Phi(p)=p$ and $(\Phi_{*})_{p}$

$=A$ . On the other hand, since $\tilde{q}$ is a conjugate point, there is a non-zero
vector $v\in T_{\not\subset}(T_{p}(M))$ such that $(\exp_{*})_{\dot{q}}v=0$ . Then, from the fact that the iso-
metry $\Phi$ commutes with the exponential map (cf. Kobayashi-Nomizu [9, $I,$ $p$ .
225]) it follows that at $\tilde{q}^{\prime}=A\tilde{q}$

$(\exp_{*})_{d}A_{*}v=(\exp_{*})_{\emptyset}(\Phi_{*})_{p}v=(\Phi_{*})_{\exp\dot{q}}(\exp_{*})_{\tilde{q}}v=0$ .
Hence $Q_{p}$ is the sphere $S_{\delta}^{2n-1}$ which consists of conjugate points of constant
order. By the proof of Theorem 4.4 in [15] the tangential cut locus $C_{p}$ of $p$

coincides with $Q_{p}$ and $\exp|_{B_{\delta}}$ is a diffeomorphism of $\tilde{B}_{\delta}=\{X\in T_{p}(M);|X|<\delta\}$

onto $B_{\delta}=\exp\tilde{B}_{\delta}$ . Then $\tilde{g}=\exp^{*}g$ and $\tilde{\Omega}=\exp^{*}\Omega$ , pulled back under $\exp|_{B_{\delta}}$ : $\tilde{B}_{\delta}$

$\rightarrow B_{\delta}$ , give a K\"ahlerian structure on $\tilde{B}_{\delta}$ . We now going to show that $\tilde{g}$ and $\tilde{\Omega}$

are $U(n)$-invariant on $\tilde{B}_{\delta}$ . Let $\tilde{q}\in\tilde{B}_{\delta},$

$q=\exp\tilde{q}$ and $A\in U(n)$ . Let $\tilde{X}$ and $\tilde{Y}$ be
any tangent vectors at $\tilde{q}$ . Then, using the fact that $\exp\circ A=\Phi\circ exp$ , we have

$(A^{*}\tilde{g})_{\tilde{q}}(\tilde{X},\tilde{Y})=\tilde{g}_{A(\dot{q})}(A_{*\dot{q}}\tilde{X}, A_{*\tilde{q}}\tilde{Y})$

$=g_{\exp A(\tilde{q})}((\exp_{*})_{\tilde{q}^{\prime}}(A_{*})_{\tilde{q}}\tilde{X}, (\exp_{*})_{\dot{q}^{\prime}}(A_{*})_{q}\tilde{Y})$

$=g_{\Phi(q)}((\Phi_{*})_{q}(\exp_{*})_{\tilde{q}}\tilde{X}, (\Phi_{*})_{q}(\exp_{*})_{\partial}Y)$

$=\tilde{g}_{\tilde{q}}(\tilde{X},\tilde{Y})$ ,
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putting $\tilde{q}^{\prime}=A(\tilde{q})$ and $q^{\prime}=\exp\tilde{q}^{\prime}$ and identifying $T_{p}(M)$ with $T_{\tilde{q}}(T_{p}(M))$ . Similarly,
we have

$(A^{*}\tilde{\Omega})_{\tilde{q}^{\prime}}(\tilde{X},\tilde{Y})=\tilde{\Omega}_{\tilde{q}}(\tilde{X},\tilde{Y})$

for any vectors $\tilde{X},\tilde{Y}$ at $\tilde{q}\in\tilde{B}_{\delta}$ . Then we see that $(\tilde{g},\tilde{J})$ is a $U(n)$-invariant
K\"ahlerian structure on $\tilde{B}_{\delta}$ , where $\tilde{J}$ denotes the almost complex structure given
by $\tilde{g}$ and $\tilde{\Omega}$ . Therefore, (2.15) implies that $\tilde{g}$ and $\tilde{\Omega}$ are in the form

$\tilde{g}=dr^{2}+f(r)^{2}d\Theta^{2}+f(r)^{2}f^{\prime}(r)^{2}-1)\eta\otimes\eta$ ,
(3.1)

$\tilde{\Omega}=f(r)^{2}\Psi+2f(r)f^{\prime}(r)\eta\wedge dr$

on $\tilde{B}_{\delta}-\{O\}$ for some function $f$ on $(0, \delta)$ with positive derivative $f^{\prime}=df/dr$ ,

where $(r, \Theta)$ is the usual polar coordinate system of $R^{2n}$ and $(d\Theta^{2}, \phi, \xi, \eta)$ is the
standard Sasakian structure on $S_{1}^{2n-1}$ .

Finally, we shall show that $f$ in (3.1) is extendible to a function $f$ defined
on $(-\infty, \infty)$ . For a unit tangent vector $X$ at $p,$ $\gamma_{X}$ denotes the geodesic with
$\gamma_{X}(0)=p$ and $\gamma_{X}^{\prime}(O)=X$. Let $E_{0}$ be a unit vector at $p$ , which is perpendicular

to $X$ and $J_{p}X$. By a direct computation from (3.1), using $(1.4)-(1.6)$, we obtain

(3.2) $R(\gamma_{X}^{\prime}, Y)\gamma_{X}^{\prime}=-\frac{f^{\prime\prime}}{f}Y$ , $R(\gamma_{\acute{X}}, J\gamma_{X}^{\prime})\gamma_{X}^{\prime}=-(\frac{3f^{\prime\prime}}{f}+\frac{f^{\prime\prime\prime}}{f\prime})J\gamma_{\acute{X}}$

for any vector field $Y$ along $\gamma_{X}|_{(0,\delta)}$ such that $g(\gamma_{X}^{\prime}, Y)=g(J\gamma_{X}^{\prime}, Y)=0$ where $R$

denotes the curvature tensor of $g$ (cf. Ejiri [4]). This implies that the Jacobi
field $V$ along $\gamma_{X}$ with the initial conditions $V(O)=0$ and $(\nabla_{\gamma_{X}}V)(0)=E_{0}$ satisfies

$V(t)=f(t)E(t)$

on $(0, \delta)$ , where $E=E(t)$ is a parallel vector field along $\gamma_{X}$ with the initial con-
dition $E(O)=E_{0}$ (see \S 4 for detail). Now, from the assumption that $M$ is con-
nected and complete, we may define $f_{X}$ by

$f_{x}(t)=g(V(t), E(t))$

on $(-\infty, \infty)$ . Then since $f_{x}=f$ on $(0, \delta)$ , we see that $f_{X}$ is an extension of $f$.
We now are going to show that the definition of $f_{x}$ is independent of the
choice of a unit vector $X$ at $p$ . For an arbitrary vector $Y\in S_{1}^{2n-}‘$ in $T_{p}(M)$ ,

there exists $A\in U(n)$ such that $Y=AX$. From the assumption that $M$ is unitary-
symmetric at $p$ , there exists an automorphism $\Phi$ of $M$ onto itself such that
$\Phi(p)=p,$ $(\Phi_{*})_{p}=A$ . Let $\gamma_{AX}$ be the geodesic such that $\gamma_{AX}(0)=p$ , $\dot{\gamma}_{AX}(0)=AX$,

where $()$ denotes the derivative with respect to $t$ . Then since $AE_{0}$ is per-
pendicular to both $AX$ and $J_{p}AX=AJ_{p}X$ and $\Phi_{*}E(t)$ is parallel vector field
along the geodesic $\Phi(\gamma_{X}(t))=\gamma_{AX}(t)$ , the Jacobi field $W$ along $\gamma_{AX}$ with the initial
conditions $W(O)=0,$ $\nabla_{r})_{\dot{\gamma}_{AX}}W$ )$(0)=AE_{0}$ satisfies $W(t)=f(t)\Phi_{*}E(t)$ on $(0, \delta)$ . Summing
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up the above facts, it follows that

$\tilde{f}_{Y}(t)=\tilde{f}_{AX}(t)=g(W(t), \Phi_{*}E(t))=g(\Phi_{*}V(t), \Phi_{*}E(t))=f_{x}(t)$ .
Therefore, we may write $f$ instead of $f_{x}$ and adopt $f$ instead of $\tilde{f}$. Thus the
proof of Theorem A is complete.

4. Compact K\"ahlerian manifolds satisfying the condition $(*)$ .
Let $(M, g, J)$ be a complex $n(\geqq 2)$-dimensional, connected, simply-connected,

compact K\"ahlerian manifold satisfying the condition $(^{*})$ . Let $p$ be the fixed
point and $\exp$ be the exponential map of $T_{p}(M)$ onto $M$. By $\delta(>0)$ we denote
the distance from the origin $O$ of $T_{p}(M)$ to the first tangential conjugate locus
$Q_{p}$ in $T_{p}(M)$ . We define $\tilde{B}_{\delta}=\{X\in T_{p}(M);|X|<\delta\}$ and $B_{\delta}=\exp\tilde{B}_{\delta}$, where $|X|$

is the norm $\sqrt{g_{p}(X,X)}$ of $X$. Then $B_{\delta}$ may possibly contain a cut point of $p$ ,

but $exp:\tilde{B}_{\delta}\rightarrow M$ is an immersion. So we calculate the geometric objects in $B_{\delta}$

in terms of the metric $\exp^{*}g|_{B_{\delta}}$ . Let $\gamma=\exp rX$ be a geodesic issued from $p$

such that $X\in S_{1}^{2n-1}$ and $\gamma^{\prime}=\gamma^{\prime}(r)$ be the tangent vector field along $\gamma$ . Then $J\gamma^{\prime}$

is a parallel unit vector field such that $g_{\gamma(r)}(\gamma^{\prime}, J\gamma^{\prime})=0$ , since $J$ is parallel and
satisfies (1.1). Recall the assumption

(4.1) $f(r)>0$ and $f^{\prime}(r)>0$

on $(0, \delta)$ . Then we have the following lemma.

LEMMA 4.1. $f(r)$ satisfies
(4.2) $\lim_{r\downarrow 0}f(r)=0$ , $\lim_{r\downarrow 0}f^{\prime}(r)=1$ .

PROOF. Let $(x^{A})$ be a normal coordinate system, centered at $p$ with respect

to $g$ and let $(r, \Theta)$ be the geodesic polar coordinate system induced from $(x^{A})$ .
By $(\theta^{i})$ we denote a local coordinate system of $S_{1}^{2n-1}$ . Then we know that

$x^{A}=ra^{A}$

where $a^{4}=a^{A}(\theta^{i})$ satisfies $\sum_{A=1}^{2n}a^{A}a^{A}=1$ . Choose a vector field $Y$ along a geodesic

$\gamma$ issuing from $p$ such that $g(Y, \gamma^{\prime})=g(Y, J\gamma^{\prime})=0$ and $d\Theta^{2}(Y, Y)=1$ . Then we
have

$f(r)=r(\frac{\partial a^{A}}{\partial\theta^{i}}\frac{\partial a^{B}}{\partial\theta^{j}}\tilde{g}_{AB}Y^{i}Y^{j})^{1/2}$

where $\tilde{g}_{AB}$ are the components of $g$ with respect to $(x^{A})$ and $Y^{j}$ are components

of $Y$ with respect to $(\theta^{i})$ . This implies (4.2).

Let $\gamma$ be a geodesic issuing from $p$ . Let $E=E(r)$ be a parallel vector field
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along $\gamma$ such that $E(O)$ is perpendicular to the holomorphic section $\{\gamma^{\prime}(0), J\gamma^{\prime}(O)\}$ .
By (3.2) we have the following two kind of Jacobi fields $--$ and $V$ along $\gamma$ ,

(4.3) $\Xi(r)=f(r)f^{\prime}(r)J\gamma^{\prime}(r)$ , $V(r)=f(r)E(r)$

with the initial conditions

(4.4) $\Xi(0)=0$ $(\nabla_{\gamma^{\prime}}^{-})(0)=J\gamma^{\prime}(0)$ , $V(O)=0$ $(\nabla_{\gamma^{\prime}}V)(O)=E(O)$ ,

respectively.

From the assumption on $\delta$ , it follows that there exists a point $\tilde{q}=\delta X\in Q_{p}$ ,
$X\in S_{1}^{2n-1}$ . Since any Jacobi field along the geodesic $\gamma=\exp rX$ with the initial
condition (4.4) is given by (4.3), Lemma 4.1 together with (4.3) implies that

(4.5) $f^{\prime}(\delta)=0$ .
Hence it follows that the first conjugate locus $Q_{p}$ in $T_{p}(M)$ of $p$ is the sphere
$S_{\delta}^{2n-1}$ and that the order of each point of it as a conjugate point must be con-
stantly equal to 1.

Since $T_{p}(M)$ is a unitary space with the Hermitian inner product $g_{p}$ , it can
be naturally identified with $C^{n}$ . Further, identifying $T_{p}(M)$ with the tangent

space $T_{\tilde{q}}(T_{p}(M))$ at each point $\tilde{q}$ of $T_{p}(M)$ , we regard $T_{p}(M)$ as a flat K\"ahlerian

manifold with the canonical structure $(ds_{o}^{2}, J_{0})$ . Since $Q_{p}$ is $S_{\delta}^{2n-1}$ in $T_{p}(M)$ , we
can define a global unit vector field $\xi$ on $Q_{p}$ by

$\overline{\xi};\tilde{q}\rightarrow\overline{\xi}_{\tilde{q}}=J_{0}X$

for $\tilde{q}=\delta X\in Q_{p}$ , where $X$ is regarded as a tangent vector to the ray $rX$ at $\tilde{q}$ .
Then we see that $\overline{\xi}$ is regular and that its maximal connected integral curve
through $\delta X\in S_{\delta}^{2n-1}$ is a great circle in $S_{\delta}^{2n-1}$ , which is given by

(4.6) $X(\theta)=\delta(\cos\theta X+\sin\theta J_{0}X)$

for $ 0\leqq\theta\leqq 2\pi$ . Let $\hat{C}$ be the quotient space of $Q_{p}$ obtained by identifying max-
imal connected integral curves of $\overline{\xi}$ to points. Since $Q_{p}$ is the sphere $S_{\delta}^{2n-1}$ in
$C^{n}$ and has the canonical differentiable structure induced from $C^{n}$ , from the
regularity of $\overline{\xi}$ we see that $\hat{C}$ has a natural manifold structure for which the
projection $\pi:Q_{p}\rightarrow\hat{C}$ is a Riemannian submmersion. Thus $\hat{C}$ becomes a
K\"ahlerian manifold of positive constant holomorphic curvature (cf. Kobayashi-
Nomizu [9, I, p. 134]).

First, we describe the relation of Jacobi fields to the exponential map in the
following lemma.

LEMMA 4.2. (cf. Chavel [2]). Let $p\in M,$ $u\in T_{p}(M)$ and $v\in T_{p}(M)$ and $Y(t)$

be the Jacobi field along the geodesic $\gamma(t)=\exp_{p}tu$ , determined by the initial conci-
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tions $Y(O)=0,$ $(\nabla_{u}Y)(0)=v$ . Then we have

$(\exp_{*})_{tu}v=\frac{1}{t}Y(t)$

for $t\neq 0$ , where $v$ is canonically identified with an element of the tangent space
$T_{lu}(T_{p}(M))$ .

LEMMA 4.3. Let $\tilde{q}=\delta X$ be a point of $Q_{p}$ , and let $\tilde{Y}_{\tilde{q}}$ be a tangent vector of
$T_{\dot{q}}(T_{p}(M))$ such that $\tilde{Y}_{\tilde{q}}$ is perpendicular to $X$ and $\overline{\xi}_{q}$ . Then we have

(1) $(\exp_{*})_{\delta}\overline{\xi}_{d}=0$

(2) $(\exp_{*})_{E}J_{0}\tilde{Y}_{\dot{q}}=J_{q}(\exp_{*})_{d}\tilde{Y}_{\dot{q}}$ ,

where $q=\exp\tilde{q}$ .

PROOF. Let $\gamma=\exp rX$ be the geodesic issuing from $p$ such that $\gamma(0)=p$ ,
$\gamma^{\prime}(0)=X$. Recall that a Jacobi field $Z$ along $\gamma$ is uniquely determined by the
initial values $Z(O)$ and $(\nabla_{\gamma^{\prime}}Z)(O)$ . Then using Lemma 4.2 together with $(4.2)-$

(4.5), we have

$(\exp_{*})_{\dot{q}}\overline{\xi}_{\dot{q}}=\lim_{r\uparrow\delta}\frac{1}{\gamma}-\cdot-(r)=\frac{1}{\delta}f(\delta)f^{\prime}(\delta)J\gamma^{\prime}(\delta)=0$ .

Next, let $Y$ be a parallel vector field along $\gamma$ such that $Y(O)=\tilde{Y}_{\not\subset}$ . Since $J$

is parallel, it follows from (3.2), (4.2) and (4.3) that the vector fields $V(r)$ and
$W(r)$ defined by

$V(r)=f(r)Y(r)$ , $W(r)=f(r)JY(r)$

are both Jacobi fields along $\gamma$ with the initial condition

$V(O)=0$ $(\nabla_{\gamma^{\prime}}V)(O)=Y(O)=\tilde{Y}_{\tilde{q}}$ ,

$W(O)=0$ $(\nabla_{\gamma^{\prime}}W)(O)=JY(O)=J_{0}\tilde{Y}_{\xi}$

respectively. By using these and Lemma 4.2, we have

$(\exp_{*})_{\dot{q}}J_{0}\tilde{Y}_{\tilde{q}}=\frac{1}{\delta}W(\delta)=\frac{f(\delta)}{\delta}J_{q}Y(\delta)$

and
$J_{q}(\exp_{*})_{\tilde{q}}\tilde{Y}_{\tilde{q}}=J_{q}(\frac{1}{\delta}V(\delta))=\frac{f(\delta)}{\delta}J_{q}Y(\delta)$ .

This proves the assertion (2).

Here we define a mapping $e:\hat{C}\rightarrow M$,

(4.7) $e(\pi(\tilde{q}))=\exp\tilde{q}$

for any point $\tilde{q}$ of $Q_{p}$ . This definition is well defined. In fact, if we set $X(\theta)$

$=\delta(\cos\theta X+\sin\theta J_{0}X)$ for each $\tilde{q}=\delta X$ in $Q_{p}$ , we have
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$\frac{d}{d\theta}\exp X(\theta)=(\exp_{*})_{X(\theta)}J_{0}X(\theta)=0$ ,

taking account of Lemma 4.3 (1).

We now are going to prove that the image of $e$ is the first conjugate locus
$Q(p)$ of $p$ and that $e$ is an immersion. For any point $q$ of $Q(p)$ , there exists a
vector $X\in S_{1}^{2n-1}$ such that $q=\exp\delta X$. From this fact and (4.7) it follows that
$q=e(\pi(\delta X))$ , proving $e(\hat{C})=Q(p)$ . Since $Q_{p}=S_{\delta}^{2n-1}$ is a principal circle bundle
over $\hat{C}$ , for each point $\hat{q}\in\hat{C}$ there exists an open neighborhood $O$ of $\hat{q}$ in $\hat{C}$

and a diffeomorphism $\psi:O\times S^{1}$ onto $\pi^{-1}(O)$ . Using this diffeomorphism $\psi$ , we
have that for any $\hat{q}^{\prime}\in O$

$e(\hat{q}^{\prime})=e(\pi(\psi(\hat{q}^{\prime}, \theta_{0})))=\exp\psi(\hat{q}^{\prime}, \theta_{0})$ ,

from which the differentiablity of $e$ follows. Then by using Lemmas 4.2 and
4.3 we can show that $e$ is a $C^{\infty}$-mapping of maximal rank. The following lemma
implies that $(\hat{C}, e)$ is a regular submanifold of $M$ such that $e$ is an imbedding
and $e(\hat{C})=Q(p)$ .

LEMMA 4.4 (cf. Warner [15, Lemma 3.3]). Let $(M, g, J)$ be a connected,

simply-connected, compact Kahlerian manifold of complex dimension $n\geqq 2$ . If there
exists a point $p$ in $M$ for which each point of the first conjugate locus $Q_{p}$ in
$T_{p}(M)$ has the constant order 1, then for any posnt $q$ of $Q(p)=\exp Q_{p},$ $\exp^{-1}(q)$

$\cap Q_{p}$ consists of a single, maximal, connected, integral curve of $\xi$ .

LEMMA 4.5. Let $\hat{J}$ be the canonical complex structure on $\hat{C}$ , induced from
$S_{\delta}^{2n-1}$ in $C^{n}$ . Give the canonical Kahlerian metric $d\sigma^{2}$ of constant holomorphic

curvature 4 on it, which is compatible with $\hat{J}$. Then we have

(1) $e_{*}\circ\hat{J}=J\circ e_{*}$ ,

(2) $e^{*}g=f(\delta)^{2}d\sigma^{2}$

PROOF. Let $d$ be any point of $\hat{C}$ and $\hat{Y}_{a},\hat{Z}_{a}$ any tangent vectors of $T_{a}(\hat{C})$ .
Then there is a point $\tilde{q}\in S_{\delta}^{2n-1}$ such that $d=\pi(\tilde{q})$ and there are tangent vectors
$\tilde{Y}_{\tilde{q}},\tilde{Z}_{6}$ of $T_{\tilde{q}}(S_{\delta}^{2n-1})$ such that $(\pi_{*})_{\tilde{q}}\tilde{Y}_{\tilde{q}},$ $(\pi_{*})_{\tilde{q}}\tilde{Z}_{\tilde{q}}=\hat{Z}_{(I}$ . Then we have

$(e_{*})_{i}\hat{J}_{a\iota}\hat{Y}_{(}=(e_{*})_{a}((\pi_{*})_{d}(J_{0}\tilde{Y}_{\tilde{q}}))=(\exp_{*})_{\tilde{q}}(J_{0}\tilde{Y}_{\tilde{q}})=J_{q}(\exp_{*})_{\tilde{q}}\tilde{Y}_{\tilde{q}}$ ,

taking account of (4.7) and Lemma 4.3 (2). Similarly we have

$(e^{*}g)_{a}(\hat{Y}_{a},\hat{Z}_{t})=g_{q}((e_{*})_{tl}\hat{Y}_{d}, (e_{*})_{a}\hat{Z}_{a})$

$=g_{q}((e_{*})_{d}(\pi_{*})_{\dot{q}}\tilde{Y}_{\tilde{q}}, (e_{*})_{d}(\pi_{*})_{\dot{q}}\tilde{Z}_{\tilde{q}})$

$=g_{q}((\exp_{*})_{\tilde{q}}\tilde{Y}_{\dot{q}}, (\exp_{*})_{\tilde{q}}\tilde{Z}_{\tilde{q}})$

$=f(\delta)^{2}(d\sigma^{2})_{d}(\hat{Y}_{d},\hat{Z}_{d})$ .
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This shows the assertion (2).

PROPOSITION 4.6. Let $(M, g, J)$ be a connected, simply-connected, compact
Kahlerian manifold of complex dimension $n\geqq 2$ . Suppose that there is a point $p$

of $M$ such that $\exp^{*}g$ and $\exp^{*}\Omega$ pulled back under $exp$ , satisfy the condition $(*)$ .
Then the first conjugate locus $Q(p)$ of $p$ is a totally geodesic, complex hyper-

surface of $M$.

PROOF. Since we have already proved that $(\hat{C}, e)$ is a complex hypersurface

of $M$ in Lemma 4.5, we show only that $Q(p)$ is totally geodesic in $M$. Let $q=$

$\exp\delta X$ be a point of $Q(p)$ and $\gamma=\exp rX$ a geodesic issuing from $p$ . For any
vector $v\in T_{q}(Q(p))$ there exists a unique Jacobi field $V(r)=f(r)E(r)$ along $\gamma$ such
that $V(\delta)=v$ , because of (4.3) and (4.4), where $E(r)$ is a parallel vector field
along $\gamma$ and is perpendicular to $\gamma^{\prime}$ and $J\gamma^{\prime}$ . We put $w=E(O)$ and define a curve
in $S_{1}^{2n-1}$

(4.8) $Z(t)=\cos(|w|t)X+\sin(|w|t)\frac{w}{|w|}$ .
Then we have

(4.9) $g_{p}(\delta Z(t), \delta\dot{Z}(t))=g_{p}(J_{0}(\delta Z(t)), \delta\dot{Z}(t))=0$ ,

where $Z(t)=dZ/dt$ is a tangent vector to the curve $Z(t)$ . Therefore, $c(t)=$

$\exp\delta Z(t)$ is a curve in $Q(p)$ . Moreover, we define a geodesic variation of $\gamma$ by

(4.10) $\alpha(r, t)=\exp rZ(t)$ .
Then it is easily seen from (4.9) and the Gauss’s lemma that $\zeta=(\partial\alpha/\partial r)(\delta, t)$ is
a normal vector field to $Q(p)$ along the curve $c(t)$ . Especially, we see that

$\zeta_{0}=\frac{\partial\alpha}{\partial r}(\delta, 0)=\gamma^{\prime}(\delta)$

and from Lemma 4.3 that $\zeta_{0}$ and $J_{q}\zeta_{0}$ span the normal space at $q$ to $Q(p)$ . Since
$\alpha(r, t)$ is a geodesic variation of $\gamma$, it follows that the induced vector field
$(\partial\alpha/\partial t)(r, 0)$ is a Jacobi field along $\gamma$ and so that

$(\frac{\partial\alpha}{\partial t})(r, 0)=(\exp_{*})_{rX}rw$ .

Then by consequence of their initial conditions we can show that $(\partial\alpha/\partial t)(r, 0)$

coincides with the Jacobi field $V=f(r)E(r)$ . Recall the Weingarten’s formula
(1.2) on a complex hypersurface of a K\"ahlerian manifold. Then by an ele-
mentary property of variation we have
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$-h_{q}(v, v)=g_{q}(\nabla_{v}\zeta, v)=g(\nabla_{\partial\alpha/\partial l}\frac{\partial\alpha}{\partial r},$ $\frac{\partial\alpha}{\partial t})|_{r=\delta}i=0=g(\nabla_{\partial\alpha/\partial r}\frac{\partial\alpha}{\partial t},$ $\frac{\partial\alpha}{\partial t})|_{r=\delta}t=0$

$=g(\nabla_{\gamma^{\prime}}V(r), V(r))_{r=\delta}=g_{q}(f^{\prime}(\delta)E(\delta), f(\delta)E(\delta))=0$ ,

taking account of (4.5). Similarly we have

$-k_{q}(v, v)=g_{q}(\nabla_{v}J\zeta, v)=-g_{q}(\nabla_{v}\zeta, J\iota))=-g(\nabla_{\partial\alpha/\partial t}\frac{\partial\alpha}{\partial r},$ $J\frac{\partial\alpha}{\partial t})|_{r=\delta}l=0$

$=-g(\nabla_{\gamma^{\prime}}V(r), JV(r))|_{r=\delta}=-g_{q}(f^{\prime}(\delta)E(\delta), f(\delta)J_{q}E(\delta))=0$

by means of $\nabla J=0$ . Hence both $h_{q}$ and $k_{q}$ vanish for all tangent vectors of
$T_{q}(Q(p))$ at any point $q$ of $Q(p)$ . Thus we conclude that $Q(p)$ is totally geodesic.
By Lemma 4.5 $(\hat{C}, e)$ is a totally geodisic, complex hypersurface of $M$. This
completes the proof and also gives Corollary C.

5. Proof of Theorem B.

Our purpose in this section is to construct an automorphism $F_{A}$ of $M$ for
each $A\in U(n)$ and to complete the proof of Theorem B. Let $(M, g, J)$ be a con-
nected, simply-connected, complete K\"ahlerian manifold of complex dimension
$n\geqq 2$ . Suppose that there is a point $p\in M$ such that $\exp^{*}g$ and $\exp^{*}\Omega$ , pulled
back under $exp$, satisfy the condition $(*)$ . If $M$ is non compact, $\delta=\infty$ , then $\exp$

is a diffeomorphism of $T_{p}(M)$ onto $M$ as is:described in Introduction. Then the
reader will see that the discussions on $B_{\delta}$ in the case $\delta<\infty$ are just applicable
to the case $\delta=\infty$ . So in the following, $M$ is assumed to be compact.

Since the first tangential conjugate locus $Q_{p}$ of $p$ in $T_{p}(M)$ is the sphere
$S_{\delta}^{2n-1}$ and the order of each point of $Q_{p}$ as a conjugate point is constantly equal

to 1 as is seen in \S 4, by means of the proof of Theorem 4.4 in [15] $Q_{p}$ coin-
cides with the tangential cut locus $C_{p}$ of $p$ in $T_{p}(M)$ . In the following, we
write $C_{p}$ for $Q_{p}$ , and use the fact that $M$ is a disjoint union of $B_{\delta}=\exp\tilde{B}_{\delta}$ and
$C(p)=\exp C_{p}$ (cf. Kobayashi-Nomizu [9, I, p. 100]).

Since $M$ is complete, we know from the theorem of Hopf-Rinow (cf.

Helgason [6]) that any point $q$ of $M$ is written by $q=\exp rX$ for some $r\in R$ and
some unit vector $X$. Then for each $A\in U(n)$ we define a transformation $F_{A}$ : $M$

$\rightarrow M$,

(5.1) $F_{A}(q)=\exp rAX$ .

We show that the definition of $F_{A}$ is well defined. Since $A(\tilde{B}_{\delta})=\tilde{B}_{\delta}$ and $\exp|_{\tilde{B}_{\delta}}$

is a diffeomorphism of $\tilde{B}_{\delta}$ onto $B_{\delta}$ , it is obvious that $F_{A}|_{B_{\delta}}$ is a diffeomorphism
of $B_{\delta}$ onto itself with the only fixed point $p$ . Next, let $q=\exp\delta X$ be a point
of $C(p)$ . Then, it follows from (5.1) that $F_{A}(q)\in C(p)$ . Suppose that $q$ has
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another representation $q=\exp\delta Y$ such that $Y\in S_{1}^{2n-1}$ . Then Lemma 4.4 implies
that there is a number $t\in R$ such that $Y=\cos tX+\sin tJ_{0}X$. Therefore we have

$F_{A}(\exp\delta Y)=\exp\delta A(\cos tX+\sin tJ_{0}X)$

$=\exp\delta(\cos tAX+\sin tJ_{0}AX)$

$=F_{A}(\exp\delta X)$ ,

taking account of the properties $AX\in S_{1}^{2n-1}$ and $A\circ J_{0}=J_{0}\circ A$ . This implies that
$F_{A}$ is well defined. Moreover, let $q=\exp\delta X$ be a point of $C(p)$ such that $ X\in$

$S_{1}^{2n-1}$ . Since $A$ is non singular, if we put $q^{\prime}=\exp\delta A^{-1}X$, where $A^{-1}$ denotes the
inverse matrix of $A$ , then

$F_{A}(q^{\prime})=\exp\delta AA^{-1}X=\exp\delta X=q$ .

This implies that $F_{A}$ maps $M$ onto $M$.
Let $q=\exp\delta X$ and $q^{\prime}=\exp\delta Y$ be two points of $c(p)$ such that $F_{A}(q)=F_{A}(q^{\prime})$ ,

that is, $\exp\delta AX=\exp\delta AY$ . Then by using Lemma 4.4 we see that there is a
number $t\in R$ such that $AY=\cos tAX+\sin tJ_{0}AX$. By the fact $J_{0}\circ A=A\circ J_{0}$ , we
have

$Y=\cos tX+\sin tJ_{0}X$ ,

from which it follows that

$q^{\prime}=\exp\delta Y=\exp\delta(\cos tX+\sin tJ_{0}X)=q$ .
This means that $F_{A}$ is 1-1 on $M$.

First, we show that $F_{A}|_{B_{\delta}}$ and $F_{A}|_{C(p)}$ are differentiable and leave the
K\"ahlerian structure invariant on $B_{\delta}$ and $C(p)$ respectively. By these facts, it
will be shown that $F_{A}$ is an automorphism of $(M, g, J)$ .

We now consider about $F_{A}|_{B_{\delta}}$ : Since $\exp|_{\dot{B}_{\delta}}$ is a diffeomorphism of $\tilde{B}_{\delta}$ onto
$B_{\delta}$ , we may write

(5.2) $(F_{A}|_{B_{\delta}})_{*}=(\exp)_{*}(A)_{*}(\exp|_{\tilde{B}_{\delta}})_{*}^{-1}$ .
In order to show that $F_{A}$ leaves $(g, J)$ invariant on $B_{\delta}$ , it is sufficient to prove
that $\tilde{g}=\exp^{*}g$ and $\tilde{\Omega}=\exp^{*}\Omega$ are A-invariant on $\tilde{B}_{\delta}$ . In fact, if $\tilde{g}$ and $\tilde{\Omega}$ are
A-invariant, then

$(F_{A^{*}}g)_{q}(X_{q}, Y_{q})=(\exp^{*}g)_{A(\dot{q})}((A_{*})_{q}(\exp_{*}^{-1})_{q}X_{q}, (A_{*})_{\dot{q}}(\exp_{*}^{-1})_{q}Y_{q})$

$=(\exp^{*}g)_{\tilde{q}}((\exp_{*}^{-1})_{q}X_{q}, (\exp_{*}^{-1})_{q}Y_{q})$

$=g_{q}(X_{q}, Y_{q})$

for any tangent vectors $X_{q},$ $Y_{q}$ of $T_{q}(B_{\delta})$ , where $q=\exp\tilde{q}$ . Similarly we obtain

$(F_{A}^{*}\Omega)=\Omega$
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on $B_{\delta}$ . We show that $\tilde{g}$ and $\tilde{\Omega}$ are A-invariant on $\tilde{B}_{\delta}$ . Let $\tilde{q}=rX$ be a point

of $\tilde{B}_{\delta}$ such that $X=(b^{\alpha})\in S_{1}^{2n-1}$ and $\Sigma_{\alpha=1}^{n}b^{\alpha}\overline{b}^{\alpha}=1$ . As is seen from the right

hand side of $(*)$ , it is sufficient to show that $d\Theta^{2},$
$\eta$ and $\Psi$ are A-invariant. It

is known (cf. Sasaki-Hatakeyama [11]) that they are represented by

$d\Theta^{2}=\sum_{\alpha=1}^{n}db^{\alpha}d\overline{b}^{\alpha}$ , $\eta=\sqrt{-1}\sum_{\alpha=1}^{n}\overline{b}^{\alpha}db^{\alpha}$ , $\Psi=\sqrt{-1}\sum_{\alpha=1}^{n}db^{\alpha}\wedge d\overline{b}^{\alpha}$ ,

from which by the property $\Sigma_{\beta=1}^{n}a_{\alpha\beta}\overline{a}_{\gamma\beta}=\delta_{\alpha\gamma}$ of $A=(a_{\alpha\beta})\in U(n)$ , we have

$A^{*}d\Theta^{2}=\sum_{\alpha.\beta.\gamma=1}^{n}d(a_{\alpha\beta}b^{\beta})d(\overline{a}_{\gamma\alpha}\overline{b}^{\gamma})=\sum_{\alpha,\beta,\gamma=1}^{n}a_{\alpha\beta}\overline{a}_{\gamma\alpha}db^{\beta}d\overline{b}^{\gamma}=\sum_{\alpha=1}^{n}db^{\alpha}d\overline{b}^{\alpha}$ .
and similarly $ A^{*}\eta=\eta$ and $ A^{*}\Psi=\Psi$ . Thus it follows that $F_{A}$ leaves $g$ and $\Omega$

invariant on $B_{\delta}$ .
We shall consider about the mapping $F_{A}|_{C(p)}$ in the following. Since $ e:\hat{C}\rightarrow$

$C(p)\subset M$ is diffeomorphic, the differentiability of $F_{A}|_{C(p)}$ follows from (4.7) and

the fact that for $q=\exp\delta X\in C(p)$

(5.3) $F_{A}(q)=\exp\delta AX=e(\pi(A(\delta X)))=eo\hat{A}\circ\pi(\delta X)=e\circ\hat{A}\circ e^{-1}(q)$ ,

where $\hat{A}$ denotes a $U(n)$-action on $\hat{C}=CP^{n-1}$ . Recall that the canonical K\"ahlerian

structure $(d\sigma^{2},\hat{J})$ on $\hat{C}$ is $U(n)$-invariant (cf. Kobayashi-Nomizu [9, $\Pi$ , p. 273]).

Then by (5.3) and Lemma 4.5, (2) we have

$(F_{A^{*}}g)_{q}(Y_{q}, Z_{q})=g_{F_{A}(q)}((e_{*})_{\hat{A}(\sigma)}(\hat{A}_{*})_{ct}(e_{*}^{-1})_{q}Y_{q}, (e^{*})_{\hat{A}(a)}(\hat{A}_{*})_{d}(e_{*}^{-1})_{q}Z_{q})$

$=(e^{*}g)_{\hat{A}(\iota t)}((\hat{A}_{*})_{ct}(e_{*}^{-1})_{q}Y_{q}, (\hat{A}_{*})_{d}(e_{*}^{-1})_{q}Z_{q})$

$=f(\delta)^{2}(d\sigma^{2})_{\hat{A}(a)}((\hat{A}_{*})_{a}(e_{*}^{-1})_{d}Y_{q}, (\hat{A}_{*})_{d}(e_{*}^{-1})_{q}Z_{q})$

$=g_{q}(Y_{q}, Z_{q})$

for any tangent vectors $Y_{q},$ $Z_{q}\in T_{q}(C(p))$ , where $d=e^{-1}(q)$ and $\hat{A}(d)=\hat{A}(\pi(\delta X))$

$=\pi(\delta AX)$ . Similarly we obtain
$ F_{A^{*}}\Omega=\Omega$

on $c(p)$ .
Though $F_{A}|_{B_{\delta}}$ and $F_{A}|_{C(p)}$ are differentiable, it remains to be shown that

$F_{A}$ is differentiable on $M$. Then by the following lemma (cf. Helgason [6, p. 61],

Kobayashi-Nomizu [9, I, $p,$ $169$]) we now are going to show that $F_{A}$ is an iso-
metry of $(M, g)$ .

LEMMA 5.1 (Myers-Steenrod). Let $(N, g)$ be a connected Riemannian mani-

fold and $F$ a distance-preserving mapping of $N$ onto itself, that is $d(F(p), F(q))=$

$d(p, q)$ for $p,$ $q\in N$. Then $F$ is an isometry.

First of all, we show that $F_{A}$ is continuous on $M$. Since $F_{A}|_{B_{\delta}}$ is differnti-
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able and $B_{\delta}$ is an open set of $M$, it remains to show that $F_{A}$ is continuous at
the point $q=\exp\delta X\in C(p)$ . Let $q^{\prime}=\exp Y,$ $ 0<|Y|<\delta$ , be a point sufficiently near
$q$ . Putting $q^{\prime}=\exp\delta(Y/|Y|)$ and using the triangle inequality, we have $d(q^{\prime}, q^{\prime\prime})$

$\leqq d(q, q^{\prime})$ , from which $d(q, q^{\prime\prime})\leqq 2d(q, q^{\prime})$ . Then we have

$d(F_{A}(q), F_{A}(q^{\prime}))\leqq d(F_{A}(q), F_{A}(q^{\prime}))+d(F_{A}(q^{\prime}), F_{A}(q^{\prime}))$

$=d(q, q^{\chi})+d(q^{\prime\prime}, q^{\prime})\leqq 3d(q, q^{\prime})$ ,

taking account of the properties of $F_{A}|_{B_{\delta}}$ and $F_{A}|_{C(p)}$ , since $C(p)$ is totally
geodesic. This implies that $F_{4}1$ is continuous at $q$.

Next, we show that $F_{A}$ is a distance-preserving mapping on $(M, g)$. Let $q$

and $q^{\prime}$ be two points of $M$. The set of all continuous piecewise C’-curves from
$q$ to $q^{\prime}$ in $M$ will be denoted by $\Gamma(q, q^{\prime})$ . Then for any curve $c$ of $\Gamma(q, q^{\prime}),$ $F_{A}\circ c$

belongs to $\Gamma(F_{A}(q), F_{A}(q^{\prime}))$ by virtue of continuity of $F_{A}$ . Conversely, if $ c\in$

$\Gamma(F_{A}(q), F_{A}(q^{\prime}))$ , then $F_{A-1}\circ c\in\Gamma(q, q^{\prime})$ . Then $F_{A}$ induces a mapping of $\Gamma(q, q^{\prime})$

onto $\Gamma(F_{A}(q), F_{A}(q^{\prime}))$ . Since $C(p)$ is a totally geodesic submanifold of $M$ and since
$F_{A}|_{C(p)}$ (resp. $F_{A}|_{B_{\delta}}$) is an isometry of $(C(p), g|_{C(p)})$ (resp. $(B_{\delta},$ $g|_{B_{\delta}})$) onto itself,

we have to consider only the curves $c\in\Gamma(q, q^{\prime})$ such that $c(a)=q\in B_{\delta},$ $c(b)=q^{\prime}\in C\langle p)$

and $C([a, b))\subset B_{\delta}$ . But for such curves $c$ it can be easily shown that length of
$c=length$ of $F_{A}\circ c$ . Thus $F_{A}$ is a distance-preserving mapping of $M$ onto itself.
Thanks to Lemma 5.1, we establish that $F_{A}$ is an isometry of $(M, g)$ onto itself.

Finally, it remains to be shown that $F_{A}$ is holomorphic on $M$, though $F_{A}|_{B_{\delta}}$

and $F_{1}\lrcorner|_{C(p)}$ are already so. But as is seen in (5.7), it is sufficient to show that
$(F_{A*})_{q}J_{q}(\delta)=J_{F_{A}(q)}((\delta))$ at $q\in C(p)$, where $\gamma_{X}$ denotes a geodesic issuing from
$p$ satisfying $\gamma_{X}^{\prime}(O)=X$. Since $F_{A}$ is differentiable, by (5.2) we have

$(F_{A*})_{q}J_{q}\gamma_{X}^{\prime}(\delta)=\lim_{r\dagger\delta}(\exp_{*})_{A(rX)}(A_{*})_{(rX)}(\frac{J_{0}X}{f(r)f\prime(r)})$

$=\lim_{r\dagger\delta}J\gamma_{AX}^{\prime}(r)=J\gamma_{AX}^{\prime}(\delta)$ ,

taking account of (4.3), (4.4) and $A\circ J_{0}=J_{0}A$ . Therefore, $F_{A}$ defined by (5.1) is
an automorphism of $M$ onto itself such that $F_{A}(p)=p$ and $(F_{A*})_{p}=A$ . Thus $(M, g, J)$

is unitary-symmetric at $p$ and the proof of Theorem $B$ is complete.

6. Proof of Theorem D.

Let $X$ be a unit tangent vector in $T_{p}(M)$ and $\gamma_{X}=\gamma_{X}(r)(0\leqq r\leqq\delta)$ be the
geodesic issuing from $p$ such that $\gamma_{X}^{\prime}(O)=X$. For simplicity we put $X(\theta)=$

$\cos\theta X+\sin\theta J_{0}X(0\leqq\theta\leqq 2\pi)$ and define

(6.1) $\omega(t, \theta)=\exp((\delta+t)X(\theta))$
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for $-\delta\leqq t\leqq 0,0\leqq\theta\leqq\pi$ . Then by Lemma 4.2 we have

(6.2) $\nabla_{\theta}\partial_{l}\omega|_{t=0}=\nabla_{t}\partial_{\theta}\omega|_{l=0}$

$=\nabla_{l}[(\exp_{*})_{(\delta+t)X(\theta)}(\delta+t)J_{0}X(\theta)]|_{t=0}$

$=\nabla_{l}[f(\delta+t)f^{\prime}(\delta+t)J\gamma_{X(\theta)}^{\prime}(\delta+t)]|_{t=0}$

$=f(\delta)f^{\prime\prime}(\delta)J\gamma_{X(\theta)}^{\prime}(\delta)$ .
Recall that as in the definition of the mapping $e:\hat{C}\rightarrow Q(p)\subset M$ we have $\omega(0, \theta)$

$=q$ for each $\theta(0\leqq\theta\leqq 2\pi)$ . Therefore it follows that for each $\theta,$ $\rho(\theta)=(\partial_{t}\omega)(0, \theta)$

is a tangent vector in $T_{q}(M)$ , from which $\nabla_{\theta}\rho(\theta)$ is always in $T_{q}(M)$ . From
this observation and Lemma 4.2, the assumption $f(\delta)f^{\prime\prime}(\delta)=-1$ together with
(6.2) implies that $\rho=\rho(\theta)$ is a unit circle in $N_{q}=T_{q}(Q(p))^{\perp}$ , whose tangent vec-
tors are always of length 1, where $T_{q}(Q(p))^{\perp}$ is the 2-dimensional plane in $T_{q}(M)$

orthogonal to the tangent space $T_{q}(Q(p))$ . Since $\{\gamma_{X}^{\prime}(\delta), J\gamma_{X}^{\prime}(\delta)\}$ is an orthonormal
basis of $N_{q},$ $\rho(\theta)$ may be represented up to an orientation by

$\rho(\theta)=\cos(\theta+\alpha)\gamma_{X}^{\prime}(\delta)+\sin(\theta+\alpha)J\gamma_{X}^{\prime}(\delta)$ ,

where $\alpha$ is a constant. This implies that $\rho(\pi)=-\rho(0)$ , that is,

(6.3) $\gamma_{-x}^{\prime}(\delta)=-\gamma_{X}^{\prime}(\delta)$ ,

Since geodesics in $M$ are determined uniquely by their initial conditions at one
point in $M$, by (6.3) we have

$\exp(\delta-t)(-X)=\exp(\delta+t)X$

for $ 0\leqq t\leqq\delta$ , form which

$\gamma_{X}(t)=\exp tX=\exp(2\delta-t)(-X)$ $(0\leqq t\leqq 2\delta)$

follows. Thus we see that any geodesic issuing from $p$ is closed.

REMARK. Using Theorem $D$, Mori-Watanabe [10] has shown that there exist
non-canonical $SC^{p}$-K\"ahlerian structures on $CP^{n}$ .
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