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ON COGENERATOR RINGS AS $\Phi$-TRIVIAL EXTENSIONS

Dedicated to the memory of Professor Akira Hattori

By

Kazunori SAKANO

Let $R$ be a ring with identity and $M$ an $(R, R)$-bimodule with a pairing
$\Phi=[-$ , - $]$ : $M\otimes_{R}M\rightarrow R$ , that is, an $(R, R)$-bilinear map satisfying $[m, m^{\prime}]m^{\prime\prime}$

$=m[m^{\prime}, m]$ . Then by defining a multiplication on the abelian group $R\oplus M$ as
$(r, m)(r^{\prime}, m^{\prime})=(rr^{\prime}+[m, m^{\prime}], mr^{\prime}+rm^{\prime})$ , $R\oplus M$ becomes a ring, which is called
the $\Phi$-trivial extension of $R$ by $M$ and is denoted by $\Lambda=R_{\Phi}\ltimes M$. Note that $\Phi=0$

corresponds to the trivial extension $R\ltimes M$. In particular, a generalized matrix
ring defined by a Morita context can be considered as a special case of a $\Phi-$

trivial extension.
The main purpose of this paper is to give a necessary and sufficient condi-

tion for $\Lambda$ to be a right cogenerator ring under the condition that ${\rm Im}\Phi$ is
nilpotent.

In Section 1, we study the form of the injective hull of a simple right $\Lambda-$

module and decide the condition for $\Lambda$ to be a right cogenerator ring under the
assumption that ${\rm Im}\Phi$ is nilpotent. Furthermore, in case of the trivial exten-
sion $R\ltimes M$, we investigate the condition for $M=0$ , when $RxM$ is a right
cogenerator ring. In Section 2, we give a sufficient condition for $\Lambda$ to be right
self-injective under the assumption that $ 1m\Phi$ is nilpotent. Moreover, in case of
the trivial extension $R\ltimes M$, we give a necessary and sufficient condition for
$R\ltimes M$ to be a right injective cogenerator ring. Let $\Gamma=\left(\begin{array}{ll}S & 0\\U & T\end{array}\right)$ be a generalized

triangular matrix ring, where both $S$ and $T$ are rings with identity and $U$ a
$(T, S)$-bimodule. In the final Section 3, we study an application of results in
Sections 1 and 2 to a generalized triangular matrix ring $\Gamma$. Especially, we
show that $\Gamma$ is a right injective cogenerator ring if and only if both $S$ and $T$

are right injective cogenerator rings, and $U=0$ . This result was mentioned by
T. Kato during a conversation and he pointed out whether the similar result
as above holds when $\Gamma$ is a right cogenerator ring (in case of $\Gamma$ being a $QF$

ring, see [6, Exercise (3) $-(2)$ , p. 362]). In case of $S=T$ in $\Gamma$, there holds that
$\Gamma$ is a right cogenerator ring if and only if $T$ is a right cogenerator ring and
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$U=0$ . But it remains an unsolved problem when $S\neq T$ in $\Gamma$.
Throughout this paper, unless otherwise specified, $\Lambda$ denotes the $\Phi$ -trivial

extension $ RxM\Phi$ and $1_{R}(K)$ the left annihilator of $K$ in $R$ for a subset $K$ of a
right R-module $X$. For a right R-module $Y,$ $E(Y_{R})$ means the injective hull of
$Y_{R}$ .

The author wishes to express his hearty thanks to Professor T. Kato for
his useful suggestions and remarks during the preparation of this paper.

1. Cogenerator rings as $\Phi$-trivial extensions.

In this section, we assume that ${\rm Im}\Phi$ is nilpotent. By a slight modification
of the proof of [14, Lemma 3.1], we have the following.

LEMMA 1.1. Let $X$ be a right R-module and $K$ a nilpotent ideal of R. Then
$1_{x}(K)$ is essential in $X_{R}$.

LEMMA 1.2. ${\rm Im}\Phi\oplus M$ is a nilpotent ideal of $\Lambda$ .

PROOF. This is found in the proof of [12, LEMMA 1].

LEMMA 1.3. Let $X$ be a simple right $\Lambda$ -module. Then the injective hull of
$X_{A}$ has the form $Hom_{R}(\Lambda_{R}, E(X_{R}))_{\Lambda}$ .

PROOF. Since $E(X_{R})$ is injective and $\Lambda\Lambda$ is flat, $Hom_{R}(\Lambda_{R}, E(X_{R}))_{\Lambda}$ is in-
jective. Therefore, it suffices to show that $X_{\Lambda}$ is essential in $Hom_{R}(\Lambda_{R}, E(X_{R}))_{\Lambda}$ .
Since

$1_{Hom_{R}(\Lambda.E(X))}({\rm Im}\Phi\oplus M)_{\Lambda}\cong Hom_{\Lambda}(\Lambda/{\rm Im}\Phi\oplus M, Hom_{R}(\Lambda, E(X)))_{\Lambda}$

$\cong Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M\otimes_{\Lambda}\Lambda, E(X))_{\Lambda}$

$\cong Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E(X))_{\Lambda}$ ,

$Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E(X))_{\Lambda}$ is essential in $Hom_{R}(\Lambda, E(X))_{\Lambda}$ by Lemmas 1.1 and
1.2. Since $Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E(X))_{R}\subset E(X_{R})$ , we may consider $X_{R}\subset Hom_{R}(\Lambda/$

${\rm Im}\Phi\oplus M,$ $E(X))_{R}$ and $X_{R}$ is essential in $Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E(X))_{R}$. Since
$Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E(X)){\rm Im}\Phi=0$, $X_{\Lambda}$ is also essential in $Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M$,
$E(X))_{\Lambda}$ . Thus we obtain $X_{\Lambda}$ is essential in $Hom_{R}(\Lambda_{R}, E(X_{R}))_{\Lambda}$ .

In the remainder of this section, let $\alpha:M\rightarrow Hom_{R}(M_{R}, R_{R})$ be the natural
map defined via

$(\alpha(m))(m^{\prime})=[m, m^{\prime}]$ for $m,$
$m^{\prime}\in M$ ,

and $\sigma;R\rightarrow End(M_{R})$ the canonical map. We put Kera $=M^{\prime}$ .
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Since every simple right $\Lambda$ -module is isomorphic to $R\oplus M/\mathfrak{m}\oplus M$, where $\mathfrak{m}$

is a maximal right ideal of $R$ , every simple right $\Lambda$ -module is also simple as a
right R-module and vice versa.

THEOREM 1.4. $\Lambda$ is a right cogenerator ring if and only if, for each simple
right R-module $X$ and $E_{R}=E(X_{R})$ , there exists a primitive idempotent $e$ in $R$

satisfying the following condition

(1) $E_{R}\cong eR_{R}=e1_{R}(M^{\prime})_{R}$ and $\alpha^{\prime}$ : $eM_{R}\cong eHom_{R}(M_{R}, R_{R})_{R}$, where $\alpha^{\prime}$ is the in-
duced map by $\alpha$,
$or$

(2) $E_{R}\cong eM_{R}$ and $\sigma^{\prime}$ : $eR_{R}\cong e$ End $(M_{R})_{R}$ , where $\sigma^{\prime}$ is the induced map by $\sigma$ .

PROOF. $(\Rightarrow)$ . Let $X$ be a simple right R-module and $E_{R}=E(X_{R})$ . Since
every simple right R-module is also simple as a right $\Lambda$ -module, $Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$

is the injective hull of $X_{\Lambda}$ by Lemma 1.3. Since $\Lambda_{\Lambda}$ is a cogenerator, there
exists a primitive idempotent $(e, m)$ in $\Lambda$ such that $(e, m)\Lambda_{\Lambda}\cong Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$ .
Then it is easily seen that $e$ is a primitive idempotent in $R$ and $[m, m]=0$ .
Moreover, since $(e, m)^{2}=(e, m)$ , we have $m=em+me$ , from which it follows that
$eme=0$ . Therefore, we have $meR\cap eM=0$ and $eR\cap[me, M]=0$. Hence we get
$(e, m)\Lambda_{\Lambda}\subset(eR\oplus eM)_{\Lambda}\oplus([me, M]\oplus meR)_{\Lambda}$ . Since $(e, m)\Lambda$ is the injective hull of a
simple right $\Lambda$ -module, there holds $(e, m)\Lambda_{\Lambda}\subset(eR\oplus eM)_{\Lambda}$ or $(e, m)\Lambda_{\Lambda}\subset([me, M]$

$\oplus meR)_{\Lambda}$ . If $(e, m)\Lambda_{\Lambda}\subset([me, M]\oplus meR)_{\Lambda}$ , then $eR\subset{\rm Im}\Phi\subset Rad(R)$ . Therefore, we
obtain $(e, m)=0$. Hence we must have $(e, m)\Lambda_{\Lambda}\subset(e, 0)\Lambda_{\Lambda}$ . Since $(e, m)\Lambda_{\Lambda}$ is
injective and $(e, 0)\Lambda_{\Lambda}$ is indecomposable, we have $(e, m)\Lambda_{\Lambda}\cong(e, 0)\Lambda_{\Lambda}$ . Therefore,
we may take $m=0$. Since $(e, 0)\Lambda_{\Lambda}\cong Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$ , we have $ eR\oplus eM_{R}\cong E_{R}\oplus$

$Hom_{R}(M, E)_{R}$ . Since $E_{R}$ is the injective hull of a simple right R-module, there
holds $E_{R}\subset eR_{R}$ or $E_{R}\subset eM_{R}$. Furthermore, since

$Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E)_{\Lambda}\cong Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M\otimes_{\Lambda}\Lambda, E)_{\Lambda}$

$\cong Hom_{\Lambda}(\Lambda/{\rm Im}\Phi\oplus M, Hom_{R}(\Lambda, E))$

$\cong Hom_{\Lambda}(\Lambda/{\rm Im}\Phi\oplus M, (e, 0)\Lambda)$

$\cong(e, 0)(1_{R}(M)\oplus M^{\prime})_{\Lambda}$

and $Hom_{R}(\Lambda/{\rm Im}\Phi\oplus M, E)_{R}\cong Hom_{R}(R/1m\Phi, E)_{R}$ is essential in $E_{R}$ by Lemma 1.1,
there holds the following condition

(i) $eM^{\prime}=0$ and $e1_{R}(M)_{R}$ is essential in $E_{R}$ .
or

(ii) $e1_{R}(M)=0$ and $eM_{R^{\prime}}$ is essential in $E_{R}$.
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First, we consider the case (i). In this case, $E_{R}\subset eR_{R}$. Since $eR_{R}$ is indecom-
posable, we have $E_{R}\cong eR_{R}$. Since $e\in 1_{R}(M^{\prime})$ by (i), we have $eR\subset e1_{R}(M^{\prime})$ .
Therefore, we get $eR=e1_{R}(M^{\prime})$ . It follows that $E_{R}\cong eR_{R}=e1_{R}(M^{\prime})_{R}$ . We define
a map $f_{1}:(eR\oplus eM)_{R}\rightarrow(eR\oplus eHom_{R}(M, R))_{R}$ via

$f_{1}(er, em)=(er, \alpha^{\prime}(em))$ for $r\in R,$ $m\in M$ .

Since $Kerf_{1}=(0, Ker\alpha^{\prime})=(0, eM^{\prime})=0,$ $f_{1}$ is a right R-monomorphism. Fur-
thermore, a routine calculation shows that $f_{1}$ is also a right $\Lambda$-monomorphism.

Consider the following composition map:

$g_{1}$ : $(e, 0)\Lambda_{\Lambda}\subset^{1}f(eR\oplus eHom_{R}(M, R))_{\Lambda}\cong Hom_{R}(\Lambda_{R}, eR_{R})_{\Lambda}\cong Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$ .
Since $Hom_{R}(\Lambda_{R}, E_{R})_{A}$ is indecomposable and $(e, 0)\Lambda_{\Lambda}$ is injective, $g_{1}$ is an isomor-
phism. Hence $f_{1}$ is an isomorphism. Thus we get $\alpha^{\prime}$ : $eM_{R}\cong eHom_{R}(M, R)_{R}$.
Hence we conclude that (1) holds. Next, we consider the case (ii). In this
case, $E_{R}\subset eM_{R}$. We claim that $eM_{R}$ is indecomposable. Suppose that $eM_{R}=$

$eM_{1_{R}}\oplus eM_{2_{R}}$ with $eM_{1}\neq 0$ and $eM_{2}\neq 0$ . Then $(e, 0)([M_{1}, M]\oplus M_{1})_{\Lambda}+(e, 0)$

$([M_{2}, M]\oplus M_{2})_{\Lambda}C(e, 0)\Lambda_{\Lambda}$ . We show that the above sum is direct. Let
$(e, 0)([m_{1}, m], m_{1}^{\prime})\in(e, 0)([M_{1}, M]\oplus M_{1})\cap(e, 0)([M_{2}, M]\oplus M_{2})$ . Then $ em_{1}^{\prime}\in eM_{1}\cap$

$eM_{2}=0$. Moreover, since

$[em_{1}, m]M\in[eM_{1}, M]M\cap[eM_{2}, M]M$

$=eM_{1}[M, M]\cap eM_{2}[M, M]$

$\subseteqq eM_{1}\cap eM_{2}=0$ ,

we have $[em_{1}, m]\in e1_{R}(M)$ . Since $e1_{R}(M)=0$, we have $[em_{1}, m]=0$ . Therefore,

we have $(e, 0)([M_{1}, M]\oplus M_{1})_{\Lambda}\oplus(e, 0)([M_{2}, M]\oplus M_{2})_{\Lambda}C(e, 0)\Lambda_{\Lambda}$ . Since $(e, 0)\Lambda_{\Lambda}$ is
the injective hull of a simple right $\Lambda$ -module, there holds $(e, 0)([M_{1}, M]\oplus M_{1})$

$=0$ or $(e, 0)([M_{2}, M]\oplus M_{2})=0$. Thus $eM_{R}$ is indecomposable. Hence we get
$E_{R}\cong eM_{R}$ . We define a map $f_{2}:(eR\oplus eM)_{R}\rightarrow(eEnd(M_{R})\oplus eM)_{R}$ via

$f_{2}(er, em)=(\sigma^{\prime}(er), em)$ for $r\in R,$ $m\in M$ .
Since $Kerf_{2}=(Ker\sigma^{\prime}, 0)=(e1_{R}(M), 0)=0,$ $f_{2}$ is a right R-monomorphism. Fur-
thermore, it is easily verified that $f_{2}$ is also a right $\Lambda$ -monomorphism. Consider
the following composition map:

$g_{2}$ : $(e, 0)\Lambda_{\Lambda}\subset^{2}f(e$ End $(M_{R})\oplus eM)_{\Lambda}\cong Hom_{R}(\Lambda_{R}, eM_{R})_{\Lambda}\cong Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$ .
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Since $Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}$ is indecomposable and $(e, 0)\Lambda_{\Lambda}$ is injective, $g_{2}$ is an iso-
morphism. Therefore, $f_{2}$ is an isomorphism. Hence we get $\sigma^{\prime}$ : $eR_{R}\cong e$ End $(M_{R})_{R}$.
Thus we conclude that (2) holds.

$(\Leftarrow)$ . Let $X$ be a simple right $\Lambda$ -module. Then $X$ is simple as a right R-
module. Suppose that (1) holds. Then we can take $f_{1}$ and $g_{1}$ as in the proof
of the part $(\Rightarrow)$ . Since $f_{1}$ is a right $\Lambda$ -isomorphism, $g_{1}$ becomes also a right
$\Lambda$ -isomorphism. Thus we obtain $Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}\subset\Lambda_{\Lambda}$ . Similarly, in case of (2),

we can show that $Hom_{R}(\Lambda_{R}, E_{R})_{\Lambda}\subset\Lambda_{\Lambda}$ . Hence we conclude that $\Lambda$ is a right
cogenerator ring.

If $\Phi=0$, that is, $\Lambda$ is the trivial extension $R\ltimes M$, then Theorem 1.4 is re-
writed as follows. In this case, note that $M^{\prime}=M$.

COROLLARY 1.5. Assume that ${\rm Im}\Phi=0$ . Then $\Lambda$ is a right cogenerator ring

if and only if, for each simple right R-module $X$ and $E_{R}=E(X_{R})$ , there exists a
primitive idempotent $e$ in $R$ satisfying the following condition

(1) $E_{R}\cong e1_{R}(M)_{R}$ and $Hom_{R}(M_{R}, E_{R})=0$ ,
$or$

(2) $E_{R}\cong eM_{R}$ and $\sigma^{\prime}$ : $eR_{R}\cong e$ End $(M_{R})$ , where $\sigma^{\prime}$ is the induced map by $\sigma$ .

EXAMPLE 1.6. Let $R$ be a right cogenerator ring and $\Lambda=R\ltimes R$ . Then $\Lambda$

becomes also a right cogenerator ring in view of Corollary 1.5.

In the remainder of this section, let $\Lambda$ denote the trivial extension $R\ltimes M$.

LEMMA 1.7 ([9, Theorem 1]). If $R$ is a right cogenerator ring, then the
following holds.

(1) The mapping

$Ra\rightarrow aR$ , $a\in R$

gives $a$ one-to-one, onto, correspondence between isomorphism classes of simple left
ideals and isomorphism classes of simple right ideals.

(2) Each simple left ideal is of the form $Re/Rad(R)e,$ $e=e^{2}\in R$ .

LEMMA 1.8 (cf. [13]). Rad $(\Lambda)=Rad(R)\oplus M$.

THEOREM 1.9. If $\Lambda$ is a right cogenerator ring, then $M=0$ if and only if
Soc$(RM)CSoc$ $(_{R}r_{R}(M))$ .

PROOF. $(\Rightarrow)$ . Obvious.
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$(\in)$ . We first show that Soc $(M_{R})=0$ . Suppose that Soc $(M_{R})\neq 0$ and let
$mR_{R}$ be a simple right R-module contained in Soc $(M_{R})$ . Then $(O\oplus mR)_{\Lambda}=(O, m)\Lambda_{\Lambda}$

is also simple as a right $\Lambda$ -module. Since $\Lambda_{\Lambda}$ is a cogenerator, there exists a
primitive idempotent $e$ in $R$ such that $(0, m)\Lambda_{\Lambda}=(e, O)r_{\Lambda}(Rad(\Lambda))_{\Lambda}$ (cf. [9, Proof
of (2), p. 116]). Since $(e, 0)r_{\Lambda}$ $($Rad $(\Lambda))_{\Lambda}=(e, O)(r_{\Lambda}$ $($ Rad $(R)\oplus M)_{\Lambda}=(e, 0)(r_{R}(M)\cap$

$r_{R}(Rad(R))\oplus r_{M}(Rad(R))_{\Lambda}$ by Lemma 1.8, we have $mR_{R}=er_{M}(Rad(R))_{R}$ and
$e$ ($r_{R}(M)\cap r_{R}$ (Rad $(R))$ ) $=0$. Moreover, by Lemma 1.7, $\Lambda\Lambda(0, m)=\Lambda(O\oplus Rm)$ is also
a simple left ideal of $\Lambda$ isomorphic to $\Lambda(\Lambda(e, O)/Rad(\Lambda)(e, 0))$ . So, we get
$R(Re/Rad(R)e)\cong R(\Lambda(e, O)/Rad(\Lambda)(e, 0))\cong RRm\subset Soc(_{R}M)$ . Therefore, we see that
Soc $(_{R}r_{R}(M))\neq 0$ if Soc $(M_{R})\neq 0$ . Since Soc $(_{R}M)CSoc(_{R}r_{R}(M))$ , there exists a
simple left ideal $Ra\in Soc(_{R}r_{R}(M))$ of $R$ which is isomorphic to $R(Re/Rad(R)e)$ .
Since $\Lambda(Ra\oplus O)=\Lambda\Lambda(a, 0)$ is a simple left ideal of $\Lambda$ and $\Lambda$ is a right cogenerator

ring, $(a, 0)\Lambda_{\Lambda}$ is also a simple right ideal of $\Lambda$ which is isomorphic to
$(e, 0)r_{\Lambda}$ $($Rad $(\Lambda))_{\Lambda}$ by Lemma 1.7. Furthermore, we get $(a, O)\Lambda_{\Lambda}=(e^{\prime}, 0)r_{\Lambda}$ $($ Rad $(\Lambda))_{\Lambda}$

by Lemma 1.7, where $e^{\prime}$ is a primitive idempotent in $R$ such that $(e^{\prime}, 0)\Lambda_{\Lambda}=$

$E((a, 0)\Lambda_{\Lambda})$ . Therefore, we have $aR_{R}=e^{\prime}(r_{R}(M)\cap r_{R}$ (Rad $(R)))_{R}$ and $e^{\prime}r_{H}$ (Rad $(R)$ )

$=0$ . Since $(e, O)\Lambda_{\Lambda}\cong(e^{\prime}, 0)\Lambda_{\Lambda}$ , we get $eR_{R}\cong e^{\prime}R_{R}$ . Therefore, we obtain
$er_{M}(Rad(R))\cong e^{\prime}r_{M}(Rad(R))=0$ . On the other hand, $mR_{R}=er_{M}(Rad(R))_{R}\neq 0$ .
This is a cotradiction. So, we must have Soc $(M_{R})=0$ . Since only (1) of Corol-
lary 1.5 holds, we conclude that $M=0$ .

2. Injective cogenerator rings.

Let $\alpha:M\rightarrow Hom_{R}(M_{R}, R_{R})$ and $\sigma$ : $R\rightarrow End(M_{R})$ be the natural maps as in
Section 1. We set Kera $=M^{\prime}$.

LEMMA 2.1 ([15, Theorem 2.4]). Assume that ${\rm Im}\Phi$ is nilpotent. Then the
injective hull of $\Lambda$ has the form

$Hom_{R}(\Lambda_{R}, E(1_{R}(M)\oplus M^{\prime})_{R})$ .

THEOREM 2.2. Assume that ${\rm Im}\Phi$ is nilpotent. Then $\Lambda$ is right self-injective

if the following conditions are satisfied:
(1) $1_{R}(M)_{R}$ and $M_{R}^{\prime}$ are injective.
(2) (i) For each $f\in Hom_{R}(M_{R}, 1_{R}(M)_{R})$ , there exists $m_{0}\in M$ such that $f=$

$[m_{0}$ , - $]$ .
(ii) For each $g\in Hom_{R}(M_{R}, M_{R^{\prime}})$ , there exists $r_{0}\in R$ such that $g=\overline{r}_{0}$ , where $\overline{r}_{0}$

denotes left multiplication by $r_{0}$ .
PROOF. Suppose that (1) and (2) are satisfied. Since $1_{R}(M)_{R}$ and $M_{R}^{\prime}$ are
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injective, the inclusion maps $M_{R}^{\prime}\subset M_{R}$ and $1_{R}(M)_{R}\subset R_{R}$ split. So, let $p:M\rightarrow M^{\prime}$

and $q:R\rightarrow 1_{R}(M)$ be the natural projection maps. We define a map $\Psi:\Lambda\rightarrow$

$Hom_{R}(\Lambda_{R}, 1_{R}(M)_{R}\oplus M_{R}^{\prime})$ via

$(\Psi(r, m))(a, x)=(q(r)a+q([m, x]), p(m)a+(pr)(x))$ for $(r, m),$ $(a, x)\in\Lambda$ .
It is easily verified that $\Psi$ is a right $\Lambda$ -homomorphism. We claim that $\Psi$ is an
isomorphism. Let $f=(1f_{1}, f_{2})\in Hom_{R}(\Lambda_{R}, 1_{R}(M)_{R}\oplus M_{R}^{\prime})$ , where $f_{1}\in Hom_{R}(R_{R}, 1_{R}(M)_{R}$

$\oplus M_{R}^{\prime})$ and $f_{2}\in Hom_{R}(M_{R}, 1_{R}(M)_{R}\oplus M_{R}^{\prime})$ . Then by (2), there exist $m_{0}\in M$ and
$r_{0}\in R$ such that $f_{2}(m)=([m_{0}, m], r_{0}m)$ for every $m\in M$. We put $f_{1}(1)=(a_{1}, x_{1})$ .
Since

$(\Psi((1-q)(r_{0})+a_{1}, (1-p)(m_{0})+x_{1}))(a, x)$

$=(q((1-q)(r_{0})+a_{1})a+q([(1-p)(m_{0})+x_{1}, x]),$ $p((1-p)(m_{0})+x_{1})a$

$+(p\cdot((1-q)(r_{0})+a_{1}))(x))=(a_{1}a+[(1-p)(m_{0}), x], x_{1}a+(1-q)(r_{0})x)$

$=(a_{1}a+[m_{0}, x], x_{1}a+r_{0}x)=f_{1}(a)+f_{2}(x)=f(a, x)$ for $(a, x)\in\Lambda$ ,

$\Psi$ is an epimorphism. Let $c:(1_{R}(M)\oplus M^{\prime})_{\Lambda}\subset\Lambda_{\Lambda}$ be the inclusion map. Then $f$

is an essential monomorphism by Lemmas 1.1 and 1.2. Since $\Psi$, is a monomor-
phism, $\Psi$ is also a monomorphism. Thus $\Psi$ is an isomorphism. Since
$(1_{R}(M)\oplus M^{\prime})_{R}$ is injective, $Hom_{R}(\Lambda_{R}, 1_{R}(M)_{R}\oplus M_{R}^{\prime})_{\Lambda}$ is injective, from which it
follows that $\Lambda$ is right self-injective.

Following [2], a right R-module $X$ is called lower distinguished if it con-
tains a copy of each simple right R-module.

THEOREM 2.3. Assume that ${\rm Im}\Phi$ is nilpotent. Then $\Lambda_{\Lambda}$ is lower distinguished

if and only if $(1_{R}(M)\oplus M^{\prime})_{R}$ is lower distinguished.

PROOF. Since every maximal right ideal $X$ of $\Lambda$ has the form $\mathfrak{m}\oplus M$, where
$\mathfrak{m}$ is a maximal right ideal of $R$, and

$Hom_{\Lambda}(\Lambda/X, \Lambda)\cong Hom_{\Lambda}(\Lambda/\mathfrak{m}\oplus M, \Lambda)$

$\cong 1_{\Lambda}(\mathfrak{m}\oplus M)$

$=1_{(1_{R}(M)\oplus M^{\prime})}(\mathfrak{m})$ ,

we conclude that $\Lambda_{\Lambda}$ is lower distinguished if and only if $(1_{R}(M)\oplus M^{\prime})_{R}$ is lower
distinguished.

From now on, let $\Lambda$ be the trivial extension $R\ltimes M$.

LEMMA 2.4 ([13, Theorem 1.4.1]). $\Lambda$ is right self-injective if and only if the
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following conditions are satisfi$ed$ :

(1) $1_{R}(M)_{R}$ and $M_{R}$ are injective.
(2) $\sigma:R\rightarrow End(M_{R})$ is an epimorphism.
(3) $Hom_{R}(M_{R}, 1_{R}(M)_{R})=0$.

The following is derived from Theorem 2.3 and Lemma 2.4, directly.

THEOREM 2.5. $\Lambda$ is a right injective cogenerator ring if and only if the
following coditions are satisfied:

(1) $(1_{R}(M)\oplus M)_{R}$ is an injective cogenerafor.
(2) $\sigma;R\rightarrow End(M_{R})$ is an epimorphism.
(3) $Hom_{R}(M_{R}, 1_{R}(M)_{R})=0$.

REMARK. Y. Kitamura also obtained the above Theorem 2.5 independently
(cf. [10, Theorem 3]).

3. Generalized triangular matrix rings.

In this section, let

$\Gamma=\left(\begin{array}{ll}S & 0\\U & T\end{array}\right)$

be a generalized triangular matrix ring, where $S$ and $T$ are rings with identity,

and $U$ a $(T, S)$-bimodule. Since $U$ is regarded as an $(S\oplus T, S\oplus T)$-bimodule in
the natural way, $\Gamma$ is isomorphic to $(S\oplus T)\ltimes U$.

LEMMA 3.1 ([13, Theorem 1.5.1]). $\Gamma$ is semiperfect if and only if both $S$

and $T$ are semiperfect.

LEMMA 3.2 ([11, Theorem 1]). If $R$ is a right injective cogenerator ring,
then $R$ is semiperfect.

LEMMA 3.3 ([8, Theorem 1]). The following conditions on a ring $R$ are
equivalent:

(1) $R$ is a right injective cogenerator ring.
(2) $E(R_{R})$ is torsionless, and both $R_{R}$ and $RR$ are lower distinguished.
(3) $R_{R}$ is a cogenerator and there are only finitely many non-isomorphic simple

right (or left) ideals.

If we apply Theorem 1.9 to $\Gamma$, then we have the following.
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COROLLARY 3.4. If $\Gamma$ is a right cogenerator ring, then $U=0$ if and only if
Soc $(_{T}U)\subset Soc(\tau^{T)}\cdot$

The following indicates that $\Gamma$ can not be a right injective cogenerator ring
except the trivial case.

THEOREM 3.5. $\Gamma$ is a right injective cogenerator ring if and only if both $S$

and $T$ are right injective cogenerator rings, and $U=0$.

PROOF. $(\Leftarrow)$ . Obvious.
$(\Rightarrow)$ . Since $\Gamma_{\Gamma}$ is an injective cogenerator, $\Gamma$ is semiperfect by Lemma 3.2.

Therefore, $T$ is semiperfect by Lemma 3.1. On the other hand, since $1_{T}(U)_{T}$ is
an injective cogenerator in view of Theorem 2.5, $T_{T}$ is an injective cogenerator
by Lemma 3.3, from which it follows that $TT$ is lower distinguished together
with Lemma 3.3. Thus we get Soc $(_{T}U)\subset Soc$ $(_{T}T)$ . Hence $U=0$ by Corollary 3.4,
from which it follows that $S_{S}$ and $T_{T}$ are injective cogenerators in view of
Theorem 2.5.

THEOREM 3.6. If $S=T$ in $\Gamma$, then $\Gamma$ is a right cogenerator ring if and only

if $T$ is a right cogenerator ring, and $U=0$ .

PROOF. $(\models)$ . Obvious.
$(\Rightarrow)$ . If Soc $(_{T}U)=0$, then $0=Soc(_{T}U)\subset Soc$ ( $\tau^{T)}\cdot$ Therefore, $U=0$ by Corol-

lary 3.4. Next, we suppose that Soc $(_{T}U)\neq 0$ and let $TTu$ be a simple left $ T\leftrightarrow$

module contained in Soc ( $ r^{U)}\cdot$ Then $\Gamma\Gamma\left(\begin{array}{ll}0 & 0\\u & 0\end{array}\right)$ is also a simple left ideal of $\Gamma$.
Since $\Gamma_{\Gamma}$ is a cogenerator, $1_{T}(U)_{T}$ is a cogenerator in view of Corollary 1.5 and
$\left(\begin{array}{ll}0 & 0\\u & 0\end{array}\right)\Gamma_{\Gamma}=\left(\begin{array}{ll}0 & 0\\uT & 0\end{array}\right)$ is a simple right ideal of $\Gamma$ by Lemma 1.7, from which it

follows that $uT_{T}$ is isomorphic to a simple right ideal $aT_{T}$ of $T$ together with

the fact that $1_{T}(U)_{T}$ is a cogenerator. Since $\left(\begin{array}{ll}a & 0\\0 & 0\end{array}\right)\Gamma_{\Gamma}$ is a simple right ideal

of $\Gamma$ and $\Gamma_{\Gamma}$ is a cogenerator, $\Gamma\Gamma\left(\begin{array}{ll}a & 0\\0 & 0\end{array}\right)$ is also a simple left ideal of $\Gamma$ which

is isomorphic to $\Gamma\Gamma\left(\begin{array}{ll}0 & 0\\u & 0\end{array}\right)$ by Lemma 1.7. Hence $TTa$ is a simple left ideal of
$T$ which is isomorphic to $\tau^{Tu}$ . Therefore, we have Soc $(_{T}U)\subset Soc(_{T}T)$ . Hence
we have $U=0$ by Corollary 3.4, and $T$ is a right cogenerator ring.
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