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ESTIMATI0N OF A COMMON MEAN OF TWO
NORMAL DISTRIBUTI0NS
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Tatsuya KUBOKAWA

Consider the problem of estimating the common mean of two normal

distributions with independent estimators for variances. The paper gives suffi-

cient conditions for the combined estimator being better than the uncombined

estimator in the sense of making its variance smaller. They are extensions of

some parts of the conditions by Brown and Cohen [4], Khatri and Shah [9]

and Bhattacharya $[1, 2]$ . Applications to the problem of recovery of interblock

information in the BIB designs and the problem of estimating common coefficients

of two regression models are shown.

1. Introduction.

The problem of estimating a common mean of two normal distributions

with unknown variances has been studied in several papers. Of these, Graybill

and Deal [7] showed that the necessary and sufficient condition for the combined

estimator to have a smaller variance than each sample mean is the sample sizes

being greater than 10. Later this is corrected by Khatri and Shah [9] as
$(n_{i}-3)(n_{j}-9)\geqq 16$ for $i\neq j$ , where $n_{1}$ and $n_{2}$ are sample sizes of the populations.

This result has been generalized in various forms by Brown and Cohen [4],

Khatri and Shah [9] and Bhattacharya $[1, 2]$ . In this paper, assuming the

underlying model by Bhattacharya [2], we extend the class of combined

estimators by adding one more arbitrary constant and give sufficient conditions

for the variance of the estimator being uniformly smaller than that of the

uncombined estimator.
In Section 2, we give a sufficient condition based on Brown and Cohen [4]

and other sufficient conditions based on the inequality of Bhattacharya [3].

Further from the inequality, we get a new sufficient condition under additional

constraints on sample sizes and constant multipliers. This sufficient condition

is an extended form of Bhattacharya [2] except for some special type of

estimators and is proved to be better under those constraints. In Section 3,

the proofs of the results in Section 2 are given.
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In Section 4, we specialize these results to the problem of estimating a
common mean from two normal populations and apply to the problem of the
recovery of interblock information in the balanced incomplete block designs.
Here we give a simple sufficient condition for Yates [12] $s$ estimate being better
than the intrablock estimate. Bhattacharya [1] obtained another sufficient
condition and showed this condition was satisfied for all asymmetrical BIBD’s
listed in Fisher-Yates’ table [6] with two exceptions. For one of these two
designs, Bhattacharya [1] proved that Yates’ estimate did not have the desired
property, but for the other design, he could come to no conclusion. Using our
sufficient condition for this design, we can see that Yates’ estimate is superior
to the intrablock estimate. We also apply our results to the problem of
estimating common regression coefficients of two normal linear models according
to Swamy and Mehta [11], where the preference of estimators is judged by usual
partial ordering between covariance matrices.

2. Main results.

Let $X,$ $Y,$ $S_{1},$ $S_{2}$ and $W_{j}$ , $j=1,$ $\cdots,$ $q$ be independent observed random
variables where $X$ has normal distribution $N(\mu, \alpha_{0}\sigma_{1}^{2})$ and $Y$ has $N(\mu, \beta_{0}\sigma_{2}^{2})$ for
known constants $\alpha_{0}$ and $\beta_{0}$ ; $S_{1},$ $S_{2}$ and $W_{j}$ are estimators for unknown param-
eters $\sigma_{1}^{2},$ $\sigma_{2}^{2}$ and $\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2}$ respectively with known $\alpha_{j}$ and $\beta_{j}$ such that $S_{i}/\sigma_{i}^{2}$

has $x_{m_{i}}^{2}$-distribution $(m_{i}>0)$ , that is, chi square variate with $m_{i}$ degrees of
freedom for $i=1,2$ , and $W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})$ has $x_{1}^{2}$-distribution for all $j=1,$ $\cdots,$ $q$ .
Let us write $q=0$ when the statistics $W_{j}\prime s$ don’t exist. The problem is to find
a better combined estimator than $X$ for the unknown common mean $\mu$ within
the form

(2.1) $\hat{\mu}=X+\phi\cdot(Y-X)$ ,

where

(2.2) $\phi=\frac{a\alpha_{0}S_{1}}{\alpha_{0}S_{1}+c\beta_{0}S_{2}+d\beta_{0}\{(Y-X)^{2}/\beta_{0}+\Sigma_{j=1}^{q}W_{j}/\beta_{j}\}}$

with nonnegative constants $a,$ $c$ and $d(c+d>0)$ suitably chosen. It is easy to
see that $\hat{\mu}$ is an unbiased estimator of $\mu$. In Section 4, the estimator $\hat{\mu}$ is
applied to the problem of recovery of interblock information in BIBD’s with
prior knowledge that $\sigma_{2}^{2}\geqq\sigma_{1}^{2}$ between unknown variances. It is also applied to
the problem of estimating a common mean of two normal populations and the
problem of estimating common coefficients of two regression models with no
information about $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$. To deal with these applications, we suppose that
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$\rho>\rho_{0}$ where $\rho=\beta_{0}\sigma_{2}^{2}/(\alpha_{0}\sigma_{1}^{2})$ and $\rho_{0}$ is a nonnegative known constant. The

conditions for $Var(\hat{\mu})\leqq Var(X)$ for any $\rho>\rho_{0}$ and any $\sigma_{1}^{2}>0$ have been given

in Brown and Cohen [4] for $c=d$ when $\rho_{0}=0$ or $\rho_{0}=1$ ; in Khatri and Shah

[9] for $c=d$ or $d=0$ when $\rho_{0}=0$ ; in Bhattacharya [2] for $c=d,$ $d=0$ or $c=0$

when $\rho_{0}=0$ and in Bhattacharya [1] for $\alpha_{0}=\cdots=\alpha_{q}$ and $\beta_{0}=\cdots=\beta_{q}$ when

$\rho_{0}\geqq 0$ . We shall look for the sufficient conditions in terms of three constants

$a,$ $c$ and $d$ given in (2.2) when $\rho_{0}\geqq 0$ .
Let $W_{0}$ be a $(\alpha_{0}\sigma_{1}^{2}+\beta_{0}\sigma_{2}^{2})x_{3}^{2}$-variate independent of $S_{1},$ $S_{2}$ and $W_{j}(j=1, \cdots , q)$ .

Then the following expression of the variance of $p$ according to Brown and

Cohen [4] and Khatri and Shah [9] is useful.

(2.3) $Var(\hat{\mu})=Var(X)+\alpha_{0}\sigma_{1}^{2}E[-2\overline{\phi}+(1+\rho)\overline{\phi}^{2}]$ ,

where $\overline{\phi}$ is the same as $\phi$ in (2.2) except that $(X-Y)^{2}$ is replaced by $W_{0}$ . Note

that the distribution of $(X-Y)^{2}$ is $(\alpha_{0}\sigma_{1}^{2}+\beta_{0}\sigma_{2}^{2})x_{!}^{2}$ and is different from $W_{0}$ .
From (2.3), a necessary and sufficient condition for the estimator $\hat{\mu}$ being

uniformly better than $X$ for any $\rho\geqq\rho_{0}$ is given by

(2.4) $a\leqq 2\cdot\inf_{\rho>\rho 0}\{\frac{E[r(\rho)]}{E[\{r(\rho)\}^{2}]}\}$ ,

where $r(\rho)=(1+\rho)\overline{\phi}/a$ .
The following two theorems are obtained from the inequality (2.4). An

extension of Brown and Cohen [4] is given by the following theorem.

THEOREM 2.1. For $m_{2}+q>1$ and $c,$ $d>0$, the variance of $\hat{\mu}$ is uniformly

smaller than that of $X$ for any $\rho>\rho_{0}$ if $a\leqq a_{BC}(c, d;\rho_{0})$ where

(2.5)
$a_{BC}(c, d;\rho_{0})=\frac{2(m_{2}+q+3)/(m_{2}+q+1)}{E[\max\{\frac{1+\rho_{0}}{V+\rho_{0}f(c,d)},\frac{1}{f(c,d)}\}V^{2}]}$

,

$f(c, d)=\{\min(c, d)\}(m_{2}+q+3)/m_{1}$ and $V$ is a random variable having F-distri-

bution with $(m_{1}, m_{2}+q+3)$ degrees of freedom.

The assumption $m_{2}+q>1$ implies that the denominator of the $r$ . $h$ . $s$ . of

(2.5) is finite for any $c,$ $d>0$. Putting $c=d=m_{1}/(m_{2}+3)$ and $q=0$ in Theorem

2.1, we get $a\leqq 2(m_{2}+3)/\{(m_{2}+1)E[\max(V, V^{2})]\}$ for $\rho_{0}=0$ and $a\leqq 2(m_{2}+3)$

$/\{(m_{2}+1)E[\max(2/(V+1), 1)V^{2}]\}$ for $\rho_{0}=1$ , because $f(c, d)=1$ . These were

derived by Brown and Cohen [4].

Next we define two random variables $Z$ and $T$ such that

(2.6) $Z=\frac{\Sigma_{J}^{q_{=1}}x_{j}^{2}(1)+x_{0}^{2}(3)}{x^{2}(m_{2})+\Sigma_{j=1}^{q}x_{j}^{2}(1)+x_{0}^{2}(3)}$ ,



160 Tatsuya KUBOKAWA

(2.7) $T=\frac{\Sigma_{j=1}^{q}\{\beta_{0}\alpha_{j}/(\alpha_{0}\beta_{j})\}x_{j}^{2}(1)+x_{0}^{2}(3)}{x^{2}(m_{2})+\Sigma_{j=1}^{q}x_{j}^{2}(1)+x_{0}^{2}(3)}$ ,

where $x^{2}(m_{2}),$ $x_{0}^{2}(3),$ $x_{1}^{2}(1),$
$\cdots,$

$x_{q}^{2}(1)$ are mutually independent $x^{2}$-variates with
degrees of freedom shown in the parentheses respectively. We note that $Z$

follows beta distribution with parameters $((q+3)/2, m_{2}/2)$ and that $Z$ and $T$

are not independent. An extension of Bhattacharya $[1, 2]$ is given by the
following theorem.

THEOREM 2.2. Suppose that one of the following three conditions holds: (i)

$m_{2}+q>1$ if $c,$ $d>0$ , (ii) $m_{2}>4$ if $d=0$ or (iii) $q>1$ if $c=0$ . Put $a_{0}=(m_{2}+q-1)$

$/(m_{1}+2)$ . Then the variance of $\hat{\mu}$ is uniformly smaller than that of $X$ for any
$\rho>\rho_{0}$ if $a\leqq 2\max[\min\{1,\inf_{\rho>\rho_{0}}A(c, d;1/\rho)a_{0}\},\inf_{\rho>\rho 0}A(c, d;1/\rho)a_{0}\rho_{0}/(1+\rho_{0})]$ where

(2.8) $A(c, d;1/\rho)=\frac{E[\{c(1-Z)+dZ+dT/\rho\}^{-1}]}{E[\{c(1-Z)+dZ+dT/\rho\}^{-2}]}$ .

The three assumptions on $m_{2}$ and $q$ in Theorem 2.2 mean that
$ 0<A(c, d;l/\rho)<\infty$ and $a_{0}>0$ . The sufficient condition in Theorem 2.2 is not
simple to be checked since it contains the infimum and the expectations. We
shall give weaker versions of it, which are, however, more useful. Since

(2.9) $E[f(X)]/E[g(X)]\geqq\inf_{x}\{f(x)/g(x)\}$

holds for any positive valued functions $f,$ $g$ and any random variable $X$, it
follows that

(2.10) $A(c, d;1/\rho)\geqq\inf_{l>0,0<z<1}\{c(1-z)+dz+dt/\rho\}$

$=\min(c, d)$ ,
which yields

COROLLARY 2.1. For $m_{2}+q>1$ and $c,$ $d>0$ , the estimator $\hat{\mu}$ is uniformly
better than $X$ for any $\rho>\rho_{0}$ if

$a\leqq 2\max[\min\{1, \min(c, d)a_{0}\}, \min(c, d)a_{0}\rho_{0}/(1+\rho_{0})]$ .

The sufficient condition shown in Corollary 2.1 was proved by Bhattacharya
[1] for $\alpha_{0}=\cdots=\alpha_{q}$ and $\beta_{0}=\cdots=\beta_{q}$ when $\rho_{0}=0$.

Furthermore from Theorem 2.2, we can develop more precise sufficient
conditions, which are used in all the applications in Section 4. For this, we
assume the following conditions:
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(C-1) $c\geqq d\geqq 0$ or $c=0$ $(c+d>0)$ ,

(C-2) 2 $\min_{0\leqq j\leqq q}\{\frac{\alpha_{j}}{\beta_{j}}\}\geqq\max_{0\leqq j\leq q}\{\frac{\alpha_{j}}{\beta_{j}}\}$ .

For $c=d$ or $d=0$ , however, we need not assume the condition (C-2). We note
that the condition (C-1) includes three cases $c=d,$ $d=0$ or $c=0$ which have
been studied by Brown and Cohen [4], Khatri and Shah [9] and Bhattacharya
[2], and that the condition (C-2) is always satisfied for $q=0$ or for $\alpha_{0}=\cdots=\alpha_{q}$ ,
$\beta_{0}=\cdots=\beta_{q}$ . Under these conditions (C-1) and (C-2), we can show that
$\inf_{\rho>\rho_{0}}A(c, d;1/\rho)=A(c, d;0)$ in Theorem 2.2, and get the next theorem.

THEOREM 2.3. Suppose that the condition (C-1) holds, and that the condition
(C-2) holds except when $c=d$ or $d=0$. Assume that one of the following three
conditions is satisfied: (i) $m_{2}+q>1$ if $c,$ $d>0$ , (ii) $m_{2}>4$ if $d=0$ or (iii) $q>1$ if
$c=0$. Put $a_{0}=(m_{2}+q-1)/(m_{1}+2)$ and

(2.11) $A(c, d;0)=\frac{E[\{c(1-Z)+dZ\}^{-1}]}{E[\{c(1-Z)+dZ\}^{-2}]}$ ,

where $Z$ has beta distribution with parameters $((q+3)/2, m_{2}/2)$ . Then
(a) $\hat{\mu}$ is uniformly better than $X$ for any $\rho>\rho_{0}$ if

$a\leqq 2\max[\min\{1, A(c, d;0)a_{0}\}, A(c, d;0)a_{0}\rho_{0}/(1+\rho_{0})]$ .
(b) Given $A(c, d;0)a_{0}\leqq 1$ , $\hat{\mu}$ is uniformly better than $X$ for any $\rho>\rho_{0}$ if

and only if $a\leqq 2A(c, d;0)a_{0}$ .
(c) Given $a\leqq 2,\hat{\mu}$ is uniformly better than $X$ for any $\rho>\rho_{0}$ if and only if

$A(c, d;0)\geqq a/(2a_{0})$ .
(d) $\hat{\mu}$ is uniformly better than $X$ for any $\rho>\rho_{0}$ if

(2.12) $a\leqq 2\max[\min\{1,$ $(1+\frac{m_{2}(c-d)}{(m_{2}+q+3)c})da_{0}\},$ $(1+\frac{m_{2}(c-d)}{(m_{2}+q+3)c})\frac{da_{0}\rho_{0}}{1+\rho_{0}}]$

for $c\geqq d>0$ ,

or if

(2.13) $a\leqq 2\max[\min\{1,$ $\frac{m_{2}-4}{m_{1}+2}c\},$ $\frac{(m_{2}-4)c\rho_{0}}{(m_{1}+2)(1+\rho_{0})}]$ for $c>0,$ $m_{2}>4$ .

The assumptions on $m_{2}$ and $q$ in Theorem 2.3 guarantee the existence of
the expectations in $A(c, d;0)$ in (2.11) and $a_{0}>0$, which are equal to those of
Theorem 2.2. Special cases of Theorem 2.3 when $A(c, c;O)=c,$ $A(c, 0;0)=$

$c(m_{2}-4)/(m_{2}+q-1)$ or $A(O, d;0)=d(q-1)/(m_{2}+q-1)$ with $\rho_{0}=0$ were proved by
Bhattacharya [2] without assuming the condition (C-2). However, we should
impose (C-2) for $c=0$ in our proof. In order to compute the upper bound of $a$
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in Theorem 2.3, we can rewrite $A(c, d;0)$ according to Khatri and Shah [9] as

(2.14) $A(c, d;0)=\frac{2F_{1}(1,\frac{q+3}{2},\frac{m_{2}+q+3}{2};.\frac{c-d}{c})}{2F_{1}(2,\frac{q+3}{2},\frac{m_{2}+q+3}{2},\frac{c-d}{c})}c$

where $c\geqq d\geqq 0$ and $2F1$ is the hypergeometric function. When $d=0$ , the as-
sumption $m_{2}>4$ implies that the hypergeometric functions in (2.14) converge.

The simple sufficient condition (2.12) is derived from the result (a) and (2.14),

and is useful for the constant $d$ away from zero. The other sufficient condition
(2.13) is independent of $d$ and the $r$ . $h$ . $s$ . is equal to the upper bound of $a$ in
Theorem 2.3 (a) when $d=0$ and is smaller when $d=c$ .

If $\rho_{0}=0$ and the conditions (C-1), (C-2) hold, the sufficient condition (a)

given in Theorem 2.3 is better than that in Theorem 2.1 as is shown in

THEOREM 2.4. Suppose that one of the following conditions holds: (i)

$m_{2}+q>1$ if $c,$ $d>0$ , (ii) $m_{2}>4$ if $d=0$ or (iii) $q>1$ if $c=0$. If $\rho_{0}=0$ , then we
get the following inequality between two upper bounds of a given in Theorems 2.1
and 2.3 $(a)$ .
(2.15) $a_{BC}(c, d;0)\leqq 2\min\{1, A(c, d;0)a_{0}\}$

$for_{L}^{\sim}any$ nonnegative constants $c$ and $d$ not all equal to zero. The inequality holds

without assuming the conditions (C-1) and (C-2).

3. Proofs of theorems.

To prove main theorems in Section 2, we shall express the random variable
$r(\rho)$ in (2.4) by other random variables whose distributions are independent of
unknown parameters. Using the observations $S_{1},$ $S_{2},$ $W_{j}$ ($]^{=1}$ , , q) and the
random variable $W_{0}$ defined in Section 2, put

(3.1) $F=\frac{S_{2}/\sigma_{2}^{2}+\Sigma_{j=0}^{q}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}{S_{1}/\sigma_{1}^{2}}$ ,

(3.2) $Z=\frac{\Sigma_{J}^{q_{=0}}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}{S_{2}/\sigma_{2}^{2}+\Sigma_{j=0}^{q}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}$ ,

(3.3) $T=\frac{\Sigma_{J}^{q_{=0}}\{\beta_{0}\alpha_{j}/(\alpha_{0}\beta_{j})\}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}{S_{2}/\sigma_{2}^{2}+\Sigma_{j=0}^{q}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}$ .

It is easy to see that $\{m_{1}/(m_{2}+q+3)\}F$ has F-distribution with $(m_{2}+q+3, m_{1})$

degrees of freedom and $Z$ has beta distribution with parameters $((q+3)/2, m_{2}/2)$ .
It follows that the distribution of $Z$ and $T$ are given by (2.6) and (2.7). Since
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$\sum_{i=1}^{m}x_{a}^{2}i$ and $(x_{a_{1}}^{2}/\sum_{i=1}^{m}x_{a_{i}}^{2}, \cdots, x_{a_{m}}^{2}/\Sigma_{i=1}^{m}x_{a_{i}}^{2})$ are independent for the independent
$x^{2}$-variates with $a_{i}$ degrees of freedoms and a natural number $m$ , we can see
that $F$ and $(Z, T)$ are independent.

Now we express $r(\rho)$ in (2.4) by the random variables $F,$ $Z$ and $T$. We
first see that

(3.4) $r(\rho)=(1+\rho)\overline{\phi}/a$

$=\frac{(1+\rho)\alpha_{0}S_{1}}{\alpha_{0}S_{1}+c\beta_{0}S_{2}+d\beta_{0}\Sigma_{j=0}^{q}W_{j}/\beta_{j}}$ .
Note that

$\Sigma_{j}^{q_{=0}}W_{j}/(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})=ZFS_{1}/\sigma_{1}^{2}$ ,

(3.5) $S_{2}/\sigma_{2}^{2}=(1-Z)FS_{1}/\sigma_{1}^{2}$ ,

$\Sigma_{j=0}^{q}\frac{\beta_{0}\alpha_{j}W_{j}}{\alpha_{0}\beta_{j}(\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2})}=TFS_{1}/\sigma_{1}^{2}$ .
Since $\rho=\beta_{0}\sigma_{2}^{2}/(\alpha_{0}\sigma_{1}^{2})$ , the denominator in the last expression of (3.4) can be

rewritten as

$\alpha_{0}S_{1}+c\beta_{0}S_{2}+\alpha_{0}\sigma_{1}^{2}d\Sigma_{J}^{q_{=0}}(\frac{\beta_{0}\alpha_{j}}{\alpha_{0}\beta_{j}}+\rho)\frac{W_{j}}{\alpha_{j}\sigma_{1}^{2}+\beta_{j}\sigma_{2}^{2}}$

(3.6) $=\alpha_{0}S_{1}\{1+\rho c(1-Z)F+d(TF+\rho ZF)\}$

$=\alpha_{0}S_{1}[1+dTF+\rho\{c(1-Z)+dZ\}F]$ .
Hence $r(\rho)$ is represented in the form

(3.7) $r(\rho)=(1+\rho)/[1+dTF+\rho\{c(1-Z)+dZ\}F]$ .
Putting $\rho=\rho_{0}$ or $\rho=\infty$ in (3.7) and using (2.4) with

(3.8) $E[F^{-1}]=m_{1}/(m_{2}+q+1)$ ,

$E[F^{-2}]=m_{1}(m_{1}+2)/\{(m_{2}+q-1)(m_{2}+q+1)\}$ ,

we get the following necessary condition, which is used to prove Theorems 2.3
and 2.4.

LEMMA 3.1. Suppose that one of the following conditions holds: (i) $m_{2}+q>1$

if $c,$ $d>0$, (ii) $m_{2}>4$ if $d=0$ or (iii) $q>1$ if $c=0$ . Then a necessary condition

for $\hat{\mu}$ , given by (2.1), being uniformly better than $X$ for any $\rho>\rho_{0}$ is

(3.9) $a\leqq 2\min\{\frac{E[r(\rho_{0})]}{E[\{r(\rho_{0})\}^{2}]},$ $A(c, d;O)a_{0}\}$

where $A(c, d;0)$ and $a_{0}$ are given by Theorem 2.3.
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The three assumptions on $m_{2}$ and $q$ in Lemma 3.1 guarantee that all the
expectations in (2.4) and (3.9) exist. In fact, it is enough to show that
$ E[\{c(1-Z)+dZ\}^{-2}]E[F^{-2}]<\infty$ . It is easily seen that

(3.10) $E[\{c(1-Z)+dZ\}^{-2}]\left\{\begin{array}{l}\leqq\max(c^{-2},d^{-2}) forc,d>0,\\=E[(1-Z)^{-2}]/c^{2} ford=0,\\=E[Z^{-2}]/d^{2} forc=0,\end{array}\right.$

and that $ E[F^{-2}]<\infty$ for $m_{2}+q>1$ from (3.8). Noting that $ E[(1-Z)^{-2}]<\infty$ for
$m_{2}>4$ and $ E[Z^{-2}]<\infty$ for $q>1$ , we have the three assumptions on $m_{2}$ and $q$

in Lemma 3.1.

3.1. Proof of Theorem 2.1. We note that all the expectations in the proof

exist for $c,$ $d>0$ if $m_{2}+q>1$ as shown by the similar discussion in Lemma 3.1.
Following Brown and Cohen [4], consider $r(\rho)$ in (3.7). Then $\sup_{\rho>\rho_{0}}\{r(\rho)\}$

$\leqq\max\{r(\rho_{0}), r(\infty)\}$ , which yields

(3.11) $r(\rho)\leqq\max\{\frac{1+\rho_{0}}{1+\rho_{0}\{c(1-Z)+dZ\}F},$ $\frac{1}{\{c(1-Z)+dZ\}F}\}$

$\leqq\max\{\frac{1+\rho_{0}}{1+\rho_{0}\min(c,d)F},$ $\frac{1}{\min(c,d)F}\}$

$=h(F)$ (say).

Then we have

(3.12) $\frac{E[r(\rho)]}{E[\{r(\rho)\}^{2}]}\geqq\frac{E[r(\rho)]}{E[h(F)r(\rho)]}\geqq_{\rho>_{0}p_{z<1}}\inf_{\rho,t>0}\{\frac{E[r(\rho)|T=t,Z=z]}{E[h(F)r(\rho)|T=t,Z=z]}\}$

by (2.9). When $c=d$ , Brown and Cohen [4] showed that the bracketed term

on the $r$ . $h$ . $s$ . of (3.12) is nonincreasing in $\rho$ and that the infimum is attained
when $\rho\rightarrow\infty$ . This fact can be similarly shown to be true without assuming
$c=d$ . However, in this place, we directly prove based on Bhattacharya [3]

that

(3.13) $\frac{E[r(\rho)|T=t,Z=z]}{E[h(F)r(\rho)|T=t,Z=z]}\geqq\frac{E[F^{-1}]}{E[h(F)F^{-1}]}$ ,

for any $\rho>\rho_{0},$ $t>0$ and $0<z<1$ . The $r$ . $h$ . $s$ . of (3.13) is obtained by letting
$\rho\rightarrow\infty$ in the 1. $h$ . $s.$ . If the inequality (3.13) is valid, then putting $F^{-1}=$

$\{m_{1}/(m_{2}+q+3)\}V$ in the denominator of the $r$ . $h$ . $s$ . of (3.13) and noting (3.8),

(3.12) and (2.4) gives the sufficient condition $a\leqq a_{BC}(c, d;\rho_{0})$ in Theorem 2.1.
So we shall prove (3.13). The independence between $F$ and $(T, Z)$ first implies

that the inequality (3.13) can be rewritten in the form
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(3.14) $E_{0}[Fr(\rho)|T=t, Z=z]E_{0}[h(F)]\geqq E_{0}[h(F)Fr(\rho)|T=t, Z=z]$

where $E_{0}$ stands for expectation with respect to the probability measure $P_{0}$

given by $P_{0}(A)=E[I_{A}F^{-1}]/E[F^{-1}]$ and $I_{A}$ is the indicator function of a set $A$ .
Regarding $r(\rho)$ in (3.7) as a function of $F$, it is easy to see that $Fr(\rho)$ is
nondecreasing in $F$ given $T,$ $Z$ and that $h(F)$ is decreasing in $F$. Hence we
get the inequality (3.14), which completes the proof.

3.2. Proof of Theorem 2.2. Note that the random variable $r(\rho)$ in (3.7)

is represented as $r(\rho)=\{(1-\Theta)+\Theta R\}^{-1}$ where $\Theta=\rho/(1+\rho)$ and $R=\{c(1-Z)+$

$dZ+dT/\rho\}F$. Then it follows from the inequality in Bhattacharya [3, theorem
2.2] that

(3.15) $\frac{E[r(\rho)]}{E[\{r(\rho)\}^{2}]}\geqq\min\{1,$ $\frac{E[R^{-1}]}{E[R^{-2}]}\}$ .

On the other hand when $\rho_{0}>0$, we have

(3.16) $\frac{E[r(\rho)]}{E[\{r(\rho)\}^{2}]}=\Theta\frac{E[\{1/\rho+R\}^{-1}]}{E[\{1/\rho+R\}^{-2}]}$

$\geqq\frac{\rho_{0}}{1+\rho_{0}}\cdot\frac{E[R^{-1}]}{E[R^{-2}]}$

because $\Theta>\rho_{0}/(1+\rho_{0})$ and the following inequality holds:

(3.17) $\frac{E[\{1/\rho+R\}^{-1}]}{E[\{1/\rho+R\}^{-2}]}\geqq\frac{E[R^{-1}]}{E[R^{-2}]}$ .

In fact, this is equivalent to the inequality

(3.18) $E_{1}[\frac{R}{1/\rho+R}]E_{1}[\frac{1}{R}]\geqq E_{1}[\frac{R}{\{1/\rho+R\}^{2}}]$ ,

where $E_{1}[\cdot]$ is the expectation according to the probability measure $P_{1}$ given

by $P_{1}(A)=E[I_{A}R^{-1}]/E[R^{-1}]$ and $I_{A}$ is the indicator function of a set $A$ . Since
$R/(1/\rho+R)\leqq 1$ , it is enough to show that

(3.19) $E_{1}[\frac{R}{1/\rho+R}]E_{1}[\frac{1}{R}]\geqq E_{1}[\frac{1}{1/\rho+R}]$ ,

which is proved because $R/(1/\rho+R)$ is increasing in $R$ and $1/R$ is decreasing

in $R$ . Hence we get the inequality (3.16). Here, since $F$ is independent of
$(T, Z)$ , we can see that

(3.20) $\frac{E[R^{-1}]}{E[R^{-2}]}=\frac{E[\{c(1-Z)+dZ+dT/\rho\}^{-1}]}{E[\{c(1-Z)+dZ+dT/\rho\}^{-2}]}\cdot\frac{E[F^{-1}]}{E[F^{-2}]}$

$=A(c, d;1/\rho)a_{0}$ ,
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from (3.8) where $A(c, d;1/\rho)$ and $a_{0}$ are defined in Theorem 2.2. Combining
two inequalities (3.15), (3.16) and noting (2.4), we get the sufficient condition
$a\leqq 2\max[\min\{1, \inf_{\rho>\rho_{0}}A(c, d;1/\rho)a_{0}\}, \inf_{\rho>\rho_{0}}A(c, d;1/\rho)a_{0}\rho_{0}/(1+\rho_{0})]$ in Theo-
rem 2.2. We imposed the assumptions on $m_{2}$ and $q$ in Theorem 2.2 by the
similar discussion in Lemma 3.1 in order that the expectations in this proof are
finite.

3.3. Proof of Theorem 2.3. To prove (a), we show that

(3.21) $\inf_{\rho>\rho_{0}}A(c, d;1/\rho)=A(c, d;0)$

in Theorem 2.2 under the conditions (C-1) and (C-2). We see from Theorem
2.2 that $A(c, d;1/\rho)$ in (2.8) and $a_{0}$ are positive for any $\rho>\rho_{0}$ if the assump-
tions on $m_{2}$ and $q$ in Theorem 2.3 are satisfied. From (2.8) and (2.11), the
equation (3.21) is equivalent to

(3.22) $E_{2}[\frac{c(1-Z)+dZ}{c(1-Z)+dZ+dT/\rho}]E_{2}[\frac{1}{c(1-Z)+dZ}]$

$\geqq E_{2}[\frac{c(1-Z)+dZ}{\{c(1-Z)+dZ+dT/\rho\}^{2}}]$ ,

for any $\rho>\rho_{0}$ , where $E_{2}[\cdot]$ stands for expectation with respect to the prob-
ability measure $P_{2}$ given by $P_{2}(A)=E[I_{A}\{c(1-Z)+dZ\}^{-1}]/E[\{c(1-Z)+dZ\}^{-1}]$

and $I_{A}$ is the indicator function of a set $A$ . The inequality (3.22) is evident
for $c=d$ or $d=0$ , so that from the condition (C-1), we prove (3.22) in the case
of $c>d>0$ or $c=0$ . Put $\underline{\gamma}=\min_{0\leq j\leq q}\{\beta_{0}\alpha_{j}/(\alpha_{0}\beta_{j})\}$ and $\overline{\gamma}=\max_{0\leq j\leq q}\{\beta_{0}\alpha_{j}/(\alpha_{0}\beta_{j})\}$ .
Then we get $\underline{\gamma}Z\leqq T\leqq\overline{\gamma}Z$ in (3.2) and (3.3), so that it suffices to show that

(3.23) $E_{2}[\frac{c(1-Z)+dZ}{c(1-Z)+dZ+d\overline{\gamma}Z/\rho}]E_{2}[\frac{1}{c(1-Z)+dZ}]$

$\geqq E_{2}[\frac{c(1-Z)+dZ}{\{c(1-Z)+dZ+d\underline{\gamma}Z/\rho\}^{2}}]$ .

Note that the integrand in the $r$ . $h$ . $s$ . of (3.23) is bounded from above by
$\{c(1-Z)+dZ+d\overline{\gamma}Z/\rho\}^{-1}$ , because of $2\underline{\gamma}\geqq\overline{\gamma}$ by the condition (C-2). Hence it is
enough to show that

(3.24) $E_{2}[\frac{c(1-Z)+dZ}{c(1-Z)+dZ+d\overline{\gamma}Z/\rho}]E_{2}[\frac{1}{c(1-Z)+dZ}]$

$\geqq E_{2}[\frac{1}{c(1-Z)+dZ+d\overline{\gamma}Z/\rho}]$ .

For $c=0$ , the equality holds in (3.24). For $c>d>0,1/\{c(1-Z)+dZ\}$ is in-
creasing in $Z$ and $\{c(1-Z)+dZ\}/\{c(1-Z)+dZ+d\overline{\gamma}Z/\rho\}$ is decreasing in $Z$ ,
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so that the inequality (3.24) holds. This proves (a).

When $A(c, d;0)a_{0}\leqq 1$ or $a\leqq 2$ , the sufficient condition (a) in Theorem 2.3
becomes $a\leqq 2A(c, d;0)a_{0}$ , which is equivalent to the necessary condition in
Lemma 3.1 because the following inequality holds:

(3.25) $A(c, d;0)a_{0}\leqq\frac{E[r(\rho_{0})]}{E[\{r(\rho_{0})\}^{2}]}$ for $\rho_{0}>0$ .

As a matter of fact, this follows since $a\leqq 2A(c, d;0)a_{0}$ is sufficient and
$a\leqq 2E[r(\rho_{0})]/E[\{r(\rho_{0})\}^{2}]$ is necessary, which completes the proof of Theorem
2.3 (b) and (c).

We shall prove (d) from (a). At first using the expression (2.14), we shall
derive a sufficient condition (2.12). Note that for any real values $\alpha,$ $\beta,$

$\gamma$ and
$0<x<1$ ,

(3.26) $2F_{1}(\alpha, \beta;\gamma;x)=(1-x)^{\gamma-\alpha-\beta_{2}}F_{1}(\gamma-\alpha, \gamma-\beta;\gamma;x)$ ,

(3.27) $2F_{1}(\alpha+1, \beta;\gamma;x)=_{2}F_{1}(\alpha, \beta;\gamma;x)+(\beta/\gamma)x\cdot F(\alpha+1, \beta+1;\gamma+1;x)$ .

The first equation is from Exton [5] and the second equation is obtained just
by rearrangement of the coefficients in the infinite series in the 1. $h$ . $s.$ . Then
(2.14) is written by

(3.28) $A(c, d;0)=\frac{(\frac{d}{c})^{m_{2/2-1_{2}}}F_{1}(\frac{m_{2}+q-1}{2}+1,\frac{m_{2}}{2};\frac{m_{2}+q+3}{2};\frac{c-d}{c})}{(\frac{d}{c})^{m_{2/2-2_{2}}}F_{1}(\frac{m_{2}+q-1}{2},\frac{m_{2}}{2};\frac{m_{2}+q+3}{2};\frac{c-d}{c})}c$

$=d\{1+\frac{m_{2}(c-d)\cdot F(\frac{m_{2}+q-1}{2}+1,\frac{m_{2}}{2}+1;\frac{m_{2}+q+3}{2}+1;\frac{c-d}{c})}{(m_{2}+q+3)c\cdot F(\frac{m_{2}+q-1}{2},\frac{m_{2}}{2};\frac{m_{2}+q+3}{2};\frac{c-d}{c})}\}$ .

Evaluation of each term in the infinite series gives

(3.29) $2F_{1}(\frac{m_{2}+q-1}{2}+1,$ $\frac{m_{2}}{2}+1;\frac{m_{2}+q+3}{2}+1;\frac{c-d}{c})$

$\geqq F(\frac{m_{2}+q-1}{2},$ $\frac{m_{2}}{2}$ ; $\frac{m_{2}+q+3}{2}$ ; $\frac{c-d}{c})$ ,

which yields $A(c, d;O)\geqq d[1+m_{2}(c-d)/\{(m_{2}+q+3)c\}]$ . Hence we get the suf-
ficient condition (2.12). Next using (2.11) and the inequality of Bhattacharya
[3], we have for $c>d\geqq 0$ ,
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(3.30) $A(c, d;O)=c\frac{E[\{d/c+(1-d/c)(1-Z)\}^{-1}]}{E[\{d/c+(1-d/c)(1-Z)\}^{-2}]}$

$\geqq c\min\{1,$ $\frac{E[(1-Z)^{-1}]}{E[(1-Z)^{-2}]}\}$

$=c\frac{m_{2}-4}{m_{2}+q-1}$ .

From (a), we obtain the sufficient condition (2.13).

3.4. Proof of Theorem 2.4. Since $\rho_{0}=0$ , it is enough to show that

(3.31) $a_{BC}(c, d;0)\leqq 2\min\{1, A(c, d;0)a_{0}\}$ ,

for nonnegative constants $c$ and $d(c+d>0)$ . We note from Theorem 2.2 that
$A(c, d;0)$ in (2.11) and $a_{0}$ are positive if the assumptions on $m_{2}$ and $q$ in
Theorem 2.4 are satisfied. When $c=0$ or $d=0$ , then $a_{BC}(c, d;0)=0$ and the
inequality (3.31) holds. When $c,$ $d>0$ , we shall check the following two cases.

Case 1. $A(c, d;0)a_{0}\leqq 1$ . Given any $a$ such that $a\leqq a_{BC}(c, d;0),\hat{\mu}$ has a
smaller variance than $X$ by Theorem 2.1. Then $a$ should satisfy
$a\leqq 2A(c, d;0)a_{0}$ by Lemma 3.1. Hence we get the inequality $a_{BC}(c, d;0)$

$\leqq 2A(c, d;0)a_{0}$ , which is less than 2, establishing (3.31).

Case 2. $A(c, d;0)a_{0}>1$ . In this case, the $r$ . $h$ . $s$ . of (3.31) is equal to 2.
We also see that $a_{BC}(c, d;0)\leqq 2$ , because $E[\max\{V,$ $\max(1/c, 1/d)m_{1}V^{2}$

$/(m_{2}+q+3)\}]\geqq E[V]=(m_{2}+q+3)/(m_{2}+q+1)$ . Therefore the inequality (3.31)

holds. Thus in all cases the proof is complete.

4. Applications.

4.1. Estimation of a common mean. Let $(X_{1}, \cdots, X_{m})$ and $(Y_{1}, \cdots , Y_{n})$

be independent random samples from two normal populations having a common
unknown mean $\mu$ and unknown variances $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$ respectively. Let
$\overline{X}=\Sigma_{i=1}^{m}X_{i}/m,$ $S_{x}=\sum_{i=1}^{m}(X_{i}-\overline{X})^{2}$ and $\overline{Y},$

$S_{y}$ be defined similarly. Let us make
the following match ups $(\sim)$ with the terms used in the first paragraph of
Section 2: $X\sim\overline{X},$ $Y\sim\overline{Y},$ $S_{1}\sim S_{x}$ , $S_{2}\sim S_{y}$ , $\sigma_{1}^{2}\sim\sigma_{x}^{2}$ , $\sigma_{2}^{2}\sim\sigma_{y}^{2}$ , $\alpha_{0}\sim 1/m$ , $\beta_{0}\sim 1/n$ ,
$m_{1}\sim m-1$ , $m_{2}\sim n-1$ , $q\sim O$ . The combined estimator induced from (2.1) and
(2.2) by these correspondences is

(4.1) $\hat{\mu}(a, c, d)=\overline{X}+\frac{aS_{x}/m}{S_{x}/m+cS_{y}/n+d(\overline{X}-\overline{Y})^{2}}(\overline{Y}-\overline{X})$ .

This includes as particular cases the estimators $T_{1}(a^{*}, c^{*})$ and $T_{2}(a^{*}, c^{*})$ of
Bhattacharya [2]. In fact, $T_{1}(a^{*}, c^{*})=\hat{\mu}(a^{*}, c^{*}(m-1)/(n-1),$ $c^{*}(m-1)/(n-1))$
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and $T_{2}(a^{*}, c^{*})=\hat{\mu}(a^{*}, c^{*}(m-1)/(n-1),$ $0$). Note that the condition (C-2) in Theo-
rem 2.3 is always satisfied and that $\rho_{0}$ defined in Section 2 is equal to zero in
this model. Using Theorem 2.3, we get the following results for $c\geqq d\geqq 0$

$(c+d>0)$ : Suppose that $n>2$ for $d>0$ or $n>5$ for $d=0$ . Put $A_{1}(c, d;O)=$

$E[\{c(1-Z_{1})+dZ_{1}\}^{-1}]/E[\{c(1-Z_{1})+dZ_{1}\}^{-2}]$ corresponding to (2.11), where $Z_{1}$

has beta distribution with parameters $(3/2, (n-1)/2)$ . Then $\hat{\mu}(a, c, d)$ in (4.1)

is better than $\overline{X}$ if

(4.2) $a\leqq 2\min\{1, A_{1}(c, d;O)(n-2)/(m+1)\}$ .

When $A_{1}(c, d;O)(n-2)/(m+1)\leqq 1$ or $a\leqq 2,\hat{\mu}(a, c, d)$ is better than $\overline{X}$ if and
only if

(4.3) $a\leqq 2A_{1}(c, d;O)(n-2)/(m+1)$ .
We also obtain simple sufficient conditions $a\leqq 2\min\{1,$ $[1+(n-1)(c-d)$

$/\{(n+2)c\}]d(n-2)/(m+1)\}$ for $d>0$ or $a\leqq 2\min\{1, (n-5)c/(m+1)\}$ for $c>0$,

$n>5$ .
In particular for the estimators $T_{1}(a^{*}, c^{*})$ and $T_{2}(a^{*}, c^{*})$ of Bhattacharya

[2], we get sufficient conditions from (4.2) as

(4.4) $a^{*}\leqq 2\min\{1,$ $\frac{(m-1)(n-2)}{(n-1)(m+1)}c^{*}\}$ for $T_{1}(a^{*}, c^{*})$ ,

(4.5) $a^{*}\leqq 2\min\{1,$ $\frac{(m-1)(n-5)}{(n-1)(m+1)}c^{*}\}$ for $T_{2}(a^{*}, c^{*})$ ,

because $A_{1}(c, c;O)=c$ and $A_{1}(c, 0;O)=c(n-5)/(n-2)$ for any $c>0$ . These spe-

cial cases were obtained by Bhattacharya [2]. He also obtained necessary and
sufficient conditions derived from (4.3) for $T_{1}(a^{*}, c^{*})$ and $T_{2}(a^{*}, c^{*})$ . From
Lemma 3.1 with $d=0$ , we note that the sufficient condition (4.5) is also
necessary, which is better than Bhattacharya [2].

4.2. Recovery of interblock information. Consider a balanced incomplete

block design (BIBD) with both blocks and errors random whose canonical form
is given by Graybill and Weeks [8] as follows: Let $t=number$ of treatments,

$b=number$ of blocks, $r=number$ of replications per treatment, $k=number$ of
cells per block, $\lambda=number$ of times any pair of treatments appears in the same
block, $\sigma^{2}=error$ variance, $\sigma_{\beta}^{2}=block$ variance and put $f=bk-b-t+1$ . The
$(t-1)\times 1$ vector $x=(x_{i})$ is distributed normally with mean $\tau=(\tau_{i})$ and covariance
matrix $\{k/(\lambda t)\}\sigma^{2}I$ (referred to as the intrablock estimate), where $\tau_{i}$ stands for
a treatment contrast. The $(t-1)\times 1$ vector $y=(y_{i})$ is distributed normally with
mean $\tau=(\tau_{i})$ and covariance matrix $\{k/(r-\lambda)\}(\sigma^{2}+k\sigma_{\beta}^{2})I$ (referred to as the
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interblock estimate). The scalar $S^{2}/\sigma^{2}$ has $x_{f}^{2}$ -distribution and the scalar
$S^{*2}/(\sigma^{2}+k\sigma_{\beta}^{2})$ has $x_{b-l}^{2}$ -distribution. The total sample mean $z$ is normally dis-
tributed with total mean $\nu$ and variance $(\sigma^{2}+k\sigma_{\beta}^{2})/(bk)$ . The statistics
$x_{1},$ $\cdots,$ $x_{l-1},$ $y_{1},$ $\cdots,$ $y_{l-1},$ $S^{2},$ $S^{*2}$ and $z$ are mutually independent. We shall
assume $b>t>2$ ( $i$ . $e$ . asymmetrical BIBD’s) throughout this paper.

Consider the problem of estimating the common mean $\tau_{1}$ , which is, without
loss of generality, any treatment contrast. Let us make the following match
ups $(\sim)$ with the terms used in Section 2: $X\sim x_{1},$ $Y\sim y_{1},$ $S_{1}\sim S^{2},$ $S_{2}\sim S^{*2}$ ,

$\mu\sim\tau_{1},$
$\sigma_{1}^{2}\sim\sigma^{2}$, $\sigma_{2}^{2}\sim\sigma^{2}+k\sigma_{\beta}^{2},$ $m_{1}\sim f,$ $m_{2}\sim b-t,$ $q\sim t-2,$ $W_{j}\sim(x_{j+1}-y_{j+1})^{2}(j=1$ ,

$\ldots$ $t-2$), $\alpha_{j}\sim k/(\lambda t)$ and $\beta_{j}\sim k/(r-\lambda)(j=0, \cdots, t-2)$. The combined estimate
induced from (2.1) and (2.2) by these correspondences is

(4.6) $\hat{\tau}(a, c, d)=x_{1}+\frac{a\frac{k}{\lambda t}S^{2}}{\frac{k}{\lambda t}S^{2}+c\frac{k}{r-\lambda}S^{*2}+d(x-y)^{\prime}(x-y)}(y_{1}-x_{1})$ .

This includes the estimators $T_{3}(a^{*}, c^{*})$ and $T_{6}(a^{*}, c^{*})$ of Bhattacharya [2] in
the case of BIBD’s. In fact, noting that the eigen value $\phi_{i}$ in Bhattacharya
[2] corresponds to $ r-\lambda$ in this model for each $i$, we have $T_{3}(a^{*}, c^{*})=$

$\hat{\tau}(a^{*}, c^{*}(r-\lambda)/(\lambda t),$ $c^{*}(r-\lambda)/(\lambda t))$ and $T_{5}(a^{*}, c^{*})=\hat{\tau}(a^{*}, c^{*}(r-\lambda)/(\lambda t),$ $0$). Note that
the condition (C-2) in Theorem 2.3 is satisfied for BIBD’s and that $\rho_{0}/(1+\rho_{0})$

in Theorem 2.3 is equal to $\lambda t/(rk)$ since $\rho_{0}=\lambda t/(r-\lambda)$ and the relation $r(k-1)$

$=\lambda(t-1)$ in BIBD’s. Then we can apply Theorem 2.3 and get

THEOREM 4.1. Suppose that $c\geqq d\geqq 0$ or $c=0$ with $c+d>0$ and that one of
the following three conditions holds: (i) $b>3$ for $c\geqq d>0$ , (ii) $b>t+4$ for $d=0$

or (iii) $t>3$ for $c=0$ . Put $A_{2}(c, d;0)=E[\{c(1-Z_{2})+dZ_{2}\}^{-1}]/E[\{c(1-Z_{2})+dZ_{2}\}^{-2}]$

where $Z_{2}$ has beta distribution with parameters $((t+1)/2, (b-t)/2)$ .
(a) $\hat{\tau}(a, c, d)$ is better than $x_{1}$ if $a\leqq 2\max[\min\{1, A_{2}(c, d;O)(b-3)/(f+2)\}$ ,

$A_{2}(c, d;O)(b-3)\lambda t/\{(f+2)rk\}]$ .
(b) Given $A_{2}(c, d;O)(b-3)/(f+2)\leqq 1,\hat{\tau}(a, c, d)$ is better than $x_{1}$ if and only

if $a\leqq 2A_{2}(c, d;O)(b-3)/(f+2)$ .
(c) Given $a\leqq 2$ , $\hat{\tau}(a, c, d)$ is better than $x_{1}$ if and only if $ A_{2}(c, d;O)\geqq$

$a(f+2)/\{2(b-3)\}$ .
(d) $\hat{\tau}(a, c, d)$ is better than $x_{1}$ if

(4.7) $a\leqq 2\max[\min\{1,$ $(1+\frac{(b-t)(c-d)}{(b+1)c})\frac{d(b-3)}{f+2}\}$ ,

$(1+\frac{(b-t)(c-d)}{(b+1)c})\frac{d(b-3)\lambda t}{(f+2)rk}]$ for $c\geqq d>0$ ,
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or if

(4.8) $a\leqq 2\max[\min\{1,$ $\frac{b-t-4}{f+2}c\},$ $\frac{(b-t-4)\lambda t}{(f+2)rk}c]$ for $c>0,$ $b>t+4$ .

For simple cases $c=d,$ $d=0$ or $c=0$ , we have $A_{2}(c, c;O)=c$ , $A_{2}(c, 0;0)=$

$c(b-t-4)/(b-3)$ and $A_{2}(0, d;O)=d(t-3)/(b-3)$ respectively. Then, from Theo-
rem 4.1 (a), (b) and (c), we get the better results of Bhattacharya [2] for
$T_{3}(a^{*}, c^{*})$ and $T_{5}(a^{*}, c^{*})$ in the case of BIBD’s. In particular, Theorem 4.1 (a)

yields the sufficient conditions:

(4.9) $a^{*}\leqq 2\max[\min\{1,$ $\frac{(r-\lambda)(b-3)}{\lambda t(f+2)}c^{*}\},$ $\frac{(r-\lambda)(b-3)}{rk(f+2)}c^{*}]$ for $T_{3}(a^{*}, c^{*})$ ,

(4.10) $a^{*}\leqq 2\max[\min\{1,$ $\frac{(r-\lambda)(b-t-4)}{\lambda t(f+2)}c^{*}\},$ $\frac{(r-\lambda)(b-t-4)}{rk(f+2)}c^{*}]$

for $T_{5}(a^{*}, c^{*})$ .
These sufficient conditions are obtained by the use of the information that
$\rho\geqq\rho_{0}=\lambda t/(r-\lambda)$ , so that they are better than those of Bhattacharya [2] which
are given without using the information on $\rho$ . For the estimator $T_{4}(a^{*}, c^{*})$ of
Bhattacharya [2], it is expressed as a special case of estimators similarly
induced from (2.1) and (2.2) by the above match ups without $W_{j}\prime s(i. e. q\sim O)$ .
Thus from Theorem 2.3 (a), (b) and (c), we also get the better results of
Bhattacharya [2] for $T_{4}(a^{*}, c^{*})$ in the case of BIBD’s. For instance, its suffi-
cient condition is given by

(4.11) $a^{*}\leqq 2\max[\min\{1,$ $\frac{(r-\lambda)(b-t-1)}{\lambda t(f+2)}c^{*}\},$ $\frac{(r-\lambda)(b-t-1)}{rk(f+2)}c^{*}]$

for $T_{4}(a^{*}, c^{*})$ .
While our scope is limited to BIBD’s, it should be noted that these results for
$T_{3}(a^{*}, c^{*}),$ $T_{4}(a^{*}, c^{*})$ and $T_{5}(a^{*}, c^{*})$ are extended to any incomplete block design
as is shown by Bhattacharya [2].

Now, using Theorem 4.1, we shall find a sufficient condition for Yates’
estimate, which is still the most widely used, being better than the intrablock
estimate. First we shall get a sufficient condition for the nontruncated Yates’
estimate given by Graybill and Weeks [8] as

(4.12) $\hat{\tau}_{Y}=x_{1}+\frac{(r-\lambda)S^{2}/f}{\lambda t(S^{2}/f+k\hat{\sigma}_{\beta}^{2})+(r-\lambda)S^{2}/f}(y_{1}-x_{1})$ ,

where

(4.13) $\hat{\sigma}_{\beta}^{2}=\frac{1}{t(r-1)}\{\frac{\lambda t(r-\lambda)}{rk^{2}}(x-y)^{\prime}(x-y)+S^{*2}-\frac{b-1}{f}S^{2}\}$ .
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Note that the relations $r(k-1)=\lambda(t-1)$ and $bk=rt$ hold for BIBD’s. Rearranging

and calculating the coefficients of $S^{2},$ $s*2$ and $(x-y)^{\prime}(x-y)$ in (4.12) and (4.13),

we can see that the estimate (4.12) is represented as $\hat{\tau}(a, c, d)$ in (4.6) with
$a=(r-1)/(r-k),$ $c=f/(b-t)$ and $d=\lambda tf/\{rk(b-t)\}$ . Since $c$ is not equal to $d$ ,

we can not employ sufficient conditions given by Brown and Cohen [4], Khatri
and Shah [9] and Bhattacharya [2]. But it is noted that the condition $c>d$

in Theorem 4.1 is satisfied because $rk-\lambda t=r-\lambda>0$. Hence we can use Theo-

rem 4.1 (d) and get a simple sufficient condition

(4.14) $\frac{r-1}{r-k}\leqq 2\max[\min\{1,$ $(1+\frac{(b-t)(r-\lambda)}{(b+1)rk})\frac{\lambda tf(b-3)}{rk(b-t)(f+2)}\}$ ,

$(1+\frac{(b-t)(r-\lambda)}{(b+1)rk})(\frac{\lambda\iota}{rk})^{2}\frac{f(b-3)}{(b-t)(f+2)}]$ .

Calculating values of both sides in (4.14) for all asymmetrical BIBD’s listed in
Fisher-Yates table [6], we can see that this inequality holds, $i$ . $e.\hat{\tau}_{Y}$ offers
uniform improvement over $X_{1}$ , except for a design $r=3,$ $t=4,$ $b=6,$ $k=2,$ $\lambda=1$ .
This design is one of two exceptional designs in Bhattacharya [1], and he

proved that $\hat{\tau}_{Y}$ does not have the desired property. For the other exceptional

design: $r=4,$ $t=5,$ $b=10,$ $k=2,$ $\lambda=1$ , we can conclude by our sufficient con-
dition (4.14) that $\hat{\tau}_{Y}$ is better than $x_{1}$ . Note that the well-known Yates’
estimate $\hat{\tau}_{Y}^{*}$ is the truncated form given as

(4.15) $\hat{\tau}_{Y}^{*}=\hat{\tau}_{Y}$ if $\hat{\sigma}_{\beta}^{2}>0$ ,

$=x_{1}+(r-\lambda)(y_{1}-x_{1})/(rk)$ if $\hat{\sigma}_{\beta}^{2}\leqq 0$ ,

and that it is superior to the untruncated estimate $\hat{\tau}_{Y}$ as is shown in Seshadri
[10]. It follows that Yates’ estimate is better than the intrablock estimate for

all asymmetrical BIBD’s listed in Fisher-Yates table [6] except for the design
$r=3,$ $t=4,$ $b=6,$ $k=2,$ $\lambda=1$ .

4.3. Estimation of common regression coefficients of two regression

models. Let

(4.16) $y_{i}=X_{i}\beta+e_{i}$ , $i=1,2$ ,

be two regression models with common regression coefficients where $y_{i}$ is a
$n_{i}\times 1$ vector of observations, $X_{i}$ is a known $n_{i}\times p$ matrix of rank $p,$ $\beta$ is a
$p\times 1$ vector of unknown parameters and $e_{i}$ is a $n_{i}\times 1$ vector of errors having
$p$-variate normal distribution $N_{p}(0, \sigma_{i}^{2}I_{n_{i}}),$ $i=1,2$ . The least square estimator
$\hat{\beta}_{i}=(X_{i}^{\prime}X_{i})^{-1}X_{i}^{\prime}y_{i}$ has $N_{p}(\beta, \sigma_{i}^{2}(X_{i}^{\prime}X_{i})^{-1})$ , and the residual sum of squares
$S_{i}=(y_{i}-X_{i}\hat{\beta}_{i})^{\prime}(y_{i}-X_{i}\hat{\beta}_{i})$ has $\sigma_{i}^{2}x_{n_{i}-p}^{2}$-distribution $(n_{i}>p),$ $i=1,2$ .
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To estimate common coefficients $\beta$ , we consider combined estimators of the

form

(4.17) $\hat{\beta}=\hat{\beta}_{1}+\phi\cdot(\hat{\beta}_{2}-\hat{\beta}_{1})$ ,

where

(4.18) $\phi=aS_{1}[S_{1}X_{2}^{\prime}X_{2}+X_{1}^{\prime}X_{1}\{cS_{2}+d(\hat{\beta}_{1}-\hat{\beta}_{2})^{\prime}X_{2}^{\prime}X_{2}(\hat{\beta}_{1}-\hat{\beta}_{2})\}]^{-1}X_{2}^{\prime}X_{2}$

with nonnegative constants $a,$ $c$ and $d(c+d>0)$ suitably chosen. These esti-

mators are unbiased and are a special case of Swamy and Mehta [11], whose

estimators correspond to (4.17) by interchanging subscripts 1 and 2. The

problem is to find a better estimator within the class of (4.17) than the least

square estimator $\hat{\beta}_{1}$ based on the first model only, where the preference of

estimators is judged by usual partial ordering between covariance matrices.

From the method used by Swamy and Mehta [11] and Theorem 2.3, we get

THEOREM 4.2. Let $n_{i}\geqq p+1$ for $i=1,2$ . Suppose that one of the next three

conditions holds: (i) $n_{2}>2$ if $c,$ $d>0$ , (ii) $n_{2}>p+4$ if $d=0$ or (iii) $p>2$ if $c=0$.
Put $A_{3}(c, d;0)=E[\{c(1-Z_{3})+dZ_{3}\}^{-1}]/E[\{c(1-Z_{3})+dZ_{3}\}^{-2}]$ where $Z_{3}$ has a beta

distribution with parameters $((p+2)/2, (n_{2}-p)/2)$ . Assume that

(C-1) $c\geqq d\geqq 0$ or $c=0(c+d>0)$ ,

(C-2) 2 $\min_{1\leq i\leq p}(\lambda_{i})\geqq\max_{1\leq t\leq p}(\lambda_{i})$ , for eigen values $\lambda_{1},$ $\cdots$ , $\lambda_{p}$ of $(X_{1}^{\prime}X_{1})^{-1}X_{2}^{\prime}X_{2}$ .

However, we need not assume the condition (C-2) when $c=d$ or $d=0$. Then

(a) $\hat{\beta}$ is better than $\hat{\beta}_{1}$ if $a\leqq 2\min\{1, A_{3}(c, d;0)(n_{2}-2)/(n_{1}-P+2)\}$ .
(b) Given $A_{3}(c, d;0)(n_{2}-2)/(n_{1}-p+2)\leqq 1,\hat{\beta}$ is better than $\hat{\beta}_{1}$ if and only if

$a\leqq 2A_{3}(c, d;0)(n_{2}-2)/(n_{1}-p+2)$ .
(c) Given $a\leqq 2,\hat{\beta}$ is better than $\hat{\beta}_{1}$ if and only if $A_{3}(c, d;0)\geqq a(n_{1}-p+2)$

$/\{2(n_{2}-2)\}$ .
(d) $\hat{\beta}$ is better than $\hat{\beta}_{1}$ if

(4.19) $a\leqq 2\min\{1,$ $\frac{(n_{2}-2)d}{n_{1}-p+2}(1+\frac{(n_{2}-p)(c-d)}{(n_{2}+2)c})\}$ for $c\geqq d>0$ ,

or if

(4.20) $a\leqq 2\min\{1,$ $\frac{n_{2}-p-4}{n_{1}-p+2}c\}$ for $c>0,$ $n_{2}>p+4$ .

PROOF. First we write the covariance matrix of $\hat{\beta}$ as

(4.21) $Cov(\hat{\beta})=Cov(\hat{\beta}_{1})+E[\phi(\hat{\beta}_{2}-\hat{\beta}_{1})(\hat{\beta}_{2}-\hat{\beta}_{1})^{\prime}\phi^{\prime}+\phi(\hat{\beta}_{2}-\hat{\beta}_{1})(\hat{\beta}_{1}-\beta)^{\prime}$

$+(\hat{\beta}_{1}-\beta)(\hat{\beta}_{2}-\hat{\beta}_{1})^{\prime}\phi^{\prime}]$ ,
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so that $Cov(\hat{\beta}_{1})-Cov(\hat{\beta})$ is $psd$ if, and only if,

(4.22) $E[\phi(\hat{\beta}_{1}-\hat{\beta}_{2})(\beta_{1}^{A}-\hat{\beta}_{2})^{\prime}\phi^{\prime}+\phi(\hat{\beta}_{2}-\hat{\beta}_{1})(\hat{\beta}_{1}-\beta)^{\prime}+(\hat{\beta}_{1}-\beta)(\hat{\beta}_{2}-\hat{\beta}_{1})^{\prime}\phi^{\prime}]\leqq 0$ .
To diagonalize the matrix (4.22), we consider a nonsingular matrix $Q=$

$(q_{1}, \cdots, q_{p})$ such that $X_{1}^{\prime}X_{1}=QQ^{\prime}$ and $X_{2}^{\prime}X_{2}=QD_{\lambda}Q^{\prime}$ where $D_{\lambda}=diag(\lambda_{1}, \cdots, \lambda_{p})$

and $\lambda_{i}\prime s$ are the eigen values of $(X_{1}^{\prime}X_{1})^{-1}X_{2}^{\prime}X_{2}$. Then it can be seen that the
weighting matrix $\phi$ is diagonalizable because

(4.23) $Q^{\prime}\phi Q^{\prime-1}=aS_{1}[S_{1}D_{\lambda}+I_{p}\{cS_{2}+d\Sigma_{j=1}^{p}\lambda_{j}(q_{j}^{\prime}\beta_{1}^{\Delta}-q_{j}^{\prime}\hat{\beta}_{2})^{2}\}]^{-1}D_{\lambda}$

$=diag(\frac{aS_{1}}{S_{1}+(c/\lambda_{i})S_{2}+(d/\lambda_{i})\Sigma_{j=1}^{p}\lambda_{j}(q_{j}^{\prime}\hat{\beta}_{1}-q_{j}^{\prime}\hat{\beta}_{2})^{2}})$

$=diag(\phi_{1}, \cdots, \phi_{p})$ (say).

Note that $Q^{\prime}\hat{\beta}_{1}$ has p-variate normal distribution $N_{p}(Q^{\prime}\beta, \sigma_{1}^{2}I_{p})$ and that $Q^{\prime}\hat{\beta}_{2}$

has $N_{p}(Q^{\prime}\beta, \sigma_{2}^{2}D_{\lambda}^{-1})$ . Then we can multiply the matrix (4.22) on the left by $Q^{\prime}$

and on the right by $Q$ , so that we have

(4.24) $Q^{\prime}E[\phi(\hat{\beta}_{2}-\hat{\beta}_{1})(\hat{\beta}_{2}-\hat{\beta}_{1})^{\prime}\phi^{\prime}+\phi(\hat{\beta}_{2}-\hat{\beta}_{1})(\hat{\beta}_{1}-\beta)^{\prime}+(\hat{\beta}_{1}-\beta)(\hat{\beta}_{2}-\hat{\beta}_{1})^{\prime}\phi^{\prime}]Q$

$=E[diag(\phi_{i})E[\{Q^{\prime}(\hat{\beta}_{2}-\hat{\beta}_{1})\}\{Q^{\prime}(\hat{\beta}_{2}-\beta_{1}^{\Delta})\}^{\prime}|(q_{j}^{\prime}\hat{\beta}_{1}-q_{j}^{\prime}\hat{\beta}_{2})^{2}, j\geqq 1]diag(\phi_{i})$

$+diag(\phi_{i})E[\{Q^{\prime}(\hat{\beta}_{2}-\beta_{1}^{\Delta})\}\{Q^{\prime}(\hat{\beta}_{1}-\beta)\}^{\prime}|(q_{j}^{\prime}\hat{\beta}_{1}-q_{j}^{\prime}\hat{\beta}_{2})^{2}, j\geqq 1]$

$+E[\{Q^{\prime}(\hat{\beta}_{1}-\beta)\}\{Q^{\prime}(\hat{\beta}_{2}-\hat{\beta}_{1})\}^{\prime}|(q_{j}^{\prime}\hat{\beta}_{1}-q_{j}^{\prime}\hat{\beta}_{2})^{2}, j\geqq 1]diag(\phi_{i})]$

$=diag(E[\phi_{i}^{2}(q_{i}^{\prime}\hat{\beta}_{2}-q_{i}^{\prime}\hat{\beta}_{1})^{2}+2\phi_{i}(q_{i}^{\prime}\hat{\beta}_{2}-q_{i}^{\prime}\hat{\beta}_{1})(q_{i}^{\prime}\hat{\beta}_{1}-q_{i}^{\prime}\beta)])$ .
Using the same method of Brown and Cohen [4] and Khatri and Shah [9],
each diagonal element in the last expression of (4.24) is written as
(4.25) $\sigma_{1}^{2}E[(1+\rho_{i})\overline{\phi}_{i}^{2}-2\overline{\phi}_{i}]$ , $i=1,$ $\cdots,$ $p$ ,

where $\rho_{i}=\sigma_{2}^{2}/(\lambda_{i}\sigma_{1}^{2})>0$ and $\overline{\phi}_{i}$ is the same as $\phi_{i}$ in (4.23) except that $(q_{i}^{\prime}\hat{\beta}_{2}-q_{i}^{\prime}\hat{\beta}_{1})^{2}$

is replaced by a random variable having $(\sigma_{1}^{2}+\sigma_{2}^{2}/\lambda_{i})x_{3}^{2}$-distribution. Hence
$Cov(\hat{\beta}_{1})-Cov(\hat{\beta})$ is psd if, and only if,

(4.26) $a\leqq 2_{\rho}\inf_{i>0}\{\frac{E[r_{i}]}{E[r_{i}^{2}]}\}$ , $i=1,$ $\cdots,$ $p$ ,

where $r_{i}=(1+\rho_{i})\overline{\phi}_{i}/a$ . Let us make the following match ups $(\sim)$ with the
terms used in Section 2: for each $i,$ $X\sim q_{i}^{\prime}\hat{\beta}_{1},$ $Y\sim q_{i}^{\prime}\hat{\beta}_{2},$

$\rho\sim\rho_{i},$ $\rho_{0}\sim 0,$ $r(\rho)\sim r_{i}$ ,
$m_{1}\sim n_{1}-p$ , $m_{2}\sim n_{2}-p$ , $q\sim p-1$ , $\alpha_{0}\sim 1$ , $\beta_{0}\sim 1/\lambda_{i}$ ; $\alpha_{j}\sim 1$ , $\beta_{j}\sim 1/\lambda_{j}$, $ W_{j}\sim$

$(q_{j}^{\prime}\hat{\beta}_{1}-q_{j}^{\prime}\beta_{2})^{2},$ $j=1,$ $\cdots,$ $i-1;\alpha_{j}\sim 1,$ $\beta_{j}\sim 1/\lambda_{j+1},$ $W_{j}\sim(q_{j+1}^{\prime}\hat{\beta}_{1}-q_{j+1}^{\prime}\hat{\beta}_{2})^{2},$ $j=i,$ $\cdots$ ,
$p-1$ . Then, we can employ Theorem 2.3 to obtain the conditions in Theorem
4.2, which complete the proof.

For special cases $c=d,$ $d=0$ or $c=0$ , we have $A_{3}(c, c;O)=c,$ $A_{3}(c, 0;0)=$

$c(n_{2}-p-4)/(n_{2}-2)$ or $A_{3}(0, d;0)=d(p-2)/(n_{2}-2)$ respectively. Then Theorem
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4.2 (c) gives that the necessary and sufficient conditions for $\hat{\beta}$ being better

than $\hat{\beta}_{1}$ are $a\leqq 2c(n_{2}-2)/(n_{1}-p+2)$ for $0<a\leqq 2$ and $c=d$ ; $a\leqq 2c(n_{2}-p-4)$

$/(n_{1}-p+2)$ for $0<a\leqq 2$ and $d=0$ . From these conditions, we can easily see
that $\hat{\beta}$ is better than $\hat{\beta}_{1}$ if $1\leqq 2c(n_{2}-2)/(n_{1}-p+2)$ for $0<a\leqq 1$ and $c=d$ , or if
$1\leqq 2c(n_{2}-p-4)/(n_{1}-p+2)$ for $0<a\leqq 1$ and $d=0$ , which was given by Swamy

and Mehta [11]. They claimed wrongly these conditions to be necessary and

sufficient.
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