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APPROXIMATIVE SHAPE I

–BASIC NOTIONS–

By

Tadashi WATANABE

\S $0$ . Introduction.

Many mathematicians discussed the classical questions of the expansions of

spaces and maps into polyhedral inverse systems. For expansions of spaces

Freudenthal [9] showed that
(i) any compact metric space $X$ admits a polyhedral inverse sequence ec

whose inverse limit is $X$.
(i) has very important meanings. Because it gives us a method to investi-

gate $X$ by means of a polyhedral inverse sequence $X$ . This idea goes back to

Alexandroff and Lefschetz. It is a good and fruitfull idea in topology.

Naturally we have the question: Can we use this idea for maps ? Essenti-

ally this is divided in two questions (ii) and (iii) stated below: Let $X$ and $Y$ be

compact metric spaces. Let SEr $=\{X_{i}, p_{i.j}, N\}$ and $qj=\{Y_{i}, q_{i,j}, N\}$ be polyhedral

inverse sequences such that $\lim X=X$ and $\lim|j=Y$ . Here $\lim$ ec and $N$ denote

an inverse limit of ec and the set of all positive integers, respectively.

(ii) For any map $f:X\rightarrow Y$ , is there a system map $f;X\rightarrow qj$ for some $X$

and $ c\forall$ such that $f=\lim f$ ?
(iii) For any $X,$ $ctJ$ and any map $f:X\rightarrow Y$ , is there a system map $f;X\rightarrow qi$

such that $f=\lim f$ ?
When we handle maps by this idea, we encounter some troubles. By

examples we consider the above questions. Let $C,$ $I$ and $R$ be the Cantor

discontinuum, the unit interval and the real line, respectively. There is an
onto map $f:C\rightarrow I$.

First we consider question (iii). Let $c=\{c_{i}, p_{ij}, N\}$ and $\mathscr{E}=\{I_{i}, q_{ij}, N\}$ be

inverse sequences such that $C=\lim C,$ $I=Iim\mathscr{E}$ , all $C_{i}$ are finite sets, all $I_{i}=I$

and all $q_{ij}$ are the identity map $1_{I}$ : $I\rightarrow I$ . Let $p=\{p_{i} ; i\in N\}$ : $C\rightarrow C$ be an
inverse limit. Let all $q_{i}:I\rightarrow I$ be $1_{I}$ . Then $q=\{q_{i}:i\in N\}$ : $I\rightarrow \mathscr{L}$ forms an
inverse limit.

We assume that there is a system map $f=\{f, f_{i} : i\in N\}$ : $C\rightarrow \mathscr{E}$ such that
$\lim f=f$. Then $q_{i}f=f_{i}p_{f(i)}$ for each $i$ . Since $q_{i}$ and $f$ are onto, $f_{i}$ must be
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onto. Since $C_{f(i)}$ is finite, $I=I_{i}=f_{i}(C_{f(i)})$ is also finite. This is a contradiction
Hence there is no such system map. Thus, in general, question (iii) is negative.

Next we consider question (ii). We may assume that $C$ and $I$ are closed
subsets of $R$ . Since $R$ is an absolute retract, there exists a map $F:R\rightarrow R$ such
that $F(x)=f(x)$ for $x\in C$ . We can choose polyhedral neighborhood systems
$\{U_{i}\}$ and $\{V_{i}\}$ of $C$ and $I$ in $R$ , respectively, such that $U_{i+1}\subset U_{i},$ $V_{i+1}\subset V_{i}$ ,
$F(U_{i})\subset V_{i}$ for each $i$ and $C=\cap\{U_{i}:i\in N\},$ $I=\cap\{V_{i}:i\in N\}$ . We put $f_{i}=$

$F|U_{i}$ : $U_{i}\rightarrow V_{i}$ for each $i$ and $p_{ij}$ : $U_{i}\rightarrow U_{j}$ , $q_{ij}$ : $V_{i}\rightarrow V_{j}$ are inclusion maps for
$i\geqq j$ . Then $f=\{1_{N}, f_{i} : i\in N\}$ : $x=\{U_{i}, p_{ij}, N\}\rightarrow qi=\{V_{i}, q_{ij}, N\}$ forms a system

map and $f=\lim\Gamma:C=\lim X\rightarrow I=\lim^{c}lj$ . Thus in this case question (ii) is
positive.

By $\dim X$ we denote the (covering) dimension of a space $X$. Though
$\dim C=0$, in the above construction $\dim U_{i}=1$ for each $i$. We can not choose
O-dimensional neighborhoods $U_{i}$ of $C$ in $R$ . This is a disadvantage of this
method.

The questions (ii) and (iii) are positively answered in the homotopy category.
They gave the ANR-systems approach and Borsuk’s original approach to shape
theory (see Marde\v{s}ic and Segal [18]).

Many mathematicians considered these phenomena. How to handle the
maps ? The most successfull treatment is given by Mioduszewski [19]. He
showed the existence of approximative expansions of maps into polyhedral

inverse sequences. However, his description is neither simple nor categorical.
In this paper we shall give a systematic approach to approximative expan-

sions of maps into polyhedral inverse systems. Our method is natural and
categorical. To do so we need some ideas and notions which are developed in
shape theory.

In \S 1 we give the terminology. In \S 2 we introduce approximative pro-
categories and discuss their basic properties. In \S 3 we introduce approximative

resolutions for spaces. This notion is related to inverse limits. In \S 4 we
introduce approximative resolutions of maps. This notion is the central notion
of this paper. We show that any map has an approximative resolution with
respect to any approximative polyhedral resolutions. This gives a positive
answer to question (iii) by approximations. In \S 5 we introduce the approxi-

mative shape category. This category is analogous to the shape category. In
\S 6 we show that the Tychonoff functor and the completion functor induce
functors on the approximative shape category. In \S 7 we introduce the reali-
zation functor. Finally we show that the approximative shape category is
categorically isomorphic to the topological category of complete Tychonoff
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spaces. This gives us a method to investigate bad spaces and bad maps by
means of polyhedra and maps between them.

The principle of shape theory is to investigate bad spaces and bad maps
by means of the homotopy category of polyhedra. On the other hand, our
principle of approximative shape theory is to investigate bad shapes and bad maps
by means of the category of polyhedra without any homotopies. We say that the
approximative shape theory is a shape theory without homotopies.

Our theory has many applications in topology. For example we will apply
it to generalized absolute neighborhood retracts, fixed point theorems, shape
fibrations, $UV^{n}$-maps, Steenrod homology (see [28]), \v{C}ech homology (see [28])

and so on. These applications shall be published in the sequels.
The author thanks Professor Y. Kodama who encouraged him to develop

this theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read
the first manuscript [26] and gave valuable advices.

\S 1. Preliminaries.

All spaces and maps are topological spaces and continuous functions,
respectively. For a space $X1_{X}$ : $X\rightarrow X$ denotes the identity map. For a subset
$X_{0}\subset X$ Int $X_{0}$ and $\overline{X}_{0}$ denote the interior of $X_{0}$ and the closure of $X_{0}$ in $X,$,

respectively.
We assume that the reader is familiar with the theory of ANRs and with

shape theory. Borsuk [5] and Hu [11] are standard textbooks for the theory
of ANRs. Borsuk [6] and Marde\v{s}ic and Segal [18], which is quoted by MS
[18], are standard textbooks for shape theory. Without any specification we
shall use the terminology and notions from the theory of ANRs and from shape
theory. For undefined terminology and notions see Hu [11] and MS [18].

TOP denotes the category of all spaces and all maps. $TOP_{3.5},$ $M$ , COM
and CM denote the full subcategories of TOP consisting of all Tychonoff
spaces, all metric spaces, all compact (Hausdorff) spaces and all compact metric
spaces, respectively. Polyhedra denote realizations of simplicial complexes with
the CW-topology. AR and ANR denote an absolute retract and an absolute
neighborhood retract for metric spaces, respectively. POL, $POL_{f}$ , AR and
ANR denote the full subcategories of TOP consisting of all polyhedra, all finite
polyhedra, all ARs and all ANRs, respectively.

Without any specification coverings mean always normal open coverings (see

[1], [12] and [18]). Normal open coverings are equivalent to numerable open
coverings or to open coverings with a partition of unity. $C\circ v(X)$ denotes the
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set of all coverings of $X$. Let $cc$ We say that $t/$ is a refiement
of $qj^{\prime}$ in notation $cU<^{\epsilon}U^{\prime}$ , provided that for each $U\in V$ there exists $U^{\prime}\in V^{\prime}$

with $U\subset U^{\prime}$ . For a subset $X_{0}$ of $X$ we define $st(X_{0}, V)=\cup\{U\in qJ;U\cap X_{0}\neq\emptyset\}$

and $qj|X_{0}=\{U\cap X_{0} : U\in V\}\in C_{oU}(X_{0})$ . We define $stV=\{st(U, v):U\in qf\}\in C_{0l},(X)$ .
For each integer $n\geqq 0$ we inductively define $st^{0}V=V$ and $st^{n+1}q1=st(st^{n}V)$ .
Note that for each $q!\in C_{ov}(X)$ and for each positive integer $n$ there exists
$cU^{\prime}\in C_{\circ U}(X)$ such that $st^{nc}U^{\prime}<V$ . Let $cU_{i},$ $i=1,2,$ $\cdots$ , $n$ , be coverings of $X$.
$qJ_{1}\wedge V_{2}\wedge\cdots\wedge^{c}U_{n}$ denotes the covering { $U_{1}\cap U_{2}\cap\cdots\cap U_{n}$ : $U_{i}\in qj_{i}$ and $i=1,2$ ,
... , $n$ } of $X$.

Let $X_{0}$ be a subspace of $X$. We say that $X_{0}$ is P-embedded in $X$ provided
that for each $cU_{0}\in C_{oU}(X_{0})$ there exists $cU\in C_{ov}(X)$ such that $V|X_{0}<V_{0}$ (see

[1]). In $MS$ [ $18$ , p. 89] such an $X_{0}$ is said to be normally embedded in $X$.
$\dim X$ denotes the covering dimension of a space $X$ with respect to coverings
(see [22]).

Let $f,$ $g:X\rightarrow Y$ be maps and $\mathcal{V}\in c_{\circ v}(Y)$ . $f^{-1}\mathcal{V}$ denotes the covering
$\{f^{-1}(V):V\in \mathcal{V}\}$ of $X$. We say that $f$ and $g$ are $\mathcal{V}$-near, in notation $(f, g)<\mathcal{V}$ ,

provided that for each $x\in X$ there exists $V\in \mathcal{V}$ such that $f(x),$ $g(x)\in V$ . $f\simeq g$

denotes that $f$ and $g$ are homotopic. We say that $f$ and $g$ are $\mathcal{V}$-homotopic
provided that there exists a homotopy $h:X\times I\rightarrow Y$ such that for each $x\in X$

$h(x, O)=f(x),$ $h(x, 1)=g(x)$ and $h(x\times I)\subset V$ for some $V\in \mathcal{V}$ . Here $I=[0,1]$ is
the unit interval. $H(f)$ denotes the homotopy class of $f$.

HTOP, HPOL and HANR denote the homotopy categories of TOP, POL
and ANR, respectively. $H:TOP\rightarrow HTOP$ denotes the homotopy functor. Sh
and $S:HTOP\rightarrow Sh$ denote the shape category and the shape functor. Let $C$

and $D$ be categories. Ob $C$ and Mor $C$ denote the collections of all objects and
all morphisms in $C$, respectively. When $X,$ $Y\in ObC,$ $C(X, Y)$ denotes the set

of all morphisms from $X$ to $Y$ in $C$. Sometimes $X\in C$ means $X\in ObC$. When
Ob $D\subset ObC,$ $C(D)$ denotes the full subcategory of $C$ consisting of Ob $D$ . From
our notations Sh(CM) is the shape category on compact metric spaces.

A preordering $>$ on a set $A$ is a binary relation on $A$ which is reflexive
and transitive, $i$ . $e.,$ $(i)a>a$ for each $a\in A$ and (ii) both $a>a^{\prime}$ and $a^{\prime}>a^{\prime\prime}$

imply that $a>a^{\prime\prime}$ . We say that a preordered set $(A, >)$ is directed provided

that for any $a,$
$a^{\prime}\in A$ there exists $a^{\prime\prime}\in A$ with $a^{\prime\prime}>a,$ $a^{\prime}$ . We do not assume

the antisymmetry condition: (iii) Both $a^{\prime}>a$ and $a>a^{\prime}$ imply $a^{\prime}=a$ . We say
that a directed set $(A, >)$ is cofinite provided that for any $a\in AP(a)=$

$\{a^{\prime}\in A:a>a^{\prime}\}$ is a finite set. Let $(B, >)$ be a directed set. Let $s,$
$t:A\rightarrow B$

be functions. $s>t$ means that $s(a)>t(a)$ for each $a\in A$ . We say that $s$ is an
increasing function provided that $s(a^{\prime})>s(a)$ for $a^{\prime}>a$ . We can easily show
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the following.

(1.1) LEMMA. Let $(A, >)$ and $(B, >)$ be directed sets. Let $s_{i}$ : $A\rightarrow B$ , $i=$

$1,2,$ $\cdots$ , $n$, be functions. If $(A, >)$ is cofinite, then there exists an increasing
function $s:A\rightarrow B$ such that $s>s_{i}$ for each $i$. $\blacksquare$

The mark $\blacksquare$ denotes the end of a proof or of an example. When it
appears just after a statement of a theorem, a proposition or a corollary, it
means that the statement is obviously valid.

\S 2. The approximative pro-category.

In this section we introduce the notion of approximative pro-categories.
This notion plays a fundamental role in our theory. It has a role similar to
that of pro-categories in shape theory (see MS [18]).

Let $C$ be a subcategory of TOP. We say that (X, $cU$ ) $=\{(X_{a}, v_{a}), p_{a^{\prime}.a}, A\}$

is an approximative inverse system in $C$ provided that it satisfies the following
three conditions:

(AI1) $x=\{X_{a}, p_{a^{\prime}.a}, A\}$ is an inverse system in $C$, and $A$ is cofinite and
directed.

(AI2) For each $a\in AV_{a}$ is a covering of $X_{a}$ satisfying that $p_{a.a^{C}}^{-1}U_{a}>ql_{a^{\prime}}$

for $a^{\prime}>a$ .
(AI3) For each $a\in A$ and for each $V\in C\circ v(X_{a})$ there exists $a^{\prime}>a$ such

that $p_{a.a^{c}}^{-1}U>V_{a^{\prime}}$ .
Let $(qf, \mathcal{V})=\{(Y_{b}, \mathcal{V}_{b}), q_{b^{\prime}.b}, B\}$ be an approximative inverse system in $C$.

We say that $f=\{f, f_{b} : b\in B\}$ : (X, $qJ$ ) $\rightarrow(q\int, \mathcal{V})$ is an approximative system map
in $C$ provided that $f:B\rightarrow A$ is a function and $f_{b}$ : $X_{f(b)}\rightarrow Y_{b}$ is a map in $C$ for
each $b\in B$ satisfying the following two conditions:

(AM1) $f_{b}^{-1}\mathcal{V}_{b}>V_{f(b)}$ for $b\in B$ .
(AM2) For each $b^{\prime}>b$ there exists $a>f(b),$ $f(b^{\prime})$ such that $(q_{b^{\prime},b}f_{b^{\prime}}p_{a,f(b^{\prime})}$ ,

$f_{b}p_{a,f(b)})<\mathcal{V}_{b}$.
Sometimes we refer to approximative inverse systems in $C$ and approxi-

mative system maps in $C$ as to approximative C-inverse systems and approxi-
mative C-system maps, respectively.

Let $(\mathcal{Z}, 9\nu)=\{(Z_{c}, W_{c}), r_{c^{\prime}.c}, C\}$ be an approximative inverse system in $C$

and $g=\{g, g_{c} : c\in C\}$ : $(qf, \mathcal{V})\rightarrow(\mathcal{Z}, q\nu)$ an approximative system map in $C$. We
define $gf=\{fg, g_{c}f_{g(c)} : c\in C\}$ . In general, $gf$ is not an approximative system
map from (X, $V$ ) to $($%, $W)$ in $C$. Therefore we need some tricks.
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(2.1) LEMMA. $gf$ forms an approximative system map from (Eie, $(U)$ to
$st(\mathcal{Z}, cW)=\{(Z_{c}, st\wp_{c}), r_{c^{\prime}.c}, C\}$ in $C$.

To prove (2.1) we need the following:

(2.2) LEMMA. Let $f:X\rightarrow Y$ be a map. Let $v$ and $\mathcal{V}$ be coverings of $X$

and $Y$, respectively. If $f^{-1}\mathcal{V}>V$ , then $f^{-1}st^{n}\mathcal{V}>st^{n}v$ for each integer $n\geqq 0$ . $\blacksquare$

Proof of (2.1). First we show (AII)-(AI3) for $st(\mathcal{Z}, \psi)$ . (AI1) is trivial
and (AI2) follows from (2.2). We show (AI3). Take any $c\in C$ and any
$\wp\in c_{ov}(Z_{c})$ . There exists $\prime If’’\in C_{ov}(Z_{c})$ such that $ st^{c}W^{\prime}<\psi$. By (AI3) for
$(\mathcal{Z}, \psi^{\prime})$ there exists $c^{\prime}>c$ such that $r_{c^{r}.c}^{-1c}W^{\prime}>(W_{c^{\prime}}$ . By (2.2) we have that
$r_{c^{\prime}.c}^{-1}\psi>r_{c^{\prime}.c}^{1}st^{c}W^{\prime}>st^{c}W_{c^{\prime}}$ . This means (AI3) for $st(\mathcal{Z}, \wp)$ . Hence $st(\mathcal{Z}, \mathfrak{N}^{1})$ forms
an approximative inverse system.

Next we show that $gf:(X, V)\rightarrow st(\mathcal{Z}, \psi)$ is an approximative system map
in $C$. We show (AM1). Take any $c\in C$. By (AM1) for $f$ and $gf_{g(c)}^{-1}g_{c}^{-1}\psi_{c}>$

$f_{g(c)}^{-1}\mathcal{V}_{g(c)}>V_{fg(c)}$ and then by (2.2) $(g_{c}f_{g(c)})^{-1}st9V_{c}>stv_{fg(c)}>v_{fg(c)}$ . This
means (AM1) for $gf$.

We show (AM2). Take any $c^{\prime}>c$ . By (AM2) for $g$ there exists $b>g(c)$ ,
$g(c^{\prime})$ such that

(1) $(g_{\iota}q_{b.g(c)}, r_{\iota^{\prime}.c}g_{c^{\prime}}q_{b.g(c^{\prime})})<w_{c}$ .
Since $b>g(c),$ $g(c^{\prime})$ , by (AM2) for $f$ there exists $a>fg(c),$ $fg(c^{\prime}),$ $f(b)$ such that

(2) $(f_{g(c)}p_{a.fg(c)}, q_{b.g(c)}f_{b}p_{a.f(b)})<\mathcal{V}_{g(c)}$ and

(3) $(f_{g(c^{\prime})}p_{a,fg(c^{\prime})}, q_{b.g(c^{\prime})}, f_{b}p_{a,f(b)})<\mathcal{V}_{g(c^{\prime})}$ .
By (2), (3) and (AM1) for $g$

(4) $(g_{c}f_{g(c)}p_{a.fg(c)}, g_{c}q_{b.g(c)}f_{b}p_{a.f(b)})<\wp_{c}$ and

(5) $(g_{c^{\prime}}f_{g(c^{\prime})}p_{a.fg(c^{\prime})}, g_{c^{\prime}}q_{b,g(c^{\prime})}f_{b}p_{a.f(b)})<9V_{c^{\prime}}$ .
By (AI2) for $(\mathcal{Z}, \psi)$ and (5)

(6) $(r_{c^{\prime}.c}g_{c^{l}}f_{g(c^{\prime})}p_{a,fg(c^{\prime})}, r_{c^{\prime}.c}g_{c^{\prime}}q_{b.g(c^{\prime})}f_{b}p_{a,f(b)})<\wp_{c}$ .
By (1)

(7) $(g_{c}q_{b.g(c)}f_{b}p_{a.f(b)}, r_{c^{\prime}.c}g_{c^{\prime}}q_{b,g(c^{\prime})}f_{b}p_{a.f(b)})<\mathscr{U}_{c}$ .
By (4), (6) and (7)

(8) $(g_{c}f_{g(c)}p_{a.fg(c)}, r_{c^{\prime}.c}g_{c^{\prime}}f_{g(c^{\prime})}p_{a.fg(c^{\prime})})<st\psi_{c}$ .
(8) means (AM2) for $gf$. $\blacksquare$
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Let $f^{\prime}=\{f^{\prime}, f_{b}^{\prime}:b\in B\}:(X, CU)\rightarrow(Qf, \mathcal{V})$ and $ g^{\prime}=\{g^{\prime}, g_{c}^{\prime}:c\in C\}:(qi, \mathcal{V})\rightarrow$

$(\mathcal{Z}, \psi)$ be approximative system maps in $C$. We say that $f$ and $f^{\prime}$ are simply
approximatively equivalent, in notation $r=:f^{\prime}$ , provided that for each $b\in B$

there exists $a>f(b),$ $f^{\prime}(b)$ such that $(f_{b}p_{a,f(b)}, f_{b}^{\prime}p_{a,f^{\prime}(b)})<\mathcal{V}_{b}$ . We say that $f$

and $f^{\prime}$ are approximatively equivalent, in notation $f\equiv:f^{\prime}$ , provided that there
exists a finite collection of approximative system maps $f_{i}$ : $(X, qj)\rightarrow(qj, \mathcal{V})$ in
$C,$ $i=1,2,$ $\cdots,$ $n$ , such that $f=f_{1},$ $f^{\prime}=f_{n}$ and $f_{i}=:f_{i+1}$ for $i=1,2,$ $\cdots,$ $n-1$ .
Obviously this relation $\equiv$ : forms an equivalence relation. $[f]$ denotes the
equivalence class of $f$.

$1_{(x.qf)}=\{1_{A}, 1_{x_{a}} : a\in A\}:(X, v)\rightarrow(x, v)$ is the identity approximative sys-
tem map. Let $s:A\rightarrow A$ be an increasing function with $s>1_{A}$ . We define
$p(s)=\{s, p_{s(a).a} : a\in A\}$ .

(2.3) LEMMA. $p(s):(X, V)\rightarrow(X, cU)$ forms an approximative system map in
$C$ and $p(s)=:1_{(x,qf)}$ . $\blacksquare$

We say that $s$ is an n-refinement function of (X, $V$ ) provided that
$p_{S(a).a^{c}}^{1}u_{a}>st^{n}v_{s(a)}$ for $a\in A$ .

(2.4) LEMMA. If $s$ and $s^{\prime}$ are n-refinement and m-refinement functions of
(X, $V$ ), respectively, then $s\prime s$ is an $(n+m)$-refinement function of (X, $V$ ). $\blacksquare$

(2.5) LEMMA. Any approximative inverse system in $C$ has an n-refinement
function for each integer $n\geqq 0$.

PROOF. We show that (X, $V$ ) has an n-refinement function. Since each
$cU_{a}$ is a normal open covering, there exists $cU_{a}^{\prime}\in C_{0\iota 7}(X_{a})$ such that $st^{n}V_{a}^{\prime}<V_{a}$ .
By (AI3) there exists a function $s^{\prime}$ : $A\rightarrow A$ such that $s^{\prime}>1_{A}$ and $p_{s\prime}^{1_{(a),a}}q]_{a}^{\prime}>v_{s^{\prime}(a)}$

for $a\in A$ . By (1.1) there exists an increasing function $s:A\rightarrow A$ with $s>s^{\prime}$.
Thus by (AI2) and (2.2) $p_{\overline{s}(a).a^{c}}^{1}U_{a}>p_{\overline{s}(a).a}^{1}st^{nc}U_{a}^{\prime}=p_{S(a).s^{\prime}(\alpha)}^{1}p_{s^{\prime}}^{1_{(a),a}}st^{nc}U_{a}^{\prime}>$

$p_{\overline{s}(a).s^{\prime}(a)}^{1}st^{nc}U_{s^{\prime}(a)}>st^{nc}U_{s(a)}$ for each $a\in A$ . Then $s$ is the required n-refine-
ment. $\blacksquare$

Let $t:B\rightarrow B$ be an increasing function with $t>1_{B}$ . By (2.3) $ q(t):(qi, \mathcal{V})\rightarrow$

$(qf, \mathcal{V})$ is an approximative system map. From the definitions and (2.5) it is
not difficult to show the following two lemmas:

(2.6) LEMMA. $q(t)f:(X, (U)\rightarrow(qj, \mathcal{V})$ forms an approximative system map in
$C$ and $q(t)f=:f$. $\blacksquare$
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(2.7) LEMMA. $f\equiv:f^{\prime}$ iff there exists an increasing function $t:B\rightarrow B$ such

that $t>1_{B}$ and $q(t)f=:q(t)f^{\prime}$ . $\blacksquare$

(2.8) LEMMA. Let $u,$
$u^{\prime}$ : $C\rightarrow C$ be l-refinement functions of $(\mathcal{Z}, 9\nu)$ .

(i) $r(u)(gf)$ forms an approximative system map from (X, $\mathfrak{B}$ ) to $(\mathcal{Z}, \psi)$

in $C$.
(ii) $r(u)(gf)\equiv:r(u^{\prime})(gf)$ .
(iii) If $f=:f^{\prime}$ , then $r(u)(gf)=:r(u)(gf^{\prime})$ .
(iv) If $g=:g^{\prime}$ , then $r(u)(gf)=:r(u)(g^{\prime}f)$ .

PROOF. We show (ii). By (2.5) there exists a 2-refinement function $u^{\prime\prime}$ : $C$

$\rightarrow C$ of $(\mathcal{Z}, \psi)$ . We show that $r(u^{\prime\prime})(r(u)(gf))=:r(u^{\prime\prime})(r(u^{\prime})(gf))$ . Take any

$c\in C$ and then

(1) $r_{\overline{u}}!(9l^{\prime}>st^{2}\wp_{u(t)}$ .
Take any $c’>uu^{\prime\prime}(c),$ $u^{\prime}u^{\prime\prime}(c)$ . Since $gf:(X, q$]) $\rightarrow st(\mathcal{Z}, \wp)$ is an approximative

system map by (2.1), there exists $a>fg(c^{\prime}),$ $fguu^{\prime\prime}(c),$ $fgu^{\prime}u^{\prime\prime}(c)$ such that

(2) $(g_{uu^{\prime}(c)}f_{guu^{\prime}(c)}p_{a.fguu(c)}, r_{c^{\prime}.uu^{\prime}(c)}g_{c^{\prime}}f_{g(c^{\prime})}p_{a.fg(c^{\prime})})<st^{c}t\nu_{uu(c)}$ and

(3) $(g_{u^{\prime}u(c)}f_{gu^{\prime}u^{p}(c)}p_{a.fgu^{\prime}u(c)}, r_{c^{\prime}.u^{\prime}u(c)}g_{c^{\prime}}f_{g(c^{\prime})}p_{a.fg(c^{\prime})})<st^{c}W_{u^{\prime}u(c)}$ .
By (AI2) and (2.2) $r_{uu(c).u(c)}^{-1}stW_{u(c)}>stW_{uu^{\prime}(c)}$ and $r_{u}^{-}\dagger_{u(c).u^{\prime}(c)}sl\psi_{u(c)}>$

$stW_{u^{\prime}u^{\prime}(c)}$ . Thus by (2) and (3)

(4) $(r_{uu^{p}(c).u^{\prime}(c)}g_{uu(c)}f_{guu^{\prime}(c)}p_{a.fguu(c)}$ ,

$r_{u^{\prime}u(t).u^{\prime}(c)}g_{u^{\prime}u^{\prime}(c)}f_{gu^{\prime}u(c)}p_{a.fgu^{\prime}u^{\prime}(c)})<st^{2}\wp_{u(c)}$ .
By (1) and (4)

(5) $(r_{uu^{\prime}(c).c}g_{uu^{\prime}(c)}f_{guu(c)}P_{a.fguu^{\prime}(c)}, r_{u^{\prime}u^{\iota}(c).c}g_{u^{\prime}u^{r}(c)}f_{gu^{\prime}u(c)}p_{a,fgu^{\prime}u^{\prime}(c)})<\wp_{c}$ .
(5) means that $r(u^{\prime\prime})(r(u)(gf))=:r(u^{\prime\prime})(r(u^{\prime})(gf))$ . Hence by (2.7) $ r(u)(gf)\equiv$ :
$r(u^{\prime})(gf)$ . We have (ii). By similar ways as for (ii) we can prove the other

assertions. $\blacksquare$

(2.9) COROLLARY. If $f\equiv:f^{\prime},$ $g\equiv:g^{\prime}$ and $u,$
$u^{\prime}$ : $C\rightarrow C$ are l-refinement func-

tions of $(\mathcal{Z}, \psi)$ , then $r(u)(gf)\equiv:r(u^{\prime})(g^{\prime}f^{\prime})$ . $\blacksquare$

Now we introduce a composition of equivalence classes of approximative

system maps as follows: $[g][f]=[r(u)(gf)]$ for a l-refinement function $u$ .
By (2.9) this notion is well defined and does not depend on $u$ . It is not difficult

to show that
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(2.10) LEMMA. For any approximative system maps $f:(X, cU)\rightarrow(qf, \mathcal{V})$ ,

$g:(^{c}|J, \mathcal{V})\rightarrow(z, w)$ and $h:(z, w)\rightarrow(\mathcal{E}, j\zeta)$ in $C$

(i) $[f]=[f][1_{(x,qJ)}]=[1_{(;.\subset v)}Q][f]$ and
(ii) $([h][g])[f]=[h]([g][f])$ . $\blacksquare$

We define the approximative pro-category of $C$, in notation Appro-C, as
follows: Objects are all approximative inverse systems in $C$. Morphisms from
$(X, qJ)$ to $(qf, \mathcal{V})$ are equivalence classes of all approximative system maps
from $(X, v)$ to $(Qf, \mathcal{V})$ in $C$. Obviously the collection of all morphisms from
$(X, q1)$ to $(q\oint, \mathcal{V})$ forms a set. The composition is defined above. This com-
position is associative and $[1_{(x,qJ)}]$ is the identity morphism of $(X, v)$ by (2.10).

Hence we may summarize the above results as follow.

(2.11) THEOREM. Appro-C forms a category.

Now we consider the properties of Appro-C.

(2.12) PROPOSITION. Let (se, $\epsilon U$ ) $=\{(X_{a}, cU_{a}), p_{a\prime.a}, A\}$ be an approximative
inverse system in C. If $A^{\prime}$ is a cofinal subset of $A$ ; then $(X, V)_{A^{\prime}}=\{(X_{a}, cU_{a})$ ,
$p_{a^{\prime},a},$

$A^{\prime}$ } forms an approximative inverse system in $C$ and is isomorphic to $(X, V)$

in Appro-C.

(2.13) PROPOSITION. If $(x, v)=\{(X_{a}, cU_{a}), p_{a\prime.a}, A\}$ and $(X, \mathcal{V})=\{(X_{a}, \mathcal{V}_{a})$ ,
$p_{a\prime.a},$ $A$ } are approximative inverse systems in $C$, then $(X, v)$ and $(X, \mathcal{V})$ are
isomorphic in Appro-C.

Proofs of (2.12) and (2.13). We show (2.13). By (AI3) and (1.1) there
exist increasing functions $m,$ $n:A\rightarrow A,$ $m,$ $n>1_{A}$ , such that $p_{m^{1}(a),a}^{-}\mathcal{V}_{a}>\zeta U_{m(a)}$

and $p_{n(a),a^{C}}^{-1}U_{a}>\mathcal{V}_{n(a)}$ for $a\in A$ . By these conditions $p(m)=\{m, p_{m(a).a} : a\in A\}$ ;

(X, $\epsilon U$ ) $\rightarrow(X, \mathcal{V})$ and $p(n)=\{n, p_{n(a).a} : a\in A\}:(X, \mathcal{V})\rightarrow(X, v)$ form approxi-

mative system maps. It is easy to show that $[p(n)][p(m)]=[1_{(x.qf)}]$ and
$[p(m)][p(n)]=[1_{(X.\mathcal{V})}]$ . Hence we have (2.13). By a similar way we have
(2.12). $\blacksquare$

In (2.1) we defined $st(X, V)$ . Inductively we define $st^{n}(X, V)$ for each
integer $n\geqq 0$ as follows: $st^{0}(X, CU)=(X, \eta)$ and $st^{n+1}(X, v)=st(st^{n}(X, \mathfrak{U}))$ . By
(2.1) and (2.13) we have that

(2.14) COROLLARY. For each integer $n\geqq 0st^{n}(x, v)$ forms an approximative
inverse system in $C$ which is isomorphic to $(X, \epsilon U)$ in Appro-C. $\blacksquare$
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We say that $(a, b)\in A\times B$ is an admissible pair of $f$ provided that $a>f(b)$ .
Let $(a^{\prime}, b^{\prime})$ and $(a, b)$ be admissible pairs of $f$. We say that $(a^{\prime}, b^{\prime})>(a, b)$

provided that both $a^{\prime}>a$ and $b^{\prime}>b$ .
We say that $f$ is a special approximative system map provided that $A=B$ ,

$f=1_{A}$ : $B=A\rightarrow A$ and it satisfies the following condition:

(SPAM) $(f_{a}p_{a\prime.a}, q_{a^{\prime},a}f_{a^{\prime}})<\mathcal{V}_{a}$ for $a^{\prime}>a$ .
(2.15) THEOREM. Let $f:(x, qJ)\rightarrow(\wp, \mathcal{V})$ be an approximative system map.

Then there exist approximative inverse systems $(X, V)^{\prime}=\{(x_{c}^{J}, v_{c}^{J}), p_{c\prime.c}^{J}, C\},$ $(qf, \mathcal{V})^{\prime}$

$=\{(Y_{c}^{\prime}, \mathcal{V}_{c}^{\prime}), q_{c\prime.c}^{\prime}, C\}$ , approximative system maps $s:(X, V)\rightarrow(X, qJ)^{\prime},$ $t:(^{c}|f, \mathcal{V})$

$\rightarrow(qj, \mathcal{V})^{\prime}$ , and an approximative special system map $g=\{1_{C}, g_{c} : c\in C\}$ : $(X, V)^{\prime}$

$\rightarrow(c\ddagger j, \mathcal{V})^{\prime}$ satisfying the following conditions:
(i) $[g][s]=[t][f]$ .
(ii) $[s]$ and $[t]$ are isomorphisms in Appro-C.
(iii) all $(X_{c}^{\prime}, v_{c}^{J}),$ $p_{c\prime.c}^{J},$ $(Y_{b}^{\prime}, \mathcal{V}_{b}^{\prime})$ and $q_{b,b}^{\prime}$ are some $(X_{a}, v_{a}),$ $p_{a.a},$ $(Y_{b}, \mathcal{V}_{b})$

and $q_{b^{\prime}.b}$ , respectively.
(iv) all $g_{c}$ are composition of some $p_{a\prime.a}$ and $f_{b}$.

PROOF. Since $B$ is cofinite, there exists an increasing function $g:B\rightarrow A$

such that
(1) $g>f$ and
(2) $(q_{b^{\prime}.b}f_{b^{\prime}}p_{g(b^{\prime}).f(b^{l})}, f_{b}p_{g(b).f(b)})<\mathcal{V}_{b}$ for $b^{\prime}>b$.

We put $g_{b}^{\prime}=f_{b}p_{g(b).f(b)}$ : $X_{g(b)}\rightarrow Y_{b}$ for $b\in B$ . Then by (2) $g^{\prime}=\{g, g_{b}^{\prime} : b\in B\}$ :
$(X, V)\rightarrow(Qf, \mathcal{V})$ forms an approximative system map and $f=:g^{\prime}$ .

We put $C=\{(a, b)\in A\times B:a>g(b)\}$ and define an order $>$ in $C$ as fol-
lows: $c^{\prime}=(a^{\prime}, b^{\prime})>c=(a, b)$ iff both $a^{\prime}>a$ and $b^{\prime}>b$ . Then $(C, >)$ forms a
cofinite directed set. Let $X_{c}^{\prime}=X_{a}$ , $cU_{c}^{\prime}=v_{a}$ , $Y_{c}^{\prime}=Y_{b}$ and $\mathcal{V}_{c}^{\prime}=\mathcal{V}_{b}$ for $c=$

$(a, b)\in C$ . Let $p_{c^{\prime},c}^{l}=p_{a^{\prime}.a}$ and $q_{c^{\prime}.c}^{\prime}=q_{b^{\prime}.b}$ for $c’=(a^{\prime}, b^{\prime})>c=(a, b)$ . It is easy
to show that $(X, V)^{\prime}$ and $(y, \mathcal{V})^{\prime}$ form approximative inverse systems. We
put $g_{\iota}=f_{b}p_{a.f(b)}$ : $X_{c}^{\prime}=X_{a}\rightarrow Y_{b}=Y_{c}^{\prime}$ for $c=(a, b)\in C$. By (2) $g=\{1_{C}, g_{c} : c\in C\}$ :
$(X, v)^{\prime}\rightarrow(y, \mathcal{V})^{\prime}$ forms an approximative special system map.

We define $s=\{s, s_{c} : c\in C\}$ : $(X, V)\rightarrow(X, V)^{\prime}$ as follows: Define $s:C\rightarrow A$

by $s(c)=a$ for $c=(a, b)$ and $s_{c}=1_{x_{a}}$ : $X_{s(c)}=X_{a}\rightarrow X_{c}^{\prime}=X_{a}$ for $c=(a, b)$ . Then
clearly $s$ forms an approximative system map.

We will now show the $s$ induces an isomorphism in Appro-C. To do so
take any increasing function $d:A\rightarrow B$ . Then $gd:A\rightarrow A$ is an increasing func-
tion. By (1.1) there exists an increasing function $e:A\rightarrow A$ such that $e>gd$ and
$e>1_{A}$ . We define an increasing function $u:A\rightarrow C$ by $u(a)=(e(a), d(a))$ and we
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put $u_{a}=p_{e(a),a}$ : $X_{u(a)}^{\prime}=X_{e(a)}\rightarrow X_{a}$ for $a\in A$ . Then $u=\{u, u_{a} : a\in A\}:(X, cU)^{\prime}$

$\rightarrow(X, cU)$ forms an approximative system map. It is easy to show that $us=$ :
$1_{(X^{\zeta}U)}$ and $su=:1_{(x.qf)^{\prime}}$ . Hence $s$ induces an isomorphism in Appro-C.

We define $t=\{t, t_{c} : c\in C\}:(\wp, \mathcal{V})\rightarrow(c|f, \mathcal{V})^{\prime}$ as follows: Define $t:C\rightarrow B$ by

$t(c)=b$ for $c=(a, b)$ and $t_{c}=1_{Y_{b}}$ : $Y_{t(C)}=Y_{b}\rightarrow Y_{c}^{\prime}=Y_{b}$ for $c=(a, b)$ . Then $t$ forms

an approximative system map. In the same way as for $s$ , we see that $t$ forms
an isomorphism in Appro-C. Since $tf=:tg^{\prime}=:gs$ , it is easy to show that
$[t][f]=[g][s]$ . Hence $g$ is the required one. $\blacksquare$

(2.16) THEOREM. Let $f:(x, v)\rightarrow(qj, \mathcal{V})$ be an approximative system map
in C. Then $f$ induces an isomorphism in Appro-C iff it satisfies the following

condition:
(ISO) For each admissible pair $(a, b)$ of $f$ there exist an admissble pair

$(a^{\prime}, b^{\prime})>(a, b)$ and a map $k:Y_{b^{\prime}}\rightarrow X_{a}$ in $C$ such that
(ISOI) $(p_{a^{\prime}.a}, kf_{b^{\prime}}p_{a^{\prime}.f(b^{\prime})})<v_{a}$ ,

(IS02) $k^{-1}\mathfrak{U}_{a}>\mathcal{V}_{b}$ , and
(IS03) $(q_{b^{r}.b}, f_{b}p_{a.f(b)}k)<st\mathcal{V}_{b}$ .

PROOF. First we assume that $f$ induces an isomorphism in Appro-C. Then
there exists an approximative system map $h=\{h, h_{a} : a\in A\}:(qf, \mathcal{V})\rightarrow(X, V)$

in $C$ such that $[h][f]=[1_{(X^{c}U)}]$ and $[f][h]=[1_{(y.\mathcal{V})}(]$ . By the definition of
composition and (2.7) there exist l-refinement functions $s:A\rightarrow A,$ $t:B\rightarrow B$ of
(X, $V$ ), $(qf, \mathcal{V})$ , respectively, and increasing functions $u:A\rightarrow A,$ $v:B\rightarrow B$ such
that $u>1_{A},$ $v>1_{B}$ ,

(1) $p(u)(p(s)(hf))=:p(u)1_{(\mathcal{I}^{C}U)}$ and
(2) $q(v)(q(t)(fh))=:q(v)1_{(f.\mathcal{V})}Q$ .
We show (ISO). Take any admissible pair $(a, b)$ of $f$. By (AI3) and (2.5)

there exist $a_{1}>a$ and $b_{1}>b$ such that $p_{a_{1},a^{c}}^{-1}U_{a}>st^{c}U_{a_{1}}$ and $q_{b_{1}.b}^{-1}\mathcal{V}_{b}>st\mathcal{V}_{b_{1}}$ . By

(2) there exists $b_{2}>hftv(b_{1}),$ $v(b_{1})$ such that

(3) $(q_{lv(b_{1}).b_{1}}f_{tv(b_{1})}h_{f}i_{v(b_{1^{)}}}q_{b_{2},hflv(b_{1})}, q_{b_{2},b_{1}})<\mathcal{V}_{b_{1}}$ .
By (AM2) there exists $a_{2}>ftv(b_{1}),$ $f(b_{1}),$ $a_{1}$ such that

(4) $(f_{b}p_{a_{2}.f(b)}, q_{b_{1}.b}f_{b_{1}}p_{a_{2}.f(b_{1})})<\mathcal{V}_{b}$ and

(5) $(f_{b_{1}}p_{a_{2},f(b_{1})}, q_{tv(b_{1}),b_{1}}f_{iv(b_{1})}p_{a_{2},fiv(b_{1})})<\mathcal{V}_{b_{1}}$.
By (1) there exists $a_{3}>fhsu(a_{2}),$ $u(a_{2})$ such that

(6) $(p_{a_{3}.a_{2}}, p_{su(a_{2}).a_{2}}h_{su(a_{2})}f_{hsu(a_{2})}p_{a_{3}.fhsu(a_{2})})<cU_{a_{2}}$.
By (AM2) there exists $b_{3}>b_{2},$ $hsu(a_{2})$ such that
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(7) $(q_{b_{3}.hftv(b_{1})}, p_{su(a_{2}).fiv(b_{1})})<cU_{ftv(b_{1})}$ .
By (AM2) there exists $a_{4}>a_{3},$ $f(b_{3})$ such that

(8) $(f_{hsu(a_{2})}p_{a_{4}.fhsu(a_{2})}, q_{b_{3},hsu(a_{2^{)}}}f_{b_{3}}p_{a_{4},f(b_{3^{)}}})<\mathcal{V}_{hsu(a_{2})}$ .

From (3) $-(8)$ it is not difficult to show that the admissible pair $(a_{4}, b_{3})$ of $f$ and
the map $k=p_{su(a_{2}).a}h_{su(a_{2^{)}}}q_{b_{3}.hsu(a_{2^{)}}}:Y_{b_{\theta}}\rightarrow X_{a}$ satisfy (ISOI)-(IS03) for $(a, b)$ .
Hence we have (ISO).

Next we assume (ISO) and show that $f$ induces an isomorphism in Appro-
$C$. We use the same notations as in the proof of (2.15). Since $f$ satisfies (ISO),

$g$ in (2.15) satisfies the following Claim 1:
Claim 1. $g$ satisfies the following condition:
(ISO)’ For each $c\in C$ there exist $m(c)>c$ and a map $k_{m(c).c}$ : $Y_{m(c)}^{\prime}\rightarrow X_{c}^{\prime}$

satisfying
(ISOI)’ $(p_{m(c).c}^{\prime}, k_{m(c).c}g_{m(c)})<V_{m(c)}^{\prime}$ ,

(IS02)’ $k_{m(c).c^{C}}^{-1}U_{c}^{\prime}>\mathcal{V}_{m(c)}^{\prime}$ .
(ISO3)’ $(q_{m(c).c}^{\prime}, g_{c}k_{m(c).c})<st\mathcal{V}_{c}^{\prime}$ .
Let $w;C\rightarrow C$ be a 3-refinement function of $($SEr, $qJ)^{\prime}$ and put $k_{c}=$

$p_{w(c).c}^{\prime}k_{mw(c).w(c)}$ : $Y_{mw(c)}^{\prime}\rightarrow X_{c}^{\prime}$ for $c\in C$. By straightforward computations and
(ISOI)’-(IS03)’ we have Claim 2:

Claim 2. $k=\{mw, k_{c} : c\in C\}$ : $(\wp, \mathcal{V})^{\prime}\rightarrow(x, v)^{\prime}$ forms an approximative
system map in $C$.

Claim 3. $[k][g]=[1_{(x.q;)^{\prime}}]$ and $[g][k]=[1_{(1^{C}\mathcal{V})^{\prime}}l]$ .
Take any l-refinement function $i:C\rightarrow C$ of $(X, V)^{\prime}$ and any $c\in C$. Since

$(p_{mwii(c).c}^{J}, p_{wii(c).c}^{\prime}k_{mwii(c).wii(c)}g_{mwii(c)})<v_{c}^{\prime}$ by $(IS0)^{\prime},$ $p^{\prime}(i)1_{(x.qj)^{\prime}}=:p^{\prime}(i)(p^{\prime}(i)$

$(kg))$ and hence $[1_{(X.U)^{\prime}}]=[k][g]$ . In the same way as above we have
$[1_{(q\varphi)^{\prime}}l.]=[g][k]$ . Thus we have Claim 3.

By Claims 2 and 3 $[g]$ is an isomorphism in Appro-C. Hence $[f]$ is an
isomorphism in Appro-C by (2.15). $\blacksquare$

(2.17) COROLLARY. Let $g=\{1_{A}, g_{a} ; a\in A\}$ : $(X, \epsilon U)\rightarrow(C|;, \mathcal{V})$ be an approxi-
mative special system map in C. Then $g$ induces an isomorphism in Appro-C ifl
it satisfies the following condition:

(ISO)’ For each $a\in A$ there exist $a^{\prime}>a$ and a map $k:Y_{a^{\prime}}\rightarrow X_{a}$ in $C$ such
that

(ISOI)’ $(p_{a^{\prime}.a}, kg_{a^{\prime}})<cU_{a}$ ,
(ISO2)’ $k^{- 1}V_{a}>\mathcal{V}_{a^{\prime}}$ , and
(IS03)’ $(q_{a^{\prime}.a}, g_{a}k)<st\mathcal{V}_{a}$ . $\blacksquare$
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(2.18) COROLLARY. Let $f:(X, cU)\rightarrow(Qj, \mathcal{V})$ be an approximative system map
in C. Then $f$ induces an isomorphism in Appro-C iff it satisfies the following
two condition:

(MO) For each $a\in A$ there exist an admissible pair $(a_{1}, b_{1})$ of $f$ with $a_{1}>a$

and a map $k:Y_{b_{1}}\rightarrow X_{a}$ in $C$ such that
(MO1) $(p_{a_{1},a}, kf_{b_{1}}p_{a_{1}.f(b_{1})})<(U_{a}$ and
(M02) $k^{- 1}q]_{a}>\mathcal{V}_{b_{1}}$ .
(EP) For each admissible pair $(a, b)$ of $f$ there exist $b_{1}>b$ and a map

$m:Y_{b_{1}}\rightarrow X_{a}$ in $C$ such that
(EP1) $(q_{b_{1}.b}, f_{b}p_{a,f(b)}m)<st\mathcal{V}_{b}$ .

PROOF. Trivially (ISO) implies (MO) and (EP). We assume (MO) and (EP),

and show (ISO). Take any admissible pair $(a, b)$ of $f$. Then there exists
$a_{1}>a$ such that $p_{a_{1},a}^{-1}v_{a}>st^{3}v_{a_{1}}$ . By (MO) there exist an admissible pair
$(a_{2}, b_{1})$ of $f$ with $a_{2}>a_{1}$ and a map $k:Y_{b_{1}}\rightarrow X_{a_{1}}$ in $C$ such that

(1) $(p_{a_{2}.a_{1}}, kf_{b_{1}}p_{a_{2},f(b_{1})})<v_{a_{1}}$ and

(2) $k^{-1_{C}}U_{a_{1}}>\mathcal{V}_{b1}$ .
There exist $b_{2}>b_{1},$ $b$ such that $q_{b_{2^{1}\prime}b}^{-}\mathcal{V}_{b}>st\mathcal{V}_{b_{2}}$ , and $a_{s}>a_{2},$ $f(b_{2})$ such that

(3) $(f_{b_{1}}p_{a_{3},f(b_{1})}, q_{b_{2}.b_{1}}f_{b_{2}}p_{a_{3}.f(b_{2})})<\mathcal{V}_{b_{1}}$ and

(4) $(f_{b}P_{a_{3},f(b)}, q_{b_{2},b}f_{b_{2}}p_{a_{3}.f(b_{2})})<\mathcal{V}_{b}$ .
By (EP) there exist $b_{3}>b_{2}$ and a map $m;Y_{b_{3}}\rightarrow X_{a_{3}}$ in $C$ such that

(5) $(q_{b_{3}.b_{2}}, f_{b_{2}}p_{a_{3}.f(b_{2})}m)<st\mathcal{V}_{b_{2}}$ .
There exist $b_{4}>b_{3}$ such that $q_{b_{4^{1}},b_{3}}^{-}m^{-1\epsilon}U_{a_{3}}>\mathcal{V}_{b_{4}}$ , and $a_{4}>a_{3},$ $f(b_{4})$ such that

(6) $(f_{b_{2}}p_{a_{4},f(b_{2})}, q_{b_{4},b_{2}}f_{b_{4}}p_{a_{4}.f(b_{4})})<\mathcal{V}_{b_{2}}$ .
From (1) $-(6)$ it is not difficult to show that the admissible pair $(a_{4}, b_{4})$ and the
map $r=p_{a_{3}.a}mq_{b_{4},b_{3}}$ : $Y_{b_{4}}\rightarrow X_{a}$ satisfy (ISOI)-(IS03) for $(a, b)$ . Thus (MO) and
(EP) imply (ISO) and hence by (2.15) we have (2.18). $\blacksquare$

We say that an approximative system map $f=\{f, f_{b} : b\in B\}$ : (X, $V$ ) $\rightarrow(qf, \mathcal{V})$

is commutative provided that it satisfies the following condition:
(CAM) For each $b,$ $b^{\prime}\in B$ with $b^{f}>b$ there exists $a>f(b),$ $f(b^{\prime})$ such that

$f_{b}p_{a,f(b)}=q_{b^{t},b}f_{b^{\prime}}p_{a.f(b^{\prime})}$ .

(2.19) COROLLARY. Let $f:(X, cU)\rightarrow(qj, \mathcal{V})$ be an approximative commutative
system map in C. Then $f$ induces an isomorphism in Appro-C iff it satisfies the
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following:
(MO)’ For each $a\in A$ there exist an admissible pair $(a_{1}, b_{1})$ of $f$ with $a_{1}>a$

and a map $k:Y_{b_{1}}\rightarrow X_{a}$ satisfying (MO1).

(EP)’ For each admissible pair $(a, b)oJf$ there exists $b_{1}>b$ and a map
$m:Y_{b_{1}}\rightarrow X_{a}$ such that

(EP1)’ $(q_{b_{1}.b}, f_{b}p_{a.f(b)}m)<\mathcal{V}_{b}$ .

PROOF. We will show that (MO) and (MO); are equivalent. Trivially (MO)

implies (MO)’. We assume (MO)’ and show (MO). Take any $a\in A$ and then
by (MO)’ there exist an admissible pair $(a_{1}, b_{1})$ of $f$ and a map $k:Y_{b_{1}}\rightarrow X_{a}$

such that $a_{1}>a$ and

(1) $(p_{a_{1}.a}, kf_{b_{1}}p_{a_{1}.f(b_{1})})<v_{a}$ .
By (AI3) there exists $b_{2}>b_{1}$ such that $q_{b_{2}.b_{1}}^{-1}k^{-1}V_{a}>\mathcal{V}_{b_{2}}$ . By (CAM) there exists
$a_{2}>a_{1},$ $f(b_{2})$ such that

(2) $f_{b_{1}}p_{a_{2}.f(b_{1})}=q_{b_{2},b_{1}}f_{b_{2}}p_{a_{2}.f(b_{2})}$ .
From (1) and (2) the admissible pair $(a_{2}, b_{2})$ and the map $r=kq_{b_{2}.b_{1}}$ satisfy (MO1)

and (M02) for $a$ . Hence (MO) and (MO); are equivalent. In a similar way we
can show that (EP) and (EP)’ are equivalent. Hence by (2.18) we have (2.19). $\blacksquare$

(2.20) COROLLARY. Let $f:(X, V)\rightarrow(C|f, \mathcal{V})$ be an approximative commutative
system map in C. Then $f$ induces an isomorphism in Appro-C iff it satisfies the
following condition:

(ISO)” For each admissible pair $(a, b)$ of $f$ there exist an admissible pair
$(a^{\prime}, b^{\prime})>(a, b)$ and a map $k:Y_{b^{\prime}}\rightarrow X_{a}$ such that $(p_{a’’ a}, kf_{b^{\prime}}p_{a^{\prime}.f(b^{\prime})})<v_{a}$ and
$(q_{b^{\prime}.b}, f_{b}p_{a.f(b)}k)<\mathcal{V}_{b}$ . $\blacksquare$

(2.21) REMARK. If $f$ satisfies (MO), then $[f]$ is a monomorphism in Appro-C.
If $f$ satisfies (EP), then $[f]$ is an epimorphism in Appro-C. $\blacksquare$

(2.22) REMARK. Grothendieck introduced the notion of pro-categories (see

MS [18, pp. 1-17]) and used it in algebraic geometry. Artin and Mazur used
it to study etale homotopy. It plays a fundamental role in shape theory (see

MS [18]). Artin and Mazur showed the re-indexing theorem (see MS [18,

p. 12]) in pro-categories which corresponds to (2.15). In pro-categories Morita
showed the diagonal theorem (see MS [18, p. 112]) which corresponds to
(2.16).
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\S 3. Approximative resolutions of spaces.

In this section we introduce the notion of an approximative resolution of a
space. Marde\v{s}ic [15] introduced the notion of a resolution of a space. Our
notion improves his notion.

We say that a space $X$ is an approximative polyhedron, in notation AP,
provided that for each $\subset U\in C_{ov}(X)$ there exist a polyhedron $P$ and maps
$f:X\rightarrow P,$ $g:P\rightarrow X$ such that $(gf, 1_{X})<v$ . AP denotes the full subcategory of
TOP consisting of all APs. Marde\v{s}ic [15] introduced this notion and showed
that

(3.1) LEMMA. (i) Any $ANR$ and any polyhedron are $APs$ .
(ii) Let $X$ be a paracompact space with $\dim X=n<\infty$ . If $X$ is $LC^{n-1}$ (see

[11]) then $X$ is an $AP$. $\blacksquare$

Let $x=\{X_{a}, p_{a\prime.a}, A\}$ be an inverse system in TOP. Let $p=\{p_{a} : a\in A\}$

be a collection of maps $p_{a}$ : $X\rightarrow X_{a},$ $a\in A$ . We say that $p:X\rightarrow X$ is a system
map provided that $p_{a}=p_{a^{\prime}.a}p_{a\prime}$ for $a^{\prime}>a$ . We say that a system map $p:X\rightarrow X$

is a resolution of $X$ (see [15]) provided that it satisfies the following two
conditions:

(R1) Let $P$ be an AP, $\mathcal{V}\in c_{ov}(P)$ and $f:X\rightarrow P$ a map. Then there exist
$a\in A$ and a map $f_{a}$ : $X_{a}\rightarrow P$ such that $(f, f_{a}p_{a})<\mathcal{V}$ .

(R2) Let $P$ be an $AP$ and $\mathcal{V}\in C_{ov}(P)$ . Then there exists $\mathcal{V}^{\prime}\in C_{0\eta}(P)$ with
the following property: If $a\in A$ and $f,$ $f^{\prime}$ : $X_{a}\rightarrow P$ are maps such that
$(fp_{a}, f^{\prime}p_{a})<\mathcal{V}^{\prime}$ , then there exists $a^{\prime}>a$ such that $(fp_{a\prime.a}, f^{\prime}p_{a^{\prime}.a})<\mathcal{V}$ .

(3.2) LEMMA (Marde\v{s}ic [15]). $p:X\rightarrow X$ is a resolution of $X$ iff (R1) and
(R2) are fulfilled for all polyhedra $P$, or equivalently for all ANRs P. $\blacksquare$

Let $(X, \epsilon U)=\{(X_{a}, v_{a}), p_{a\prime.a}, A\}$ be an approximative inverse system in
TOP. We say that $p=\{p_{a} : a\in A\}:X\rightarrow(X, \epsilon U)$ is an approximative resolution
of $X$ provided that $p:X\rightarrow X=\{X_{a}, p_{a.a}, A\}$ is a system map and it satisfies
the following two conditions:

(AR1) For each $cU\in C_{ov}(X)$ there exists $a\in A$ such that $p_{a}^{-1}v_{a}<v$ .
(AR2) For each $a\in A$ there exists $a^{\prime}>a$ such that $p_{a^{\prime}.a}(X_{a^{\prime}})\subset st(p_{a}(X), V_{a})$ .
(3.3) THEOREM. $p:X\rightarrow(X, q$]) is an approximative resolution iff $p;X\rightarrow X$ is

a resolution.

(3.4) THEOREM. $p:X\rightarrow X$ is a resolution iff it satisfies the following two
conditions:
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(B1) For each $CU\in C_{oU}(X)$ there exist $a\in A$ and $cU^{\prime}\in C\circ U(X_{a})$ such that
$p_{\overline{a}^{1}}v^{\prime}<v$ .

(B4) For each $a\in A$ and for $each\subset U\in C_{oU}(X_{a})$ there exists $a^{\prime}>a$ such that
$p_{a^{\prime},a}(X_{a^{\prime}})\subset st(p_{a}(X), qJ)$ .

We can easily show (3.3) by (3.4). The author [26] has proved (3.4). Our
proof was a slight modification of Marde\v{s}ic [15]. After that Marde\v{s}ic [16]

gave another simple proof of (3.4). His proof is already published and therefore
we omit our proof. Recently Morita [23] showed that resolutions and proper
inverse systems (see [21]) are equivalent.

Bacon [4] introduced the notion of complements. We say that a system

map $p:X\rightarrow X$ is a complement of $X$ provided that it satisfies (B1) and the
following condition:

(B2) For each $a\in A$ and for each open set $V$ in $X_{a}$ with $p_{a}(X)\subset V$, there
exists $a^{\prime}>a$ such that $p_{a.a}(X_{a^{\prime}})\subset V$ .

Marde\v{s}ic [15] considered the following condition:
(B3) For each $a\in A$ and for each open set $V$ in $X_{a}$ with $\overline{p_{a}(X)}\subset V$ , there

exists $a^{\prime}>a$ such that $p_{a\prime.a}(X_{a^{\prime}})\subset V$ .
(3.5) LEMMA. (i) (B2) is stronger than (B3), and (B3) is stronger than (B4).

(ii) (B3) and (B4) are equivalent, when all $X_{a}$ are normal (Hausdorff) spaces.

PROOF. Since the first assertion in (i) is trivial, we show the second one
in (i). Take any $a\in A$ and any $V\in C\circ v(X_{a})$ . Since $v$ is an open covering,
$\overline{p_{a}(X)}\subset st(p_{a}(X), ql)$ . By (B3) there exists $a^{\prime}>a$ such that $p_{a\prime.a}(X_{a^{\prime}})\subset st(p_{a}(X), \eta)$ .
Then (B4) holds and hence we have (i).

We show (ii). Take any $a\in A$ and open set $V$ in $X_{a}$ such that $\overline{p_{a}(X)}\subset V$ .
Since $X_{a}$ is normal, by Theorem 1 of MS [18, p. 324] $q\nu=\{V, X_{a}-\overline{p_{a}(X)}\}$ is a
normal open covering of $X_{a}$ . Since $st(p_{a}(X), \wp)=V$, by (B4) there exists
$a^{\prime}>a$ such that $p_{a\prime.a}(X_{a^{\prime}})\subset st(p_{a}(X), 9\nu)=V$. Then (B3) holds and hence we
have (ii). $\blacksquare$

(3.6) COROLLARY (Marde\v{s}ic [15]). (i) Any complement is a resolution.
(ii) When all $X_{a}$ are normal spaces, $p:X\rightarrow X$ is a resolution iff it satisfies

(B1) and (B3). $\blacksquare$

Now we construct approximative resolutions from resolutions.

(3.7) PROPOSITION. Let $q=\{q_{b} : b\in B\}$ : $X\rightarrow qf=\{Y_{b}, q_{b^{\prime}.b}, B\}$ be a resolution.
Then there exist an approximative resolution $p=\{p_{a} : a\in A\}:X\rightarrow(X, qj)=$
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$\{(X_{a}, v_{a}), p_{a\prime.a}, A\}$ and an increasing function $s:A\rightarrow B$ satisfying the following

conditions:
(i) $A$ is cofinite, directed and antisymmetric.
(ii) $X_{a}=Y_{s(a)},$ $p_{a}=q_{s(a)}$ for $a\in A$ and $P_{a^{\prime}.a}=q_{s(a^{\prime}).s(a)}$ for $a^{\prime}>a$ .
(iii) For any $b\in B$ and any $\mathcal{V}\in c_{ov}(Y_{b})$ there exists $a\in A$ such that $s(a)=b$

and $qI_{a}=\mathcal{V}$ .

PROOF. Let $F(B)=$ { $(b,$ $\mathcal{V}):b\in B$ and $\mathcal{V}\in c_{ov}(Y_{b})$ } and $M(B)=\{K\subset F(B):K$

is finite and $ K\neq\emptyset$ }. The set $A=M(B)$ is ordered by inclusion and trivially

satisfies (i). Take a function $t:A\rightarrow B$ such that

(1) $t(a)=b$ for $a=\{(b, \mathcal{V})\}\in A$ .
Since $A$ is cofinite, by (1) and (1.1) there exists an increasing function $s:A\rightarrow B$

such that

(2) $s>t$ and $s(a)=b$ for $a=\{(b, \mathcal{V})\}\in A$ .
We put $X_{a}=Y_{s(a)},$ $p_{a}=q_{s(a)}$ for $a\in A$ and $p_{a}=q_{s(a^{\prime}),s(a)}$ for $a^{\prime}>a$ . Since

$s$ is an increasing function, $x=\{X_{a}, p_{a.a}, A\}$ forms an inverse system. From
the definitions (ii) is trivial and $p=\{p_{a} : a\in A\}$ : $X\rightarrow X$ forms a system map.

Claim 1. $p;X\rightarrow X$ is a resolution of $X$.
We show (R1). Take any $APP$, any $\mathcal{V}\in C\circ v(P)$ and any map $f:X\rightarrow P$.

By (R1) for $q$ there exist $b\in B$ and a map $f_{b}$ : $Y_{b}\rightarrow P$ such that $(f, f_{b}q_{b})<\mathcal{V}$ .
Put $a=\{(b, \{Y_{b}\})\}\in A$ and then $X_{a}=Y_{b}$ and $p_{a}=q_{b}$ by (2). When we put
$h=f_{b}$ : $X_{a}=Y_{b}\rightarrow P,$ $(f, hp_{a})<\mathcal{V}$ . This means (R1) for $p$ .

We show (R2). Take any $APP$ and any $\mathcal{V}\in c_{ov}(P)$ . There exists
$\mathcal{V}^{\prime}\in C_{ov}(P)$ satisfying property (R2) for $q$ and $\mathcal{V}$ . Take any $a\in A$ and maps
$f,$ $f^{\prime}$ : $X_{a}\rightarrow P$ such that $(fp_{a}, f^{\prime}p_{a})<\mathcal{V}^{\prime}$ . Then $(fq_{s(a)}, f^{\prime}q_{s(a)})<\mathcal{V}^{\prime}$ . By the
choice of $\mathcal{V}^{\prime}$ there exists $b^{\prime}>s(a)$ such that $(fq_{b^{\prime}.s(a)}, f^{\prime}q_{b^{\prime}.s(a)})<\mathcal{V}$ . Put $a^{\prime}=$

$a\cup\{(b^{\prime}, \{Y_{b^{\prime}}\})\}\in A$ and then $s(a^{\prime})>s(\{(b^{\prime}, \{Y_{b^{\prime}}\})\})=b^{\prime}$ by (2). Thus $(fq_{s(a^{\prime}).s(a)}$ ,
$f^{\prime}q_{s(a^{\prime}),s(a)})<\mathcal{V}$, that is, $(fp_{a^{\prime}.a}, f^{\prime}p_{a\prime.a})<\mathcal{V}$ . This means (R2) for $p$ . Hence
$p$ is a resolution.

We define coverings as follows: Take any $a=\{(b_{1}, \mathcal{V}_{1}), \cdots, (b_{n}, \mathcal{V}_{n})\}\in A$ .
Since $s(a)>s(\{(b_{i}, \mathcal{V}_{i})\})=b_{i}$ by (2), we may put $CU_{a}=q_{\overline{s}(a).b_{1}}^{1}\mathcal{V}_{1}\wedge\cdots\wedge q_{s(a),b_{n}}^{-1}\mathcal{V}_{n}$

$\in C_{ov}(X_{a})$ .
Claim 2. (X, $V$ ) $=\{(X_{a}, cU_{a}), p_{a^{\prime}.a}, A\}$ forms an approximative inverse

system.

We show (AII)-(AI3). (AI1) is trivial. We show (AI2). Take any $a^{\prime}>a$

and put $a^{\prime}=a\cup\{(b_{n+1}, \mathcal{V}_{n+1}), \cdots, (b_{m}, \mathcal{V}_{m})\}$ . Then
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$p_{a.a^{C}}^{-1}\prime U_{a}=q_{S(a^{\prime}}^{1}).s(a)$ ( $ q_{\overline{s}(a),b_{1}}^{1}\mathcal{V}_{1}\wedge\cdots$ A $q_{s(a).b_{n}}^{-1}\mathcal{V}_{n}$ )

$=q_{\overline{s}(a^{\prime}).b_{1}}^{1}\mathcal{V}_{1}\wedge\cdots\wedge q_{g(a^{\prime}).b_{n}}^{-1}\mathcal{V}_{n}>q_{\overline{s}(a^{\prime}).b_{1}}^{1}\mathcal{V}_{1}\wedge\cdots$

$\wedge q_{\overline{s}(a^{\prime}),b_{n}}^{1}\mathcal{V}_{n}\wedge\cdots\wedge q_{\overline{s}(a^{\prime}).b_{m}}^{1}\mathcal{V}_{m}=v_{a^{\prime}}$ .
This means (AI2). We show (AI3). Take any $a\in A$ and any $tt\in c_{ov}(X_{a})$ .
Put $a^{\prime}=a\cup\{(s(a), V)\}\in A$ . Then

$cU_{a^{\prime}}=q_{\$(a^{\prime}).b_{1}}^{-1}\mathcal{V}_{1}\wedge\cdots\wedge q_{\$(a^{\prime}).b_{n}}^{-1}\mathcal{V}_{n}\wedge q_{\epsilon t^{1}a^{\prime}),s(a)}^{-}q]<q_{\overline{s}(a^{\prime}).s(a)}^{1}\mathfrak{V}=p_{\overline{a}^{1}.a}qj$ .
This means (AI3). Hence we have Claim 2.

By (3.3), Claims 1 and 2 $p:X\rightarrow(X, qJ)$ is an approximative resolution. For
each $b\in B$ and $\mathcal{V}\in c_{ov}(Y_{b})$ we put $a=\{(b, \mathcal{V})\}\in A$ . By definition $s(a)=b$ and
$cU_{a}=\mathcal{V}$ . Then $p$ satisfies (iii). $\blacksquare$

(3.8) PROPOSITION. Let $x=\{X_{a}, p_{a\prime.a}, A\}$ be an inverse system. If all $X_{a}$

are compact metric spaces, and $A$ is infinite and cofinite, then there exist coverings
$cU_{a}$ of $X_{a}$ such that (X, $V$ ) $=\{(X_{a}, v_{a}), p_{a\prime.a}, A\}$ forms an approximative inverse
system.

PROOF. Since $X_{a}$ is compact metric, there exist coverings $\mathcal{V}_{a,i}$ of $X_{a}$ ,
$i=1,2,$ $\cdots$ , such that

(1) $\mathcal{V}_{a.i}>\mathcal{V}_{a.i+1}$ for $i=1,2,$ $\cdots$ , and
(2) for each $\mathcal{V}^{\prime}\in C_{ov}(X_{a})$ there exists $i$ such that $\mathcal{V}^{\prime}>\mathcal{V}_{a.i}$ .
Since $A$ is cofinite, $P(a)=\{a^{\prime}\in A:a^{\prime}<a\}$ is a finite set for $a\in A$ . Put

$P(a)=\{a_{1}, a_{2}, \cdots, a_{n}\}$ and define $v_{a}=p_{a.a_{1}}^{-1}\mathcal{V}_{a_{1}.n}\wedge\cdots\wedge p_{\overline{a}^{1}a_{n}}\mathcal{V}_{a_{n}.n}$ for $a\in A$ .
We show that $v_{a}$ have all the required properties. We show (AI2). Take any
$a^{\prime}>a$ and put $P(a^{\prime})=P(a)\cup\{a_{n+1}, \cdots , a_{m}\}$ . By (1)

$ p_{a^{\prime}.a}^{-1}v_{a}=p_{a^{\prime}.a_{1}}^{-1}\mathcal{V}_{a_{1}.n}\wedge\cdots$ A $ p_{a.a_{n}}^{-1}\mathcal{V}_{a_{n}.n}>p_{aa_{1}}^{-\}.\mathcal{V}_{a_{1}.m}\wedge}\cdots$

$\wedge p_{a.a_{n}}^{-1}\mathcal{V}_{a_{n}.m}>p_{a.a_{1}}^{-1}\mathcal{V}_{a_{1}.m}\wedge\cdots\wedge p_{a.a_{m}}^{-1}\mathcal{V}_{a_{m}.m}$

$=v_{a^{\prime}}$ .
This means (AI2).

We show (AI3). Take any $a\in A$ and any $v\in c_{ov}(X_{a})$ . By (2) there exists
$n^{\prime}$ such that $v>\mathcal{V}_{a.n^{\prime}}$ . Since $A$ is infinite, there exists $a^{\prime}>a$ such that the
cardinality of $P(a^{\prime})=m\geqq n^{\prime}$ . Put $P(a^{\prime})=\{a, a_{1}, \cdots, a_{m-1}\}$ . Then we have that

$v_{a^{\prime}}=p_{a.a}^{-1}\mathcal{V}_{a.m}\wedge p_{a.a_{1}}^{-1}\mathcal{V}_{a_{1}.m}\wedge\cdots\wedge p_{\overline{a}^{1}.a_{m-1}}\mathcal{V}_{a_{m-1}.m}$

$<p_{a,a}^{-1}\mathcal{V}_{a.m}<p_{a^{l}.a}^{-1}\mathcal{V}_{a.n^{\prime}}<p_{a^{\prime}.a^{C}}^{-1}U$ .
This means (AI3). Hence $(X, v)$ forms an approximative inverse system. $\blacksquare$
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(3.9) LEMMA. Let $p;X\rightarrow X=\{x_{a}, p_{a^{\prime},a}, A\}$ be a resolution of X. If all $X_{a}$

are compact metric, and $A$ is infinite and cofinite, then there exist coverings $cU_{a}$

of $X_{a}$ such that $p:X\rightarrow(X, cU)=\{(X_{a}, cU_{a}), p_{a^{\prime}.a}, A\}$ forms an approximative

resolution of $X$.

(3.10) LEMMA. Let $p=\{p_{a} ; a\in A\};X\rightarrow(X, q$]) be an approximative resolu

tion. If $A^{\prime}$ is a cofinal subset of $A$ , then $p_{A^{\prime}}=\{p_{a} : a\in A^{\prime}\}:X\rightarrow(X, \epsilon U)_{A^{\prime}}$ forms
an approximative resolution of $X$.

(3.9) follows from (3.3) and (3.8). (3.10) follows from (2.12) and (3.3). $\blacksquare$

Let $C$ be a subcategory of TOP. Let $ j\zeta$ be a collection of spaces. We say

that a resolution $p;X\rightarrow X$ and an approximative resolution $p:X\rightarrow(X, tl)$ are
a C-resolution and an approximative C-resolution provided that $X$ is an inverse

system in $C$, respectively. We say that $p;X\rightarrow X$ and $p:X\rightarrow(X, v)$ are rigid

for JC provided that they satisfy the following condition:
(Rl)* For any map $f:X\rightarrow P$, where $ P\in c\chi$ there exist $a\in A$ and a map

$h:X_{a}\rightarrow P$ with $f=hP_{a}$ .
When $\chi=ObC$, we say that they are rigid for $C$. When we take ANR, AP

and POL as $C$, we have POL-resolutions, approximative AP-resolutions, rigid-

ness for ANR and so on.
We quote some results on resolutions and inverse limits.

(3.11) LEMMA (Bacon [4] and Marde\v{s}ic [15]). (i) Any space $X$ admits a
polyhedral complement $p:X\rightarrow X$ .

(ii) Any space admits an ANR-resolution which is rigid for ANR. $\blacksquare$

Let $X$ be a subset of a space $M$. Let $cU(X, M)$ be the inverse system

consisting of all neighborhoods of $X$ in $M$ and inclusion maps as bonding

maps. Let $p:X\rightarrow V(X, M)$ be the system map consisting of all inclusion maps.

We say that $p;X\rightarrow\eta(X, M)$ is the complete neighborhoods system of $X$ in $M$.
By (3.4) we easily show that

(3.12) LEMMA. If either $X$ is P-embedded in $M$ or $M$ is hereditarily para-
compact, then the complete neighborhoods system $p;X\rightarrow^{C}U(X, M)$ is a resolution. $\blacksquare$

(3.13) LEMMA (Marde\v{s}ic [15]). Let $X$ be an inverse system of compact spaces.
Then any inverse limit $p;X\rightarrow X$ is a resolution. $\blacksquare$

(3.14) LEMMA (Freudenthal [9], Eilenberg-Steenrod [7] and Marde\v{s}ic [14]).
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(i) Any compact metric space $X$ is an inverse limit of a finite polyhedral
inverse sequence $X$ .

(ii) Any compact space $X$ is an inverse limit of a finite polyhedral inverse
system $X$ .

In (i) and (ii) we can achieve that dimensions of all spaces in $ X\leqq\dim$ X. $\blacksquare$

The following theorem gives existences of various approximative resolutions
of spaces.

(3.15) THEOREM. (i) Any space $X$ admits an approximative POL-resolution
$p;X\rightarrow(X, cU)$ .

(ii) Any space admits an approximative ANR-resolution, which is rigid for
ANR.

(iii) Any compact space $X$ admits an approximative $POL_{f}$-resolution $ p:X\rightarrow$

$(X, \mathfrak{V})$ .
(iv) Any compact metric space $X$ admits an approximative $P0L_{f}$ -resolution

$p:X\rightarrow(X, cU)$ such that ee is an inverse sequence.

In (i), (iii) and (iv) we can achieve that dimensions of all spaces in
$X\leqq\dim X$.

PROOF. We show (i). Let $c_{\circ v_{1}}(X)=$ { $U\in C_{\circ U}(X)$ : order of $cU\leqq\dim X+1$ }.
Since $c_{ov_{1}}(X)$ is cofinal in $C\circ v(X)$ , by the same way as in Bacon [4] we can
show (i) in (3.11) with the property: Dimensions of all spaces in $X\leqq\dim X$.
Thus by (3.6) and (3.7) we have the required polyhedral resolution. Hence we
have (i). (ii) follows from (3.7) and (ii) in (3.11). (iii) and (iv) follows from
(3.7) and (3.14). $\blacksquare$

(3.16) REMARK. MS [18] introduced resolutions for pairs and showed (i)

in (3.11) for pairs. Marde\v{s}ic [16] characterized resolutions for pairs in a way

similar to (3.4) and showed (ii) in (3.11) for pairs. Since (3.7) is true for
resolutions for pairs, (3.15) holds for pairs (see Watanabe [28]).

(3.17) EXAMPLE. Let PM be the full subcategory of TOP consisting of all
paracompact M-space (see ArhangelskI [2, 3] and Morita [20]). Nagata [24]

gave a characterization of these spaces as follows: A space $X$ is a paracom-
pact M-space iff $X$ embeds as a closed subset in $M\times C$, where $M$ is metric and
$C$ is compact. Metric spaces and compact spaces are paracompact M-spaces.
AR(PM) and ANR(PM) denote the full subcategories of TOP consisting of all
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absolute retracts and all absolute neighborhood retracts for PM, respectively.
Marde\v{s}ic and \v{S}ostak [17] showed that

(i) any paracompact M-space $X$ embeds as a closed set in an $M\in AR(PM)$ ,
(ii) if $X$ is a closed subset of an $M\in AR(PM)$ , then any neighborhood $U$

of $X$ in $M$ contains an open neighborhood $V\in ANR(PM)$ of $X$ in $M,$ $aI^{\prime}1d$

(iii) any $X\in ANR(PM)$ has the homotopy type of a polyhedron.
Modifying their proof of (iii) (see the proof of (5.7) in \S 5) we easily show

that
(iv) any $X\in ANR(PM)$ is an AP.

Let $X$ be a paracompact M-space. By (i) $X$ is a closed subset of an
$M\in AR(PM)$ . Since $X$ is P-embedded in $M$, by (3.12) the complete neighborhoods
system $p:X\rightarrow qJ(X, M)$ is a resolution. Let $\mathcal{A}v(X, M)$ be the: inverse system
consisting of all neighborhoods $V\in ANR(PM)$ of $X$ in $M$. By (ii) a $(U(X;M)$

is a cofinal inverse sub-system of $\epsilon U(X, M)$ . Then $p$ induces an ANR(PM),

resolution $p:X\rightarrow d\mathfrak{U}(X, M)$ . By (3.7) $p$ induces an approximative $ANR(PM)-$

resolution $p:X\rightarrow(\llcorner fl^{C}U(X, M),$ $v$ ) consisting of ANR(PM)-neighborhoods of $X$ in
$M$ and inclusion maps. Obviously $p:X\rightarrow \mathcal{A}^{\epsilon}U(X, M)$ and $p:X\rightarrow(\mathcal{A}^{c}U(X, M),$ $v$ )

are rigid for ANR(PM).

Let $X$ be a metric space. By the Kuratowski-Wojdislawski Theorem (see

Hu [11]) we may assume that $X$ is a closed subset of an AR $M$. By (3.6) arid
(3.12) the complete neighborhoods system $p:X\rightarrow^{C}U(X, M)$ is a resolution. Let
$\mathcal{O}W(X, M)$ be the inverse system of all open neighborhoods of $X$ in $M$. Then
$p$ induces an ANR-resolution $p:X\rightarrow \mathcal{O}\mathfrak{V}(X, M)$ and an approximative ANR-
resolution $p:X\rightarrow(\mathcal{O}^{c}U(X, M),$ $\epsilon U$ ). Obviously these are rigid for ANR.

Let $X$ be a compact space with weight $m$ . Then $X$ is embedded in $I^{m}$ .
Here $I^{m}$ is the product space of m-copies of the unit interval $I=[0,1]$ . By
(3.6) and (3.12) the complete neighborhoods system $p:X\rightarrow V(X, I^{m})$ is a resolu-
tion. We say that a subset $K$ of $I^{m}$ is a prism provided that $K$ is homeomorphic
to $P\times I^{m}$ , where $P$ is a finite polyhedron. We easily show that

(v) any prism is an ANR(COM) and an AP.

Let $\mathcal{P}^{c}U(X, I^{m})$ be the inverse system consisting of all prism neighborhoods of
$X$ in $I^{m}$ . Then $p$ induces an ANR(COM)-resolution $p:X\rightarrow \mathcal{P}V(X, I^{m})$ and an
approximative ANR(COM)-resolution $p:X\rightarrow \mathcal{P}^{c}U(X, I^{m}),$ $qJ$ ). These are $rig^{\backslash }id$

for ANR(COM)).

When $X$ is compact metric, $X$ is embedded in the Hilbert cube $Q=I^{\infty}$. In
this case $p:X\rightarrow \mathcal{O}^{c}U(X, Q),$ $p:X\rightarrow(\mathcal{O}^{C}U(X, Q),$ $q$]), $p:X\rightarrow \mathcal{P}^{c}U(X, Q)$ and $ p:X\rightarrow$
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$(\mathcal{P}\eta(X, Q),$ $cU$ ) are ANR-resolutions and approximative ANR-resolutions, which

are rigid for ANR. $\blacksquare$

These special resolutions and approximative resolutions for special spaces

are usefull in the sequel.

\S 4. Approximative resolutions of maps.

In this section we introduce the notion of an approximative resolution of a
map and study its fundamental properties. Marde\v{s}ic [15] introduced the notion

of resolutions of maps. Our notion improves his notion.
Let $X,$ $Y$ be spaces and $f:X\rightarrow Y$ a map. Let $p=\{p_{a} : a\in A\}$ : $X\rightarrow(X, tl)=$

$\{(x_{a}, v_{a}), p_{a^{\prime}.a}, A\}$ and $q=\{q_{b}:b\in B\}:Y\rightarrow(\psi, \mathcal{V})=\{(Y_{b}, \mathcal{V}_{b}), q_{b^{\prime}.b}, B\}$ be ap-

proximative resolutions. Let $f=\{f, f_{b} : b\in B\}$ , $f^{\prime}=\{f^{\prime}, f_{b}^{\prime} : b\in B\}$ : $(X, \eta)\rightarrow$

$(Q;, \subseteq\nu)$ be approximative system maps. We say that $f:(X, cU)\rightarrow(qf, \mathcal{V})$ is an
approximative resolution of $f$ with respect to $p$ and $q$ provided that for each
$b\in B(q_{b}f, f_{b}p_{f(b)})<\mathcal{V}_{b}$.

(4.1) LEMMA. Let $q:Y\rightarrow(qJ, \mathcal{V})$ be an approximative AP-resolution. If
$Lf$ ‘ : (X, $V$ ) $\rightarrow(Qf, \mathcal{V})$ are approximative resolutions of $f$ with respect to $p$ and
$q$ . lhen $f\equiv;f^{\prime}$.

To prove (4.1) we need (4.2), which follows from (AI2), (AI3) and (1.1).

(4.2) LEMMA. Let $(X, q1)=\{(X_{a}, v_{a}), p_{a^{\prime}.a}, A\}$ be an approximative inverse
system. Let $v_{a}^{J}\in c_{ov}(X_{a})$ for $a\in A$ . Then there exists an increasing function
$s:A\rightarrow A$ such that $s>1_{A}$ and $p_{\overline{s}(a),a}^{1}v_{a}^{\prime}>v_{s(a)}$ for $a\in A$ . $\blacksquare$

PROOF OF (4.1). Since $q$ is an approximative AP-resolution, all $Y_{b}$ are
APs. By (3.3) $p;X\rightarrow X$ is a resolution. For each $b\in B$ there exists $\mathcal{V}_{b}^{\prime}\in C\circ v(Y_{b})$

satisfying the property of (R2) for $p$ and $\mathcal{V}_{b}$ . By (4.2) there exists an
increasing function $t;B\rightarrow B$ such that $t>1_{B}$ and

(1) $q_{t(b).b}^{-1}\mathcal{V}_{b}^{\prime}>\mathcal{V}_{t(b)}$ for $b\in B$ .

Take any l-refinement function $u:B\rightarrow B$ of $(q\oint, \mathcal{V})$ and any $b\in B$ . Since $f$ and
$f^{\prime}$ are approximative resolutions of $f$, we have that $(q_{ut(b)}f, f_{ut(b)}p_{fut(b)})<\mathcal{V}_{ut(b)}$

and $(q_{ut(b)}f, f_{ut(b)}^{\prime}p_{fut(b)})<\mathcal{V}_{ut(b)}$ . Then $(f_{ul(b)}p_{ful(b)}, f_{ut(b)}^{\prime}p_{fut(b)})<st\mathcal{V}_{ut(b)}$ .
Since $u$ is a.l-refinement function,

(2) $(q_{ut(b).t(b)}f_{ut(b)}p_{ful(b)}, q_{ul(b).t(b)}f_{ut(b)}^{\prime}p_{f^{\prime}ut(b)})<\mathcal{V}_{t(b)}$ .
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Take any $a>fut(b),$ $f^{\prime}ut(b)$ . (1) and (2) imply that

(3) $(q_{ut(b).b}f_{ut(b)}p_{a.fut(b)}p_{a}, q_{ut(b).b}f_{ut(b)}^{\prime}p_{a,f^{\prime}ut(b)}p_{a})<\mathcal{V}_{b}^{\prime}$.
By (3) and the choice of $\mathcal{V}_{b}^{\prime}$ there exists $a^{\prime}>a$ such that

(4) $(q_{ut(b).b}f_{ut(b)}p_{a^{\prime},fut(b)}, q_{ut(b),b}f_{ut(b)}^{\prime}p_{a^{\prime},f^{\prime}ut(b)})<\mathcal{V}_{b}$ .
(4) means that $q(ut)f=:q(ut)f^{\prime}$ . Hence by (2.7) $f\equiv:f^{\prime}$ . $\blacksquare$

(4.3) THEOREM. Let $p:X\rightarrow(X, qJ)$ and $q:Y\rightarrow(\wp, \mathcal{V})$ be approximative re-
solutions. If $q$ is an approximative AP-resolution, then for any map $f:X\rightarrow Y$

there exists an approximative resolution $f:(X, V)\rightarrow(c|f, \mathcal{V})$ of $f$ with respect to
$p$ and $q$ .

To prove (4.3) we need (4.4).

(4.4) LEMMA. Let $(X, \epsilon U)=\{(X_{a}, qJ_{a}), p_{a^{\prime}.a}, A\}$ be an approximative inverse
system. Let $cU_{a}^{\prime}\in C_{0\eta}(X_{a})$ for each $a\in A$ . Then there exist $v_{a}^{J/}\in C\circ v(X_{a})$ for
$a\in A$ such that (Eie, $cU^{\prime\prime}$ ) $=\{(X_{a}, tl_{a}^{\prime\prime}), p_{a\prime.a}, A\}$ forms an approximative inverse
system and $CU_{a}^{\prime\prime}<CU_{a}\wedge^{c}U_{a}^{\prime}$ for $a\in A$ .

PROOF. $\Vert T\Vert$ denotes the cardinality of a set $T$. Let $P(a)=\{a^{\prime}\in A:a^{\prime}<a\}$

for each $a\in A$ . For each positive integer $n$ we put $A_{n}=\{a\in A:\Vert P(a)\Vert=n\}$ .
Since $A$ is cofinite, $A=\cup\{A_{i} : i=1,2, \cdots\}$ and $ A_{i}\cap A_{j}=\emptyset$ for $i\neq j$.

Inductively we construct $W\text{{\it \’{a}}}\in c_{ov}(X_{a})$ for $a\in A(n)=\cup\{A_{i} : i=1,2, \cdots , n\}$

satisfying the following condition:

$(P_{n})$ $v_{a}^{\prime\prime}<qj_{a}\wedge^{c}U_{a}^{\prime}$ and $p_{a.a}^{-1}v_{a}^{\prime\prime}>cU_{a}^{\prime\prime}$ , for $a^{\prime},$ $a\in A(n)$ with $a^{\prime}>a$ .
First for any $a\in A_{1}$ we put $cU_{a}^{\prime\prime}=v_{a}\wedge\eta_{a}^{\prime}$ . Then clearly $(P_{1})$ holds. Next,

we assume that for $a\in A(n-1)cU_{a}^{\prime\prime}$ are already defined satisfying $(P_{n-1})$ . Take
any $a\in A_{n}$ . Put $B(a)=P(a)\cap A(n-1)$ and $C(a)=P(a)-A(n-1)$ . We define
$ql_{a}^{\prime\prime}$ as follows:

(1) $cU_{a}^{\prime\prime}=(\wedge\{p_{a.b^{C}}^{-1}U_{b}^{\prime\prime} ; b\in B(a)\})\wedge(\wedge\{p_{a.b}^{-1}(\mathfrak{U}_{b}\wedge^{c}U_{b}^{\prime});b\in C(a)\})$ .
Since $a\in C(a)$ , by (1) $v_{a}^{r/}<cU_{a}\wedge v_{a}^{J}$ . We need to show the second property

in $(P_{n})$ . Take any $a^{\prime},$ $a\in A(n)$ with $a^{\prime}>a$ . Then there are four cases: (i)
$a^{\prime},$ $a\in A(n-1)$ , (ii) $a^{\prime}\in A_{n}$ and $a\in A(n-1)$ , (iii) $a^{\prime}\in A(n-1)$ and $a\in A_{n}$ and
(iv) $a^{\prime},$ $a\in A_{n}$ . In the case (i) $(P_{n-1})$ implies the required condition. In the
case (ii) $a\in B(a^{\prime})$ . Then by (1) (

$U_{a}^{\prime\prime},$ $<p_{a,a^{c}}^{-1}U_{a}^{\prime\prime}$ . We consider the case (iii).

Since $a^{\prime}>a,$ $P(a^{\prime})\supset P(a)$ . Since $a\in A_{n},$ $\Vert P(a^{\prime})\Vert\geqq\Vert P(a)\Vert=n$ . Since $a^{\prime}\in A(n-1)$ ,
$\Vert P(a^{\prime})\Vert\leqq n-1$ . This is a contradiction. Hence (iii) does not happen. We con-
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sider the case (iv). Since $a^{\prime}>a,$ $P(a^{\prime})\supset P(a)$ . Since $a^{\prime},$ $a\in A_{n},$ $\Vert P(a^{\prime})\Vert=\Vert P(a)\Vert$

$=n$ . Thus $P(a^{\prime})=P(a)$ . Since $B(a^{\prime})=B(a)$ and $C(a^{\prime})=C(a)$ , from (1) we have
that $p_{a.a}^{-1}v\text{{\it \’{a}}}=v_{a}^{JJ}$ . This is the required condition. Hence we have $(P_{n})$ .

By the inductive construction we obtain the coverings $v_{a}^{\prime\prime}$ for all $a\in A$ .
Since $(X, v)$ satisfies (AII)-(AI3), by $(P_{n})$ we easily show that (X, $V^{\prime\prime}$ ) satisfies
(AII)-(AI3). $\blacksquare$

Note. In the proof of (4.4) when $A$ is antisymmetric, $B(a)=P(a)-\{a\}$ and

$C(a)=\{a\}$ . Then our proof is reduced to a simple one. However we do not

assume the antisymmetric condition for $A$ .

PROOF OF (4.3). By (3.3) $p:X\rightarrow X$ is a resolution. Then it satisfies (R1)

and (R2). Since each $Y_{b}$ is an $AP$, there exists $\mathcal{V}_{b}^{\prime}\in C_{oU}(Y_{b})$ satisfying the

property in (R2) for $p$ and $\mathcal{V}_{b}$ . By (4.4) there exist $\mathcal{V}_{b}^{\prime\prime}\in C\circ v(Y_{b})$ such that
$(C|J, \mathcal{V}^{\prime\prime})$ is an approximative inverse system and

$d$

(1) $st\mathcal{V}_{b}^{\prime\prime}<\mathcal{V}_{b}\wedge \mathcal{V}_{b}^{\prime}$ for $b\in B$ .
By (R1) for $p$ there exist a function $t:B\rightarrow A$ and maps $g_{b}$ : $X_{t(b)}\rightarrow Y_{b}$ for $b\in B$

such that

(2) $(q_{b}f, g_{b}p_{t(b)})<\mathcal{V}_{b}^{\prime\prime}$ for $b\in B$ .
By (AI3) for $(x, v)$ there exists a function $f:B\rightarrow A$ such that $f>t$ and

(3) $p_{f(b).t(b)}^{-1}(g_{b}^{-1}\mathcal{V}_{b})>\eta_{f(b)}$ for $b\in B$ .

Claim. $f=\{f, f_{b} : b\in B\}$ : (X, $V$ ) $\rightarrow(Qj, \mathcal{V})$ is an approximative system map.

Here $f_{b}=g_{b}p_{f(b).t(b)}$ : $X_{f(b)}\rightarrow Y_{b}$ for $b\in B$ .
We need to show (AM1) and (AM2). (AM1) follows from (3). We show

(AM2). Take any $b^{\prime}>b$ . (2) implies that

(4) $(q_{b}f, f_{b}p_{f(b)})<\mathcal{V}_{b}^{\prime\prime}$ and $(q_{b^{\prime}}f, f_{b^{\prime}}p_{f(b^{\prime})})<\mathcal{V}_{b}^{\prime\prime},$ .
By (AI2) for $(Q;, \mathcal{V}^{\prime\prime})$ and (4)

(5) $(q_{b}f, q_{b^{\prime}.b}f_{b^{\prime}}p_{f(b^{\prime})})<\mathcal{V}_{b}^{\prime\prime}$ .
Take any $a>f(b),$ $f(b^{\prime})$ . By (1), (4) and (5)

(6) $(f_{b}p_{a.f(b)}p_{a}, q_{b^{\prime}.b}f_{b^{\prime}}p_{a.f(b^{\prime})}p_{a})<st\mathcal{V}_{b}^{\prime\prime}<\mathcal{V}_{b}^{\prime}$ .
By the choice of $\mathcal{V}_{b}^{\prime}$ and (6) there exists $a^{\prime}>a$ such that

(7) $(f_{b}p_{a^{\prime}.f(b)}, q_{b^{\prime}.b}f_{b^{\prime}}p_{a^{\prime}.f(b^{\prime})})<\mathcal{V}_{b}$.
(7) means (AM2) for $f$. Hence we have our Claim.
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(1) and (4) imply that $(q_{b}f, f_{b}p_{f(b)})<\mathcal{V}_{b}$ for $b\in B$ . This means that $f$ is an
approximative resolution of $f$ with respect to $p$ and $q$ . $\blacksquare$

The next assertion follows from (3.3), (3.8), (3.13) and (4.3).

(4.5) COROLLARY. Let $x=\{X_{a}, p_{a\prime.a}, A\}$ and $qj=\{Y_{b}, q_{b^{\prime}.b}, B\}$ be inverse

systems of compact metric spaces. Let $p;X\rightarrow X$ and $ q:Y\rightarrow\%$ be inverse limits.

If $A,$ $B$ are infinite, cofinite sets and all $Y_{b}$ are APs, then there exist coverings
$v_{a}\in c_{ov}(X_{a})$ and $\mathcal{V}_{b}\in c_{ov}(Y_{b})$ such that $p:X\rightarrow(X, V)=\{(X_{a}, cU_{a}), p_{a^{\prime},a}, A\}$ and
$q;Y\rightarrow(qf, \mathcal{V})=\{(Y_{b}, \mathcal{V}_{b}), q_{b^{\prime},b}, B\}$ are approximative resolutions with the prop-
erty: For any map $f:X\rightarrow Y$ there exists an approximative resolution of $f$ with

respect to $p$ and $q$ . $\blacksquare$

Let $g:Y\rightarrow Z$ be a map. Let $r:Z\rightarrow(\mathcal{Z}, \psi)$ be an approximative resolution.

Let $g:(qJ, \mathcal{V})\rightarrow(\mathcal{Z}, \psi)$ be an approximative system map. In a straightforward

manner we can show the following:

(4.6) LEMMA. If $f:(X, V)\rightarrow(qf, \mathcal{V})$ and $g;(Qi, \mathfrak{U})\rightarrow(\mathcal{Z}, W)$ are approxi-

mative resolutions of $f$ and $g$ with respect to $p,$ $q$ , and with respect to $q,$ $r$,

respectively, then $r(u)(gf):(X, cU)\rightarrow(\mathcal{Z}, \varphi)$ is an approximative resoluton of $gf$

with respect to $p$ and $r$ for each l-refinement function $u$ of $(\mathcal{Z}, W)$ . $\blacksquare$

Marde\v{s}ic [15] introduced the notion of resolution for maps. Let $f:X\rightarrow Y$

be a map. Let $p=\{p_{a} : a\in A\}$ : $X\rightarrow X=\{X_{a}, p_{a\prime.a}, A\}$ and $q=\{q_{b} : b\in B\}$ : $Y\rightarrow Qf$

$=\{Y_{b}, q_{b^{\prime}.b}, B\}$ be resolutions. Let $f=\{f, f_{b} ; b\in B\}$ be a collection consisting

of a function $f:B\rightarrow A$ and of maps $f_{b}:X_{f(b)}\rightarrow Y_{b}$ for $b\in B$ . We say that
$(f, p, q)$ is a resolution of $f$ provided that it satisfies the following two con-
ditions:

(RM1) For each $b^{\prime}>b$ there exists $a>f(b^{\prime}),$ $f(b)$ such that $f_{b}p_{a,f(b)}=$

$q_{b^{\prime}.b}f_{b^{\prime}}p_{a,f(b^{\prime})}$ .
(RM2) $q_{b}f=f_{b}p_{f(b)}$ for $b\in B$ .

Sometimes we say that $r_{\ddagger X\rightarrow Q}f$ is a resolution of $f$ with respect to $p$ and $q$ .

(4.7) LEMMA (Marde\v{s}ic [15] and Haxhibeqiri [10]). (i) Any map $f:X\rightarrow Y$

admits an ANR-resolution.
(ii) Any map $f$ admits a polyphedral resolution. $\blacksquare$

(4.8) LEMMA. Let $(f, p, q)$ be a resolution of $f$. Then there exist approxi-

mative resolutions $p^{\prime}$ : $X\rightarrow(X, \subseteq U)^{\prime},$ $q^{\prime}$ : $Y\rightarrow(qj, \mathcal{V})^{\prime}$ and an approximative resolution
$f^{\prime}$ : $(ie, cU)^{\prime}\rightarrow(\xi\Gamma, \mathcal{V})^{\prime}$ of $f$ with respect to $p^{\prime}$ and $q^{\prime}$ satisfying the following:
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(i) $p^{\prime}$ and $q^{\prime}$ are constructed from $p$ and $q$ in the same way as in (3.7),

respectively.
(ii) $(f^{\prime}, p^{\prime}, q^{\prime})$ is a resolution of $f$

(iii) Each map in $f^{\prime}$ is a map in $f$

PROOF. Let $F(A),$ $F(B),$ $M(A)$ and $M(B)$ be the same as in the proof
of (3.7). By (3.7) there exist approximative resolutions $p^{\prime}=\{p_{a}^{r} : a^{\prime}\in M(A)\}$ :
$X\rightarrow(X, v)^{\prime}=\{(x_{a^{\prime}}^{\prime}, v_{a^{\prime}}^{\prime}), p_{a\prime.a^{\prime}}^{\prime}, M(A)\}$ , $q^{\prime}=\{q_{b}^{\prime}’ : b^{\prime}\in M(B)\}$ : $Y\rightarrow(q;, \mathcal{V})^{\prime}=$

$\{(Y_{b}^{\prime},, \mathcal{V}_{b^{\prime}}^{\prime}), q_{b^{\prime}.b^{\prime}}^{\prime}, M(B)\}$ and increasing functions $s:M(A)\rightarrow A$ , $t;M(B)\rightarrow B$

satisfying $(i)-(iii)$ in (3.7), respectively.

We define $f^{\prime}=\{f^{\prime}, f_{b}^{\prime}, : b^{\prime}\in M(B)\};(X, V)^{\prime}\rightarrow(qf, \mathcal{V})^{\prime}$ as follows: Take any
$b^{\prime}\in M(B)$ . Since $f_{t(b^{\prime})}$ : $X_{ft(b^{\prime})}\rightarrow Y_{l(b^{\prime})}=Y_{b}^{\prime},,$ $f_{t(b^{\prime})}^{-1}\mathcal{V}_{b}^{\prime},$ $\in c_{ov}(X_{ft(b^{\prime})})$ . By (iii) of
(3.7) there exists $f^{\prime}(b^{\prime})\in M(A)$ such that

(1) $s(f^{\prime}(b^{\prime}))=ft(b^{\prime})$ and $CU_{f^{\prime}(b^{\prime})}^{\prime}=f_{t(b^{\prime})}^{-1}\mathcal{V}_{b^{\prime}}^{\prime}$ .
Then we have a function $f^{\prime}$ : $M(B)\rightarrow M(A)$. By (ii) of (3.7) and (1) $X_{f^{\prime}(b^{\prime})}^{\prime}=$

$X_{sf^{\prime}(b^{\prime})}=X_{ft(b^{\prime})}$ and $Y_{b^{\prime}}^{\prime}=Y_{t(b^{\prime})}$ . Thus we may define a map $f_{b^{\prime}}^{\prime}=f_{t(b^{\prime})}$ : $X_{f^{\prime}(b^{\prime})}^{\prime}$

$=X_{fl(b^{\prime})}\rightarrow Y_{t(b^{\prime})}=Y_{b^{\prime}}^{\prime}$ for $b^{\prime}\in M(B)$ .
Claim. $f^{\prime}$ satisfies (AM1), (RM1) and (RM2).

(1) implies that $f^{\prime-1}\mathcal{V}_{b}^{\prime},$ $=f_{t(b^{\prime})}^{-1}\mathcal{V}_{b^{\prime}}^{\prime}=v_{f^{\prime}(b^{\prime})}^{\prime}$ . This means (AM1) for $f^{\prime}$ . We
show (RM2). Take any $b^{\prime\prime},$ $b^{\prime}\in M(B)$ with $b^{\prime\prime}>b^{\prime}$ . Since $t$ is increasing,
$t(b^{\prime\prime})>t(b^{\prime})$ . By (RM2) for $f$ there exists an $a>ft(b^{\prime\prime}),$ $ft(b^{\prime})$ such that

(2) $q_{t(b),t(b^{\prime})}f_{t(b\prime)}p_{a.ft(b)}=f_{t(b^{\prime})}p_{a.fl(b^{l})}$ .
Put $a^{\prime}=f^{\prime}(b^{\prime})\cup f^{\prime}(b^{\prime\prime})\cup\{(a, \{X_{a}\})\}\in M(A)$ . Since $s$ is increasing, (2) in the
proof of (3.7) and (1) imply that $s(a^{\prime})>sf^{\prime}(b^{\prime\prime})=ft(b^{\prime\prime}),$ $s(a^{\prime})>sf^{\prime}(b^{\prime})=ft(b^{\prime})$ and
$s(a^{\prime})>a$ . By (2)

(3) $q_{t(b^{\nu}).t(b^{\prime})}f_{t(b)}p_{s(a^{\prime}).fl(b)}=f_{t(b^{\prime})}p_{s(a^{\prime}),ft(b^{\prime})}$ .
(1), (3) and (ii) in (3.7) imply that $q_{b^{\prime}.b^{\prime}}^{\prime}f_{b}^{\prime},p_{a^{\prime}.f^{\prime}(b^{\prime})}^{J}=f_{b^{\prime}}^{\prime}p_{a^{\prime}.f^{\prime}(b^{\prime})}^{\prime}$ . This means
(RM2) for $f^{\prime}$ . We show (RM1). By (RM1) for $f$ and (1) $f_{b^{\prime}}^{\prime}p_{f^{\prime}(b^{\prime})}^{\prime}=f_{t(b^{\prime})}p_{sf^{\prime}(b^{\prime})}$

$=f_{t(b)}p_{ft(b^{\prime})}=q_{t(b^{\prime})}f=q_{b}^{\prime}\prime f$. This means (RM1) for $f^{\prime}$ . Hence we have the Claim.
Since (AM2) follows from (RM2), Claim means that $f^{\prime}$ has the required

properties. $\blacksquare$

We say that an approximative resolution is commutative provided that it
satisfies condition (RM1). By (4.7) and (4.8) we have the following:

(4.9) THFOREM. For any map $f:X\rightarrow Y$ there exist approximative ANR- or
POL-resolutions $p:X\rightarrow(X, V),$ $q:Y\rightarrow(\wp, \mathcal{V})$ and a commutative approximative
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resolution $f:(X, cU)\rightarrow(\wp, \mathcal{V})$ of $f$ with respect to $p$ and $q$ such that $(f, p, q)$ is
a resolution of $f$. $\blacksquare$

(4.10) EXAMPLE. Let $X$ and $Y$ be paracompact M-spaces. By (3.17) we
have approximative ANR(PM)-resolutions $p=\{p_{a} : a\in A\}:X\rightarrow(dV(X, MX),$ $q$]) $=$

$\{(U_{a}, v_{a}), p_{a,a}, A\}$ and $q=\{q_{b} : b\in B\}$ : $ Y\rightarrow$ ( $d\mathfrak{U}(Y,$ MY), $\mathcal{V}$ ) $=\{(V_{b}, \mathcal{V}_{b}), q_{b^{\prime}.b}, B\}$ .
Here $MX$ and $MY$ are AR(PM)s containing $X$ and $Y$ as closed subsets, respec-
tively. All $U_{a}$ and all $V_{b}$ are $ANR(PM)$-neighborhoods of $X$ and $Y$ in $MX$ and
$MY$ , respectively, and all $p_{a},$ $p_{a,a},$ $q_{b},$ $q_{b,b}$ are inclusion maps.

Let $f:X\rightarrow Y$ be a map. We have an extension $F:MX\rightarrow MY$ of $f$. Take
any $b\in B$ . By (ii) of (3.17) there exists $g(b)\in A$ such that $F^{-1}(V_{b})\supset U_{g(b)}$ . By
(AI2) there exists $f(b)\in A$ such that $f(b)>g(b)$ and $(Fp_{f(b).g(b)})^{-1}\mathcal{V}_{b}>V_{f(b)}$ .
Thus we have a function $f:B\rightarrow A$ and maps $f_{b}=Fp_{f(b),g(b)}$ : $U_{f(b)}\rightarrow V_{b}$ for
$b\in B$ . We have a commutative approximative resolution $f=\{f, f_{b}:b\in B\}$ :
$(\mathcal{A}\eta(X, MX),$ $V$ ) $\rightarrow$ ( $\mathcal{A}qJ(Y,$ MY), $\mathcal{V}$ ) of $f$ with respect to $p$ and $q$ . Obviously

this is also a resolution of $f$. We consider a special case of this method in
\S 0. $\blacksquare$

(4.11) EXAMPLE. Let $C$ be the Cantor set and $I=[0,1]$ be the unit interval.
Let $f:C\rightarrow I$ be an onto map. Then in \S 0 we noticed that we have no expan-

sion of $f$ with respect to some inverse limits $p;C\rightarrow C$ and $q:I\rightarrow J$. By (3.13)

$p$ and $q$ are resolutions of $C$ and $I$ . Hence $f$ has no resolution with respect

to $p$ and $q$ .
In the same way as in \S 0 we can show that if $(f^{\prime}, p^{\prime}, q^{\prime})$ is an POL-

resolution of $f$, then almost all spaces, appearing in $p^{\prime}$ , have dimensions $\geqq 1$ .
This is curious, because $\dim C=0$ . In fact when we embed $C$ in $I$, by (4.10)

we have a resolution $f$ of $f$ with respect to some $p^{\prime}$ and $q$ such that almost
all spaces, appearing in $p^{\prime}$ , are l-dimensional polyhedra.

On the other hand by (4.5) we can choose coverings $cU_{i}\in C_{ot},(X_{i})$ and
$\mathcal{V}_{i}\in C_{ov}(Y_{i})$ , which make approximative resolutions $p:C\rightarrow(X, \epsilon U)=\{(X_{i}, \zeta U_{i})$ ,
$p_{i.j},$ $N$ } and $q:I\rightarrow(qf, \mathcal{V})=\{(Y_{i}, \mathcal{V}_{i}), q_{i.j}, N\}$ . Hence by (4.3) for any map
$f:X\rightarrow Y$ we have an approximative resolution $f:(X, qJ)\rightarrow(\wp, \mathcal{V})$ of $f$ with
respect to $p$ and $q$ . $\blacksquare$

The above observations ((4.10) and (4.11)) explain the difference between
(4.3) and (4.9), that is, the difference between approximative resolutions and
resolutions. Approximative resolutions for maps have many advantages over
resolutions for maps.
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(4.12) REMARK. Mioduszewski [19] studied approximative expansions of
maps into inverse sequences of polyhedra. His discription is neither simple nor
categorical. However he essentially proved (4.5) for compact metric spaces. In
the latter section we shall show that our treatment is natural and categorical.

\S 5. The approximative shape category.

In this section we introduce the approximative shape category and some
natural functors.

Let $X,$ $Y$ and $Z$ be spaces. Let $p:X\rightarrow(X, U),$ $q:Y\rightarrow(ct\int, \mathcal{V})$ and $ r:Z\rightarrow$

$(\mathcal{Z}, W)$ be approximative AP-resolutions. Let $f:X\rightarrow Y$ and $g:Y\rightarrow Z$ be maps.
By (4.3) there exists an approximative resolution $f:(X, V)\rightarrow(Qf, \mathcal{V})$ of $f$ with
respect to $p$ and $q$ . By (4.1) its equivalence class $[f]$ is unique, that is, $[f]$

does not depend on the choice of approximative resolutions of $f$ with respect

to $p$ and $q$ . Therefore we denote it by $[f]_{p.q}$ . From (4.6) we have the
following:

(5.1) LEMMA. (i) $[g]_{q.r}[f]_{p.q}=[gf]_{p,r}$ .
(ii) $[1_{X}]_{p.p}=[1_{(x,q\int)}]$ .
(iii) If $f:X\rightarrow Y$ is a homeomorphism, theu $[f]_{p.q}$ is an isomorphism $iu$

Appro-AP. $\blacksquare$

We define $E(X)=$ { $p:p$ is an approximative AP-resolution of $X$ }. For
$p\in E(X)$ and $q\in E(Y)$ we define $E(p, q)=(Appro- AP)((X, V),$ $(qf, \mathcal{V}))$ . We
define $ E(X, Y)=\cup$ { $E(p,$ $q):p\in E(X)$ and $q\in E(Y)$ } (disjoint sum). We define
a relation on $E(X, Y)$ as follows: Let $m,$ $m^{\prime}\in E(X, Y)$ . There are $p,$ $p^{\prime}\in E(X)$

and $q,$ $q^{\prime}\in E(Y)$ such that $m\in E(p, q)$ and $m^{\prime}\in E(p^{\prime}, q^{\prime})$ . We say that $m$ is
equivalent to $m^{\prime}$ , in notation $m\equiv m^{\prime}$ , provided that $[1_{Y}]_{q.q^{\prime}}m=m^{\prime}[1_{X}]_{p.p^{\prime}}$ in
Appro-AP. By (5.1) we can show the following:

(5.2) LEMMA. The above relation $\equiv is$ an equivalence relation on $E(X, Y)$ . $\blacksquare$

$\langle m\rangle$ denotes the equivalence class of $m\in E(X, Y)$ by the relation $\equiv$ . Put
$\langle E(X, Y)\rangle=\{\langle m\rangle:m\in E(X, Y)\}$ . We define the composition $\langle n\rangle\langle m\rangle$ for
$m\in E(X, Y)$ and $n\in E(Y, Z)$ as follows: $\langle n\rangle\langle m\rangle=\langle n[1_{Y}]_{q.q^{\prime}}m\rangle$ where $p\in E(X)$ ,

$q,$ $q^{\prime}\in E(Y),$ $r^{\prime}\in E(Z),$ $m\in E(p, q)$ and $n\in E(q^{\prime}, r^{\prime})$ . By (2.10) and (5.1) we
can show the following:

(5.3) LEMMA. (i) The above composition is well defined.
(ii) $\langle m\rangle\langle[1_{x}]_{p,p}\rangle=\langle m\rangle=\langle[1_{Y}]_{q,q}\rangle\langle m\rangle$ for $m\in E(X, Y)$ .
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(iii) $\langle w\rangle(\langle n\rangle\langle m\rangle)=(\langle w\rangle\langle n\rangle)\langle m\rangle$ for $m\in E(X, Y)$ , $n\in E(Y, Z)$ and $ w\in$

$E(Z, K)$ .
(iv) $\langle[f]_{p,q}\rangle=\langle[f]_{p^{\prime}.q^{\prime}}\rangle$ .
(v) $\langle[g]_{q.r}\rangle\langle[f]_{p,q}\rangle=\langle[gf]_{p.r}\rangle$ , where $r\in E(Z)$ . $\blacksquare$

We define a function $\Phi(p, q):E(p, q)\rightarrow\langle E(p, q)\rangle$ for $p\in E(X)$ and $q\in E(Y)$

as follows: $\Phi(p, q)(m)=\langle m\rangle$ for $m\in E(p, q)$ .

(5.4) LEMMA. For $p\in E(X)$ and $ q\in E(Y)\Phi(p, q):E(p, q)\rightarrow\langle E(X, Y)\rangle$ is
bijective.

PROOF. Take any $m^{\prime}\in E(p^{\prime}, q^{\prime})$ for $p^{\prime}\in E(X)$ and $q^{\prime}\in E(Y)$ . We put
$m=[1_{Y}]_{q^{\prime}.q}m^{\prime}[1_{x}]_{p,p^{\prime}}$ . Then $m\in E(p, q)$ and $[1_{Y}]_{q.q^{\prime}}m=[1_{Y}]_{q,q^{\prime}}[1_{Y}]_{q^{\prime}q}m^{\prime}[1_{X}]_{p.p^{\prime}}$

$=[1_{Y}]_{q^{\prime}.q^{\prime}}m^{\prime}[1_{X}]_{p,p^{\prime}}=m^{\prime}[1_{X}]_{p.p^{\prime}}$ by (5.1). This means that $\langle m\rangle=\langle m^{\prime}\rangle$ and
hence $\Phi(p, q)$ is onto. Trivially it follows from (ii) of (5.1) that $\Phi(p, q)$ is
injective. $\blacksquare$

Now, we define the approximative shape category, in notation ASh, as
follows: Objects of ASh are all spaces. For spaces $X$ and $YASh(X, Y)=$

$\langle E(X, Y)\rangle$ . The composition of morphisms is defined in the above. Since
$E(p, q)$ is a set, ASh(X, $Y$ ) forms a set by (5.4) and the axiom of substitution
in set theory. Note that $\langle E(X, Y)\rangle$ forms a set, but $E(X)$ and $E(X, Y)$ do not
form sets. By (5.3) ASh forms a category. We call morphisms in ASh approxi-

mative shape morphisms, or approximative shapings.

We define an approximative shape functor AS: $TOP\rightarrow ASh$ as follows: For
each space $X$ we put AS(X) $=X$. For a map $f:X\rightarrow Y$ we put AS $(f)=\langle[f]_{p.q}\rangle$

for some $p\in E(X)$ and $q\in E(Y)$ . By (5.3) AS is well defined and forms a
functor.

(5.5) LEMMA. Let $X$ be an ANR(PM) or a polyhedron. For each $cU\in C_{op}(X)$

there exists $cU^{\prime}\in \mathcal{E}_{ov}(X)$ satisfying
$(*)$ any two $cU^{\prime}$-near maps $f,$ $g:Y\rightarrow X$ are $cU$ -homotopic, where $Y$ is an

arbitrary space.

PROOF. We show also (iv) in (3.17). Let $X$ be an ANR(PM). By Nagata
[24] and by the Kuratowski-Wojdislawski Theorem (see [11]) we may assume
that $X$ is a closed subset of $C\times I^{\tau}$ , where $C$ is a convex set in a normed vector
space $M$ and $\tau$ is an arbitrary cardinal. Take any $cU,$ $v_{1}\in c_{ov}(X)$ with $st^{2}qJ_{1}<V$ .
Since $X$ is an ANR(PM), there exist a neighborhood $U$ of $X$ in $C\times I^{\tau}$ and a
retraction $r:U\rightarrow X$. By Theorem 4 of Marde\v{s}ic and \v{S}ostak [17] there exists
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an open paracompact neighborhood $V$ of $X$ in $U$ with the property; each point

$x$ of $V$ has a neighborhood $K(x)\subset V$ such that $K(x)$ is convex in $M\times R^{\tau}$. Here
$R$ is the real line. By a theorem of Palais [25, p. 5] there exist a simplicial

complex $K$, maps $h:V\rightarrow|K|,$ $k:|K|\rightarrow V$ and a $r^{-1}qJ_{1}$-homotopy $H^{1}$ : $U\times I\rightarrow U$

such that $H_{0}^{1}=1_{U}$ and $H_{1}^{1}=kh$ . Since (rkhw, $1_{X}$ ) $<W,$ $X$ is an AP. Here $w:X$

$\rightarrow V$ is the inclusion map. By Theorem 4 of MS [18, p. 292] there exists a
subdivision $L$ of $K$ such that $\overline{st(L)}<k^{-1}r^{-1}v_{1}$ . Here $st(v, L)$ denotes the open

star at a vertex $v$ in $L$ , $st(L)=$ { $st(v,$ $L):v$ is a vertex of $L$ } and $\overline{st(L)}=$

{ $\overline{st(v,L)}:v$ is a vertex of $L$ }. By Theorem 9 and Remark 1 of MS [18, pp.

302-303] there exist maps $i:|K|=|L|\rightarrow|L|_{m}$ , $j:|L|_{m}\rightarrow|L|=|K|$ and a
$\overline{st(L)}$-homotopy $H^{2}$ : $|K|\times I\rightarrow|K|$ such that $H_{0}^{2}=1_{|K|}$ and $H_{1}^{2}=ji$ . $|L|_{m}$ denotes

the realization of $L$ with the metric topology. By Theorem 11 of MS [18, $p$.
304] $|L|_{m}$ is an ANR and then by Theorem 11 of Hu [11, p. 111] there exists
$9\nu\in c_{o17}(|L|_{m})$ satisfying $(*)$ for $|L|_{m}$ and $j^{-1}st(L)$ . From the above facts it is
easy to show that $\mathcal{V}=(jhw)^{-1}W\in C\circ v(X)$ satisfies the required condition $(*)$ .
Obviously the above argument also contains a proof for polyhedra. $\blacksquare$

(5.6) LEMMA. Any space $X$ admits an approximative ANR-resolution $ p:X\rightarrow$

$(X, v)$ and an approximative POL-resolution $p:X\rightarrow(X, cU)$ with the property:
$(**)$ any two $cU_{a}$-near maps $f,$ $g:Y\rightarrow X_{a}$ are homotopic for $a\in A$ , where $Y$

is an arbitrary space.

PROOF. By (3.15) there exists an approximative ANR-resolution $ p:X\rightarrow$

$(X, \mathfrak{V}^{\prime})=$ { $(x_{a},$ v\’a), $p_{a\prime.a^{\prime}},$ $A$ } of a space $X$. Since all $X_{a}$ are ANRs, by (5.5)

there exist $v_{a}^{JJ}\in c_{\circ v}(X_{a})$ with property $(*)$ for $cU_{a}^{\prime}$ . By (4.4) we make coverings
$V_{a}\in C_{ov}(X_{a})$ such that (X, $qJ$ ) $=\{(X_{a}, U_{a}), p_{a^{\prime}.a}, A\}$ forms an approximative

inverse system and $CU_{a}<V_{a}^{\prime}\wedge^{c}U_{a}^{\prime\prime}$ for $a\in A$ . By (3.3) $p:X\rightarrow(X, v)$ is an
approximative resolution. Since $cU_{a}<(U_{a}^{\prime\prime}$ , it has the required property. In the

same way we construct a required approximative POL-resolution. $\blacksquare$

We recall that $H:TOP\rightarrow HTOP$ and $S:HTOP\rightarrow Sh$ are the homotopy functor
and the shape functor, respectively. Then $H(f)$ denotes the homotopy class of
the map $f$, and $H(X)=\{X_{a}, H(p_{a^{\prime}.a}), A\}$ is an inverse system in HTOP. $H(p)$

$=\{H(p_{a}):a\in A\}:X\rightarrow H(X)$ is a morphism of inverse systems from $X$ to $H(X)$

(see MS [18, p. 4]). We say that $H(p):X\rightarrow H(X)$ is an HTOP-expansion (see

MS [18]) provided that it satisfies the following two conditions:
(E1) For each ANR $P$ and a map $h:X\rightarrow P$ there exist $a\in A$ and a map

$h_{a}$ : $X_{a}\rightarrow P$ such that $h\simeq h_{a}p_{a}$ .
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(E2) For each $a\in A$ and for maps $h,$ $h^{\prime}$ : $X_{a}\rightarrow P\in ANR$ such that $hp_{a}\simeq h^{\prime}p_{a}$

there exists $a^{\prime}>a$ such that $hp_{a}\simeq h^{\prime}p_{a^{\prime}.a}$ .

(5.7) LEMMA (Marde\v{s}ic [15]). If $p=\{p_{a} : a\in A\}$ : $X\rightarrow X=\{X_{a}, p_{a\prime.a}, A\}$ is
a resolution of $X$, then $H(p)=\{H(p_{a}):a\in A\}$ : $X\rightarrow H(X)=\{X_{a}, H(p_{a\prime.a}), A\}$ is a
HTOP-expansion. $\blacksquare$

Let $r;Z\rightarrow(\xi\tau, w)\in E(Z)$ . Let $f=\{f, f_{b} : b\in B\},$ $f^{\prime}=\{f^{\prime}, f_{b}^{\prime} : b\in B\}:(X, \epsilon U)$

$\rightarrow(qj, \mathcal{V})$ and $g;(ctf, cU)\rightarrow(\sigma\tau, w)$ be approximative system maps.

(5.8) LEMMA. If $\mathcal{V}$ and $\varphi$ satisfy property $(**)$ in (5.6), we have the
following;

(i) $H(f)=\{f, H(f_{b});b\in B\}$ : $H(X)\rightarrow H(c|j)$ is a morphism of inverse systems
$in$ HPOL.

(ii) If $f\equiv:f^{\prime}$ , then $H(f)$ and $H(f^{\prime})$ are equivalent, $i$ . $e.,$ $H(f)\sim H(f^{\prime})$ (see

[18, p. 6]).

(iii) If $f$ is an approximative resolution of $f$ with respect to $p$ and $q$ , then
$H(q)H(f)=H(f)H(p)$ .

(iv) For each l-refinement function $u$ of $(\mathcal{F}, q\mu)H(r(u)(gf))\sim H(g)H(f)$ .

PROOF. We show (ii). It is sufficient to show that $f=:f^{\prime}$ implies $ H(f)\sim$

$H(f^{\prime})$ . We assume that $f=:f^{\prime}$ . Take any $b\in B$ . Then there exists $a>f(b)$ ,
$f^{\prime}(b)$ such that $(f_{b}p_{a.f(b)}, f_{b}^{\prime}p_{a,f^{\prime}(b)})<\mathcal{V}_{b}$ . By property $(**)$ of (5.6) $H(f_{b})H(p_{a,f(b)})$

$=H(f_{b}^{\prime})H(p_{a.f^{\prime}(b)})$ . This means that $H(f)\sim H(f^{\prime})$ . Hence we have (ii). In a
similar way we can show the other claims. $\blacksquare$

Since we have (5.6), hereafter we consider only approximative POL-resolu-
tions of spaces with property $(**)$ of (5.6). By (5.7) $H(p):X\rightarrow H(x),$ $H(q):Y$

$\rightarrow H(c|f)$ are HPOL-expansions. By (i) of (5.8) $H(f)$ is a morphism of inverse
systems. Then $H(f)$ determines an equivalence class $\alpha H(f)$ given by the
equivalence $relation\sim$ , that is, $\alpha H(f):H(X)\rightarrow H(Qj)$ is a morphism of pro-HPOL
(see MS [18]). $\alpha H(f)$ determines a shape morphism $s\alpha H(f):X\rightarrow Y$ (see MS [18]).

Let $[f]=[f^{\prime}]$ . Since $f\equiv:f^{\prime}$ , by (ii) of (5.8) $H(f)\sim H(f^{\prime})$ , that is, $\alpha H(f)=$

$\alpha H(f^{\prime})$ . Thus we may define $\tilde{\alpha}([f])=\alpha H(f)$ . From (iv) of (5.8) we have that
$\tilde{\alpha}([g])\tilde{\alpha}([f])=\tilde{\alpha}([g][f])$ . Since $H(1_{(X,qf)}):H(X)\rightarrow H(X)$ is the identity, $\tilde{\alpha}([1_{(x.qJ)}])$

$=\alpha(1_{H(X)})$ . Let $f:(X, cU)\rightarrow(\wp, \mathcal{V})$ be an approximative resolution of $f$ with
respect to $p$ and $q$ . By (iii) of (5.7) $\alpha H(f):H(X)\rightarrow H(\wp)$ is a morphism in
pro-HPOL with $\alpha H(f)\alpha H(p)=\alpha H(q)\alpha H(f)$ . Thus $s\alpha H(f)$ is the shape morphism
induced by $f$. Hence $s\tilde{\alpha}([f]_{p,q})=SH(f)$ .
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Let $\langle[f]\rangle=\langle[f^{\prime\prime}]\rangle\in\langle E(X, Y)\rangle$ . Let $[f]\in E(p, q)$ and $[f^{\prime\prime}]\in E(p^{\prime\prime}, q^{\prime\prime})$ .
Since $[f]\equiv[f^{\prime\prime}]$ , $[1_{Y}]_{q,q},[f]=[f^{\prime\prime}][1_{x}]_{p.p^{\prime}}$. Thus $\tilde{\alpha}([1_{Y}]_{q.q}.)\tilde{\alpha}([f])=\tilde{\alpha}([f^{\prime\prime}])$

$\tilde{\alpha}([1_{X}]_{p,p},)$ . Since $\tilde{\alpha}([1_{X}]_{p,p^{\prime}})$ and $\tilde{\alpha}([1_{Y}]_{q.q}\cdot)$ are morphisms in pro-HPOL

induced by identities, then $\tilde{\alpha}([;])$ and $\tilde{\alpha}([f^{\prime\prime}])$ induce the same shape morphism,
$i.e.,$ $s\tilde{\alpha}([f])=s\tilde{\alpha}([f^{\prime\prime}])$ .

Now we define a functor ASS: $ASh\rightarrow Sh$ as follows: For each space $X$

ASS(X) $=X$ and for $\langle[f]\rangle\in\langle E(X, Y)\rangle=ASh(X, Y)ASS(\langle[f]\rangle)=s\tilde{\alpha}([;])$ . From
the above facts we easily show that it is well defined and forms a functor

with $S\circ H=ASS\circ AS$ . We summarize results in this section as follows:

(5.9) THEOREM. ASh forms a category and AS: $TOP\rightarrow ASh$ , ASS: $ASh\rightarrow Sh$

are functors with the $following\cdot commutative$ diagram:

$TOP\underline{H}$ HTOP

$AS^{AS}\downarrow_{hS}\downarrow_{h}s\underline{ASS}$

. $\blacksquare$

We say that $X$ and $Y$ have the same approximative shape type, in
notation ASh(X) $=ASh(Y)$ , provided that $X$ and $Y$ are isomorphic in ASh.
ASh(X) $<ASh(Y)$ denotes that $X$ is dominated by $Y$ in ASh.

(5.10) COROLLARY. (i) If $X$ is dominated by $Y$ in TOP, then ASh(X) $<$

$ASh(Y)$ .
(ii) If $X$ is homeomorphic to $Y$, then ASh(X) $=ASh(Y)$ . $\blacksquare$

\S 6. The Tychonoff functor and the completion functor.

In this section we investigate the influence of the Tychonoff functor and

the completion functor on ASh.
Let $C$ and $D$ be full subcategories of TOP. Let $F:C\rightarrow D$ be a covariant

functor. Let $j:C\rightarrow TOP$ and $j^{\prime}$ : $D\rightarrow TOP$ be the inclusion functors. Let $ t:j\rightarrow$

$j^{\prime}F$ be a natural transformation. We say that $t$ is dense provided that for
each $X\in ObC$ the image of $t_{X}$ : $j(X)=X\rightarrow j^{\prime}F(X)=F(X)$ is a dense subset of
$F(X)$ . Let $K$ be a subcategory of TOP. We say that $t$ is rigid for $K$ provided

that it satisfies the following condition:
$(R)^{*}$ For each $X\in ObC$, each $K\in ObK$ and each map $f:X\rightarrow K$ there exists

a map $f^{\prime}$ : $F(X)\rightarrow K$ such that $f^{\prime}t_{X}=f$.
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(6.1) LEMMA. Let $t:j\rightarrow j^{\prime}F$ be dense and rigid for POL. Let $X\in ObC$ and
$x=\{X_{a}, p_{a^{\prime}a}, A\}$ be an inverse system in C. Then $p=\{p_{a} : a\in A\}:X\rightarrow X$ is a
resolution of $X$ iff $F(p)=\{F(p_{a}):a\in A\}:F(X)\rightarrow F(X)=\{F(X_{a}), F(p_{a^{\prime}.a}), A\}$ is a
resolution of $F(X)$ .

To prove (6.1) we need the following which is easy to show.

(6.2) LEMMA. Let $k:X\rightarrow Y$ and $f,$ $g:Y\rightarrow Z$ be maps. Let $k(X)$ be dense in
Y. For each $w\in c_{ov}(Z)$ if $(fk, gk)<W$, then $(f, g)<st^{c}W$. $\blacksquare$

PROOF OF (6.1). First we assume that $p:X\rightarrow X$ is a resolution. Then it
satisfies (R1) and $(R2)$ for polyhedra. We show that $F(p)$ satisfies (R1) and
(R2) for polyhedra.

We show $(R1)$ . Let $P\in Ob$ POL and $cU\in c_{ov}(P)$ . Let $f^{\prime}$ : $F(X)\rightarrow P$ be a
map. Take $cU^{\prime}\in c_{ov}(P)$ such that $st^{C}U^{\prime}<cU$ . By (R1) for $p$ there exist $a\in A$

and a map $g:X_{a}\rightarrow P$ such that $(gp_{a}, f^{\prime}t_{X})<\eta^{\prime}$ . Since $t$ is rigid for POL,

there exists a map $g^{\prime}$ : $F(X_{a})\rightarrow P$ such that $g^{\prime}t_{X_{a}}=g$ . Since $gp_{a}=g^{\prime}F(p_{a})t_{X}$ ,
$(g^{\prime}F(p_{a})t_{X}, f^{\prime}t_{X})<v^{\prime}$ . Thus by (6.2) $(g^{\prime}F(p_{a}), f^{\prime})<st^{c}U^{\prime}<\mathfrak{U}$ . Hence we have
(R1).

We show (R2). Let $P\in ObPOL$ and $cU\in c_{ov}(P)$ . Take $cU^{\prime}\in C\circ v(P)$ such
that $st^{c}U^{\prime}<v$ . By $(R2)$ for $p$ there exists $\mathcal{V}\in c_{ov}(P)$ satisfying the property

in $(R2)$ for $p,$ $P$ and $cU^{\prime}$. Take any $a\in A$ and maps $f^{\prime},$ $g^{\prime}$ : $F(X_{a})\rightarrow P$ such
that $(f^{\prime}F(p_{a}), g^{\prime}F(p_{a}))<\mathcal{V}$ . Since $F(p_{a})t_{X}=t_{x_{a}}p_{a},$ $(f^{\prime}t_{x_{a}}p_{a}, g^{\prime}t_{x_{a}}p_{a})<\mathcal{V}$ . By

the choice of $\mathcal{V}$ there exists $a^{\prime}>a$ such that $(f^{\prime r_{x_{a}}p_{aa}},., g^{\prime}t_{x_{a}}p_{a^{\prime}.a})<q]^{\prime}$ .
Since $t_{X_{a}}p_{a^{\prime}.a}=F(p_{a^{\prime}.a})t_{x_{a}},,$ $(f^{\prime}F(p_{a^{\prime}.a})t_{x_{a}},, g^{\prime}F(p_{a^{\prime}.a})t_{x_{a}},)<V^{\prime}$ . By (6.2)

$(f^{\prime}F(p_{a^{\prime}.a}), g^{\prime}F(p_{a^{\prime}.a}))<st\eta^{\prime}<qJ$ . Hence we have (R2).

Since $F(p)$ satisfies (R1) and (R2) for polyhedra, by (3.1) it is a resolution.
Next, we assume that $F(p)$ is a resolution. Thus it satisfies (R1) and (R2)

for polyhedra. We show that $p$ satisfies (R1) and (R2) for polyhedra.

We show $(R1)$ . Let $P\in Ob$ POL and $cU\in C\circ v(P)$ . Let $f:X\rightarrow P$ be a map.
Since $t$ is rigid for POL, there exists a map $f^{\prime}$ : $F(X)\rightarrow P$ such that $f=f^{\prime}t_{X}$ .
By (R1) for $F(p)$ there exists $a\in A$ and a map $g^{\prime}:F(X_{a})\rightarrow P$ such that
$(g^{\prime}F(p_{a}), f^{\prime})<V$ . Thus $(g^{\prime}F(p_{a})t_{X}, f^{\prime}t_{X})<q$], and hence $(g^{\prime}t_{x_{a}}p_{a}, f)<\mathfrak{U}$ . This
means that $g^{\prime}t_{x_{a}}$ : $X_{a}\rightarrow P$ has the required one. Hence we have $(R1)$ .

We show (R2). Let $P\in ObPOL$ and $cU\in c_{ov}(P)$ . There exists $\mathcal{V}\in C\circ v(P)$

satisfying the condition (R2) for $F(p),$ $P$ and $cU$ . Take $w\in c_{ov}(P)$ such that
$stW<\mathcal{V}$ . Take any $a\in A$ and maps $f,$ $g:X_{a}\rightarrow P$ such that $(fp_{a}, gp_{a})<w$.
Since $t$ is rigid for POL, there exist maps $f^{\prime},$ $g^{\prime}$ : $F(X_{a})\rightarrow P$ satisfying $f=f^{\prime}t_{x_{a}}$

and $g=g^{\prime}t_{X_{a}}$ . Since $fp_{a}=f^{\prime}F(p_{a})t_{X}$ and $gp_{a}=g^{\prime}F(p_{a})t_{X},$ $(f^{\prime}F(p_{a})t_{X}, g^{\prime}F(p_{a})t_{x})$
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$<q\mu$. By (6.2) $(f^{\prime}F(p_{a}), g^{\prime}F(p_{a}))<stW<\mathcal{V}$ . By the choice of $\mathcal{V}$ there exists
$a^{\prime}>a$ such that $(f^{\prime}F(p_{a^{\prime}.a}), g^{\prime}F(p_{a^{\prime},a}))<cU$ . Since $F(p_{a^{\prime},a})t_{x_{a}},$ $=r_{x_{a}}p_{a^{\prime}.a}$ ,
$(fp_{a’’ a}, gp_{a^{\prime}.a})<v$ . Hence we have (R2).

Since $p$ satisfies (R1) and (R2) for polyhedra, by (3.1) it is a resolution. $\blacksquare$

(6.3) LEMMA. Let $t;j\rightarrow j^{\prime}F$ be dense and rigid for POL. If $X\in ObC$ is an
AP, then $F(X)$ is also an AP.

PROOF. Take any $\eta V_{1}\in C_{0\theta}(F(X))$ such that $stW_{1}<W$ . Since $X$ is an
AP, there exist a polyhedron $P$ and maps $f:X\rightarrow P,$ $g:P\rightarrow X$ such that $(gf, 1_{X})$

$<t_{\overline{X}^{1}}(\eta_{1})$ . Since $t$ is rigid for POL, there exists a map $f^{\prime}$ : $F(X)\rightarrow P$ such that
$f=f^{\prime}t_{X}$ . Since $(t_{x}gf^{\prime}t_{X}, 1_{F(X)}t_{x})<V_{1}$ , by (6.2) $(t_{x}gf^{\prime}, 1_{F(X)})<stq]_{1}<\epsilon U$ . Hence
$F(X)$ is an AP. $\blacksquare$

Hereafter we assume that $t$ is dense and rigid for POL with the following

two conditions:
$(*)$ POL is a subcategory of $C$.
$(**)$ For each polyhedron P $F(P)=P$ and $t_{P}$ : $P\rightarrow F(P)$ is the identity map.

Let $X\in ObC$. By (3.15) there exists an approximative POL-resolution $p=$

$\{p_{a} : a\in A\}$ : $X\rightarrow(X, U)=\{(X_{a}, \epsilon U_{a}), p_{a\prime.a}, A\}$ . By (3.3) $p:X\rightarrow X$ is a resolution.
By (6.1) $F(p)=\{F(p_{a}):a\in A\}:F(X)\rightarrow F(X)=\{F(X_{a}), F(p_{a^{\prime}.a}), A\}$ is a resolution.
Since $t$ is a natural transformation, $t=\{1_{A}, t_{x_{a}} : a\in A\};X\rightarrow F(X)$ is a resolu-
tion of $t_{x}$ : $X\rightarrow F(X)$ with respect to $p$ and $F(p)$ . Since $F(X_{a})=X_{a}$ and $t_{x_{a}}=1_{x_{a}}$

by $(*)$ and $(**),$ $F(p_{a\prime.a})=p_{a\prime.a}$ for $a^{\prime}>a$ . Thus $F(X)=X$ and $t=1_{x}$ . Since
$F(p):F(X)\rightarrow F(X)=X$ is a resolution, by (3.3) $F(p):F(X)\rightarrow(X, V)$ is an
approximative resolution. Thus $t=1_{(x.v)}$ : $(X, qJ)\rightarrow(X, \epsilon U)$ is an approximative

resolution of $t_{X}$ with respect to $p$ and $F(p)$ . Hence AS $(t_{x})=\langle[1_{(X.qf)}]\rangle$ , which
is an isomorphism in ASh. We have the following:

(6.4) LEMMA. For $X\in ObCt_{X}$ ; $X\rightarrow F(X)$ induces an isomorphism AS $(t_{X}):X$

$\rightarrow F(X)$ in ASh. $\blacksquare$

Let $Y\in ObC$ and let $q=\{q_{b} : b\in B\}$ : $Y\rightarrow(qj, \mathcal{V})=\{(Y_{b}, \mathcal{V}_{b}), q_{b^{\prime}.b}, B\}$ be an
approximative POL-resolution. Since $F(p):F(X)\rightarrow(X, W)$ and $ F(q):F(Y)\rightarrow$

$(^{c}1;, \mathcal{V})$ are approximative POL-resolutions, $E(p, q)=Appro- AP((X, \mathfrak{V}),$ $(QJ, \mathcal{V}))$

$=E(F(p), F(q))$ . Then we may define a bijective function $\Psi(p, q):E(p, q)\rightarrow$

$E(F(p), F(q))$ as follows: $\Psi(p, q)([m])=[m]$ for $[m]\in E(p, q)$ .

(6.5) LEMMA. $\Psi(p, q)([f]_{p.q})=[F(f)]_{F(p).F(q)}$ for a map $f:X\rightarrow Y$ in $C$.
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PROOF. Let $f=\{f, f_{b} : b\in B\}$ : $(X, cU)\rightarrow(Qf, \mathcal{V})$ be an approximative resolu-
tion of $f$ with respect to $p$ and $q$ . Thus $[f]=[f]_{p,q}$ . Let $u:B\rightarrow B$ be a
l-refinement function of $(\wp, \mathcal{V})$ . For each $b\in B(q_{u(b)}f, f_{u(b)}p_{fu(b)})<\mathcal{V}_{u(b)}$ .
Since $F(q_{u(b)})F(f)t_{X}=q_{u(b)}f,$ $F(f_{u(b)})=f_{u(b)}$ and $F(f_{u(b)})F(p_{fu(b)})t_{X}=f_{u(b)}p_{fu(b)}$ by
$(**),$ $(F(q_{u(b)})F(f)t_{x}, f_{u(b)}F(p_{fu(b)})t_{X})<\mathcal{V}_{u(b)}$ . By (6.2) $(F(q_{u(b)})F(f), f_{u(b)}F(p_{fu(b)}))$

$<st\mathcal{V}_{u(b)}$ . Since $u$ is a l-refinement function, $(F(q_{b})F(f), q_{u(b).b}f_{u(b)}F(p_{fu(b)}))$

$<\mathcal{V}_{b}$ . This means that $q(u)f:(X, \epsilon U)\rightarrow(cq, \mathcal{V})$ is an approximative resolu-
tion of $F(f)$ with respect to $F(p)$ and $F(q)$ . Thus $[q(u)f]=[F(f)]_{F(p).F(q)}$ .
Since $[q(u)f]=[f]$ by (2.6), $\Psi(p, q)([f]_{p,q})=\Psi(p, q)([f])=[f]=[q(u)f]=$

$[F(f)]_{F(p).F(q)}$ . $\blacksquare$

(6.6) COROLLARY. $\Psi(p, q)([1_{X}]_{p,p^{\prime}})=[1_{F(X)}]_{F(p),F(p^{\prime})}$ for approximative POL-
resolutions $p,$ $p^{\prime}$ of $X\in Ob$ C. $\blacksquare$

We define a function $\check{F}(p, q):ASh(X, Y)\rightarrow ASh(F(X), F(Y))$ as follows:
$\check{F}(p, q)=\Phi(F(p), F(q))\Psi(p, q)\Phi(p, q)^{-1}$ , where $\Phi(p, q):E(X, Y)\rightarrow\langle E(X, Y)\rangle=$

$ASh(X, Y)$ is defined in (5.4). By (6.6) and the definition $\equiv$ we easily show
that $\check{F}(p, q)=\check{F}(p^{\prime}, q^{\prime})$ for approximative POL-resolutions $p,$ $p^{\prime}$ and $q,$ $q^{\prime}$ of
$X$ and $Y$ , respectively. Thus we may put $\check{F}=\check{F}(p, q):ASh(X, Y)\rightarrow ASh(F(X)$ ,
$F(Y))$ . Since $\Phi(p, q)$ and $\Psi(p, q)$ are bijection, so is $\check{F}$. By (6.6) and the
definition of composition we have that $\check{F}(n)\check{F}(m)=\check{F}(nm)$ for $m\in ASh(X, Y)$ and
$n\in ASh(Y, Z)$ . Hence we have a functor $\check{F};ASh(C)\rightarrow ASh(D)$ , when $\check{F}(X)=$

$F(X)$ for $X\in ObC$. Here ASh $(C)$ denotes the full subcategory of ASh consist-
ing of Ob C. (6.5) means that $AS\circ F=\check{F}\circ$ AS. By definitions ASS $=ASS\circ\check{F}$. We
summarize our results as follows:

(6.7) THEOREM. Let $C$ and $D$ be full subcategories of TOP. Let $j:C\rightarrow TOP$

and $j^{\prime}$ : $D\rightarrow TOP$ be the inclusion functors. Let $F:C\rightarrow D$ and $t:j\rightarrow]^{\prime}F$ be a
functor and a natural transformation, respectively. If $t$ is dense and rigid for
POL with $(*)$ and $(**)$ , then $F$ induces a functor $\check{F}:ASh(C)\rightarrow ASh(D)$ with the
following properties:

(i) The following diagram is commutative:
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(ii) AS $(t_{X}):X\rightarrow F(X)$ is an isomorphism in ASh for $X\in ObC$.
(iii) $\check{F}:ASh(X, Y)\rightarrow ASh(F(X), F(Y))$ is bijective for $X,$ $Y\in Ob$ C. $\blacksquare$

Tychonoff spaces are completely regular Hausdorff spaces. A Tychonoff
space is topologically complete provided that it is complete with respect to some
uniformities. $TOP_{3.6}$ and $CT0P_{3.5}$ denote the full subcategories of TOP con-
sisting of all Tychonoff spaces and of all topologically complete Tychonoff
spaces, respectively.

Morita [22] introduced the Tychonoff functor $T:T0P\rightarrow T0P_{3.5}$ and showed
the following properties: For each space $X$ there exists an onto map $t_{x}$ : $ X\rightarrow$

$T(X)$ such that
(T1) if $X$ is a Tychonoff space, then $T(X)=X$ and $t_{X}=1_{X}$ ,
(T2) for any map $f:X\rightarrow Yt_{Y}f=T(f)t_{x}$ and
(T3) for any Tychonoff space $Y$ and for any map $f:X\rightarrow Y$ there exists a

unique map $g:T(X)\rightarrow Y$ such that $gt_{X}=f$.
Let $j^{\prime}$ : $TOP_{3.5}\rightarrow T0P$ be the inclusion functor. By (T2) $t=\{t_{X}\}:1_{TOp\rightarrow]^{\prime}}T$

is a natural transformation. By the above data $t$ and $T$ satisfy all the
assumptions in (6.7). Thus by (6.1) and (6.7) we have the following:

(6.8) COROLLARY. $p:X\rightarrow X$ is resolution of a space $X$ iff $T(p):T(X)\rightarrow T(X)$

is a resolution of $T(X)$ . Moreover $p$ is rigid for $TOP_{3.5}$ iff so is $T(p)$ . $\blacksquare$

(6.9) COROLLARY. The Tychonoff functor $T:T0P\rightarrow T0P_{3.5}$ induces a functor
$\check{\mathcal{T}}$ : $ASh\rightarrow ASh(TOP_{8.5})$ with the following properties:

(i) The following diagram is commutative:

(ii) AS $(t_{x}):X\rightarrow T(X)$ is an isomorphism in ASh for any space $X$.
(iii) $\check{T}$ : ASh(X, $Y$ ) $\rightarrow ASh(T(X), T(Y))$ is bijective for spaces $X$ and Y. $\blacksquare$

Let $X$ be a Tychonoff space. Then $c_{ov}(X)$ forms the finest uniformity of
X. Let $C(X)$ be the completion of $X$ with respect to $C\circ v(X)$ . Thus we have
the completion functor $C:T0P_{3.5}\rightarrow CT0P_{35}$ with the following properties: We
may consider $X$ as a dense subset of $C(X)$ . Let $j_{X}$ : $X\rightarrow C(X)$ be the inclusion
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map.
(C1) If $X$ is topologically complete, then $C(X)=X$ and $j_{X}=1_{X}$ .
(C2) $j_{Y}f=C(f)j_{X}$ for a map $f:X\rightarrow Y$ in $T0P_{3.5}$ .
(C3) Let $X\in ObT0P_{35}$ and $Y\in ObCTOP_{3.5}$ . For any map $f;X\rightarrow Y$ there

exists a unique map $g;C(X)\rightarrow Y$ such that $gj_{X}=f$.
Let $j^{\prime}$ : $CTOP_{3.5}\rightarrow TOP_{3\cdot 5}$ be the inclusion functor. By (C2) $j=\{j_{X}\}$ : $1_{TOP_{3.6}}$

$\rightarrow j^{\prime}C$ forms a natural functor. By the above data $j$ satisfies all the assump-
tions in (6.7). Hence by $(6.1)^{\backslash }$ and (6.7) we have the following:

(6.10) COROLLARY. $p;X\rightarrow X$ is a resolution of a Tychonoff space $X$ iff
$C(p);C(X)\rightarrow C(X)$ is a resolution of $C(X)$ . Moreover $p$ is rigid for $CTOP_{3.6}$ iff
so is $C(p)$ . $\blacksquare$

(6.11) COROLLARY. The completion functor $C:T0P_{3.5}\rightarrow CTOP_{3.5}$ induces a
functor $\vee^{\vee}\neg:$ ASh$(T0P_{3.5})\rightarrow ASh(CTOP_{3.5})$ satisfying the $f$ollowing:

(i) The following diagram is commutative:

(ii) AS $(j_{X}):X\rightarrow C(X)$ is an isomorphism in ASh for a Tychonoff space $X$.
(iii) $\check{C};ASh(X, Y)\rightarrow ASh(C(X), C(Y))$ is bijective for Tychonoff spaces $X$ and

Y. $\blacksquare$

(6.13) REMARK. Independently Morita [23] considered (6.8) and (6.10). He
showed only one directions of (6.8) and (6.10). $\blacksquare$

\S 7. The realization functor.

In this section we introduce the realization functor and investigate its
properties.

(7.1) LEMMA. Let $q=\{q_{b} : b\in B\}:Y\rightarrow Qi=\{Y_{b}, q_{b^{\prime}.b}, B\}$ be a resolution of a
space Y. If $Y\in ObCTOP_{3.5}$ and $Y_{b}\in ObT0P_{3.5}$ for $b\in B$ , then $q;Y\rightarrow qf$ is an
inverse limit of $c\ell J$.
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The author [26] has proved (7.1). After a while, independently, Morita
[23] proved it. His paper is already published, and therefore we omit our
proof. $\blacksquare$

Let $p=\{p_{a}:a\in A\}:X\rightarrow(X, V)=\{(X_{a}, cU_{a}), p_{a^{\prime}.a}, A\}$ and $q=\{q_{b}:b\in B\}:Y$

$\rightarrow(v, \mathcal{V})=\{(Y_{b}, \mathcal{V}_{b}), q_{b^{\prime}.b}, B\}$ be approximative resolutions of spaces $X$ and $Y$,

respectively.

(7.2) LEMMA. Let $f=\{f_{b} : b\in B\}$ be a collection of maps $f_{b}$ : $X\rightarrow Y_{b}$ . If
$Y,$ $Y_{b}\in 0bCT0P_{35}$ for all $b\in B$ and $(f_{b}, q_{b^{\prime}.b}f_{b^{\prime}})<\mathcal{V}_{b}$ for $b^{\prime}>b$ then there exists
a unique map $r(f):X\rightarrow Y$ such that $(f_{b}, q_{b}r(f))<st\mathcal{V}_{b}$ for $b\in B$ .

PROOF. Take any $x\in X$ and any $b_{0}\in B$ . We put $C_{b_{0}}(x)=\{q_{b,b_{0}}f_{b}(x):b\in B$

with $b>b_{0}$ }.
Claim 1. $C_{b_{0}}(x)$ is a Cauchy net in $Y_{b_{0}}$ with respect to the finest uniformity

$C_{0\mathcal{V}}(Y_{b_{0}})$ .
Take any $\mathcal{V},$ $\mathcal{V}_{1}\in C_{01},(Y_{b_{0}})$ with $st\mathcal{V}_{1}<\mathcal{V}$ . By (AI3) there exists $b_{1}>b_{0}$

such that $q_{b_{1}.b_{0}}^{-1}\mathcal{V}_{1}>\mathcal{V}_{b_{1}}$. There exist $V_{1}\in \mathcal{V}_{1}$ and $V_{2}\in \mathcal{V}$ such that

(1) $q_{b_{1}.b_{0}}f_{b_{1}}(x)\in V_{1}$ and $st(V_{1}, \mathcal{V}_{1})\subset V_{2}$.

Take any $b>b_{1}$ . By the property of $f$ and the choice of $b_{1},$ $(q_{b_{1},b_{0}}f_{b_{1}}, q_{b.b_{0}}f_{b})$

$<\mathcal{V}_{1}$ . There exists $V_{3}\in \mathcal{V}_{1}$ such that $q_{b_{1},b_{0}}f_{b_{1}}(x),$ $q_{b,b_{0}}f_{b}(x)\in V_{3}$ and then by (1)

(2) $q_{b,b_{0}}f_{b}(x)\in st(V_{1}, \mathcal{V}_{1})\subset V_{2}$ for each $b>b_{1}$ .
(2) is the required condition. Thus we have Claim 1.

Since $Y_{b_{0}}$ is topologically complete, there exists a unique limit point $r(f)_{b_{0}}(x)$

of $C_{b_{0}}(x)$ . Then we have a function $r(f)_{b_{0}}$ : $X\rightarrow Y_{b_{0}}$ . It is easy to show that

(3) $q_{b_{0}^{\prime}.b_{0}}r(f)_{b_{0}^{\prime}}=r(f)_{b_{0}}$ for any $b_{0}^{\prime}>b_{0}$ .
Claim 2. For each $\mathcal{V}\in C_{017}(Y_{b_{0}})$ there exists $b_{2}>b_{0}$ such that $(q_{b.b_{0}}f_{b}, r(f)_{b_{0}})$

$<\mathcal{V}$ for each $b>b_{2}$ .
Take any $\mathcal{V}\in c_{ov}(Y_{b_{0}})$ . By (AI3) there exists $b_{2}>b_{0}$ such that $q_{b_{2}.b_{0}}^{-1}\mathcal{V}>$

$st\mathcal{V}_{b_{2}}$ . Take any $b>b_{2}$ and any $x\in X$. Since $r(f)_{b_{2}}(x)=\lim C_{b_{2}}(x)$ , there exists
$b_{2}(x)>b_{2}$ such that $q_{b^{\prime}.b_{2}}f_{b^{\prime}}(x)\in st(r(f)_{b_{2}}(x), \mathcal{V}_{b_{2}})$ for each $b^{\prime}>b_{2}(x)$ . Then there
exists $V_{1}\in \mathcal{V}_{b_{2}}$ such that $q_{b_{2}(x),b_{2}}f_{b_{2}(x)}(x),$ $r(f)_{b_{2}}(x)\in V_{1}$ . By the condition of $f$

there exist $V_{2},$ $V_{3}\in \mathcal{V}_{b_{2}}$ such that $f_{b_{2}}(x),$ $q_{b_{2}(x).b_{2}}f_{b_{2}(x)}(x)\in V_{2}$ and $f_{b_{2}}(x),$ $q_{b,b_{2}}f_{b}(x)$

$\in V_{3}$ . Then $r(f)_{b_{2}}(x),$ $q_{b.b_{2}}f_{b}(x)\in st(V_{2}, \mathcal{V}_{b_{2}})$ . By the choice of $b_{2}$ there exists
$V\in \mathcal{V}$ such that $q_{b_{2}.b_{0}}r(f)_{b_{2}}(x),$ $q_{b.b_{0}}f_{b}(x)\in V$ . Then $(q_{b_{2}.b_{0}}r(f)_{b_{2}}, q_{b.b_{0}}f_{b})<\mathcal{V}$ and
hence by (3) we have Claim 2.
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Claim 3. $r(f)_{b_{0}}$ : $X\rightarrow Y_{b_{0}}$ is continuous.
Take any $x\in X$ and any neighborhood $G$ of $r(f)_{b_{0}}(x)$ in $Y_{b_{0}}$ . Since $Y_{b_{0}}$ is

a Tychonoff space, there exist $\mathcal{V},$ $\mathcal{V}_{1}\in c_{ov}(Y_{b_{0}})$ such that $st\mathcal{V}_{1}<\mathcal{V}$ and

(4) $st(r(f)_{b_{0}}(x), \mathcal{V})\subset G$ .
By Claim 2 there exists $b_{2}>b_{0}$ such that

(5) $(q_{b.b_{0}}f_{b}, r(f)_{b_{0}})<\mathcal{V}_{1}$ for $b>b_{2}$ .
Since $q_{b_{2}.b_{0}}f_{b_{2}}$ : $X\rightarrow Y_{b_{0}}$ is continuous, there exists an open neighborhood $H$ of $x$

in $X$ such that

(6) $q_{b_{2}.b_{0}}f_{b_{2}}(H)\subset st(q_{b_{2},b_{0}}f_{b_{2}}(x), \mathcal{V}_{1})$ .
Take any $x^{\prime}\in H$. By (5) there exist $V_{1},$ $V_{2}\in \mathcal{V}_{1}$ such that $q_{b_{2},b_{0}}f_{b_{2}}(x^{\prime})$ ,
$r(f)_{b_{0}}(x^{\prime})\in V_{1}$ and $q_{b_{2}.b_{0}}f_{b_{2}}(x),$ $r(f)_{b_{0}}(x)\in V_{2}$ . By (6) there exists $V_{3}\in \mathcal{V}_{1}$ such
that $q_{b_{2},b_{0}}f_{b_{2}}(x^{\prime}),$ $q_{b_{2},b_{0}}f_{b2}(x)\in V_{3}$ . Thus $r(f)_{b_{0}}(x^{\prime}),$ $r(f)_{b_{0}}(x)\in V_{1}\cup V_{2}\subset st(V_{3}, \mathcal{V}_{1})$

$\subset V_{4}$ for some $V_{4}\in \mathcal{V}$ , because $st\mathcal{V}_{1}<\mathcal{V}$ . By (4) $r(f)_{b_{0}}(x^{\prime})\in st(r(f)_{b_{0}}(x), \mathcal{V})\subset G$ .
This means that $r(f)_{b_{0}}(H)\subset G$ . Hence it is continuous.

By (3.3) and (7.1) $q:Y\rightarrow qf$ is an inverse limit. By Claim 3 and (3) there
exists a map $r(f):X\rightarrow Y$ such that

(7) $q_{b}r(f)=r(f)_{b}$ for $b\in B$ .
Claim 4. $(f_{b}, q_{b}r(f))<st\mathcal{V}_{b}$ for $b\in B$ .
Take any $b_{0}\in B$ . By Claim 2 there exists $b_{2}>b_{0}$ satisfying $(q_{b_{2}.b_{0}}f_{b_{2}}, r(f)_{b_{0}})$

$<\mathcal{V}_{b_{0}}$. Since $(q_{b_{2}.b_{0}}f_{b_{2}}, f_{b_{0}})<\mathcal{V}_{b_{0}}$ by the property of $f$, by (7) $(f_{b_{0}}, q_{b_{0}}r(f))<st\mathcal{V}_{b_{0}}$.
Hence we have Claim 4.

Claim 5. If $g,$ $h:X\rightarrow Y$ are maps such that $(q_{b}g, q_{b}h)<st^{2}\mathcal{V}_{b}$ for $b\in B$ ,

then $g=h$ .
We assume that $g\neq h$ . There exists $x\in X$ such that $g(x)\neq h(x)$ . Since

$q:Y\rightarrow qf$ is an inverse limit by (7.1), there exists $b\in B$ such that $q_{b}g(x)\neq q_{b}h(x)$ .
Since $Y_{b}$ is Tychonoff, there exists $\mathcal{V}\in c_{ov}(Y_{b})$ such that $ st(q_{b}g(x), \mathcal{V})\cap$

$ st(q_{b}h(x), \mathcal{V})=\emptyset$ . By (AI3) there exists $b^{\prime}>b$ such that $q_{b^{\prime}.b}^{-1}\mathcal{V}>st^{2}\mathcal{V}_{b^{\prime}}$ . This
and the assumption imply that $(q_{b}g, q_{b}h)<\mathcal{V}$ . Then there exists $V\in \mathcal{V}$ such
that $q_{b}g(x),$ $q_{b}h(x)\in V$ . This means that $ st(q_{b}g(x), \mathcal{V})\cap st(q_{b}h(x), \mathcal{V})\neq\emptyset$ . This
is a contradiction. Hence $g=h$ . We have Claim 5.

From Claims 4 and 5 we have the uniqueness of $r(f)$ . Hence we have
completed the proof. $\blacksquare$

(7.3) LEMMA. Let $Y,$ $Y_{b}\in 0bCT0P_{3.5}$ for $b\in B$ . For any approximative
system map $f:(X, \epsilon U)\rightarrow(qf, \mathcal{V})$ there exists a unique map $r(f);X\rightarrow Y$ such that
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$(f_{b}p_{f(b)}, q_{b}r(f))<st\mathcal{V}_{b}$ for each $b\in B$ .

When we apply (7.2) to the collection $\{f_{b}p_{f(b)} : b\in B\}$ of maps, we have
(7.3). $\blacksquare$

(7.4) LEMMA. Let $f:X\rightarrow Y$ be a map. Under the same conditions as in (7.3),

if $f$ is an approximative resolution of $f$ with respect to $p$ and $q$ , then $r(f)=f$.

(7.5) LEMMA. Let $f^{\prime}:(X, \eta)\rightarrow(qf, \mathcal{V})$ be an approximative system map.
Under the same conditions as in (7.3), if $[f]=[f^{\prime}]$ , then $r(f)=r(f^{\prime})$ .

(7.4) and (7.5) follow from Claim 5 in the proof of (7.2). $\blacksquare$

Let $k=\{k, k_{c} : c\in C\}$ : $Z\rightarrow(q, q\mu)=\{(Z_{c}, \wp_{c}), k_{c^{\prime}.c}, C\}$ be an approximative

resolution of a space $Z$ . Let $g=\{g, g_{\iota} : c\in C\}$ : $(^{c}t\oint, \mathcal{V})\rightarrow(\pi, \wp)$ be an approxi-

mative system map.

(7.6) LEMMA. Let $Y,$ $Y_{b},$ $Z,$ $Z_{c}\in 0bCTOP_{35}$ . For each l-refinement func-
tion $u;C\rightarrow C$ of $(\pi, qv)r(g)r(f)=r(k(u)(gf))$ .

PROOF. Take any $c\in C$. Since $(g_{u(c)}q_{gu(c)}, k_{u(c)}r(g))<st\wp_{u(c)}$ by (7.3),

$(g_{u(c)}q_{gu(c)}r(f), k_{u(c)}r(g)r(f))<st\wp_{u(c)}$ . Since $(f_{gu(c)}p_{fgu(c)}, q_{gu(c)}r(f))<st\mathcal{V}_{gu(c)}$

by (7.3), by (AM1) and (2.2) $(g_{u(c)}f_{gu(c)}p_{fgu(c)}, g_{u(c)}q_{gu(c)}r(f))<stq\mu_{u(c)}$ . Then
$(g_{u(c)}f_{gu(c)}p_{fgu(c)}, k_{u(c)}r(g)r(f))<st^{2}\wp_{u(c)}$ . Since $u$ is a l-refinement function,

we have that

(1) $(k_{u(c),c}g_{u(c)}f_{gu(c)}P_{fgu(c)}, k_{c}r(g)r(f))<st\wp_{c}$ .

By (7.3)

(2) $(k_{u(c).c}g_{u(c)}f_{gu(c)}p_{fgu(c)}k_{c}r(k(u)(gf)))<st^{c}W_{c}$.

By (1) and (2) $(k_{c}r(g)r(f), k_{c}r(k(u)(gf)))<st^{2}\varphi_{c}$ . Hence by Claim 5 in the proof

of (7.2) $r(g)r(f)=r(k(u)(gf))$ . $\blacksquare$

(7.7) LEMMA. Let $q:Y\rightarrow(qj, \mathcal{V})$ be an approximative AP-resolution. Under

the same conditions as in (7.3) $[f]=[r(f)]_{p.q}$ for each approximative system map
$f:(X, (U)\rightarrow(\wp, \mathcal{V})$ .

PROOF. Take any l-refinement function $u$ of $(q;, \mathcal{V})$ and any $b\in B$ . By

(7.3) $(f_{u(b)}p_{fu(b)}, q_{u(b)}r(f))<st\mathcal{V}_{u(b)}$ and then $(q_{u(b).b}f_{u(b)}p_{fu(b)}, q_{b}r(f))<\mathcal{V}_{b}$ . This

means that $q(u)f$ is an approximative resolution of $r(f)$ with respect to $p$ and

$q$ . Thus $[r(f)]_{p.q}=[q(u)f]$ . Since $[f]=[q(u)f]$ by (2.6), $[f]=[r(f)]_{p,q}$ . $\blacksquare$
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We assume that all spaces are completely Tychonoff spaces. Let $p,$ $q$ and
$p^{\prime}$ : $X\rightarrow(X, cU)^{\prime},$ $q^{\prime}$ : $Y\rightarrow(c\forall, \mathcal{V})^{\prime},$ $k:Z\rightarrow(f\Gamma, 9\nu)$ be approximative POL-resolutions.

Let $f:(X, V)\rightarrow(qj, \mathcal{V})$ be an approximative system map. By (7.3) there

exists a unique map $r(f):X\rightarrow Y$. By (7.5) $r(f)$ does not depend on representa-

tions of the equivalence class $[f]$ . Thus we may define $r([f])=r(f)$ .
Let $g:(c1\oint, \mathcal{V})\rightarrow(\pi, w)$ be an approximative system map. (7.6) means that

(i) $r([g])r([f])=r([g][f])$ .
By (7.4) we have that

(ii) $r([1_{X}]_{p.p^{\prime}})=1_{X}$ .
By (i) and (ii) we can easily show that for an approximative system maps
$f^{\prime}$ : $(X, q$] $)^{\prime}\rightarrow(q;, \mathcal{V})^{\prime}$

(iii) if $\langle[f]\rangle=\langle[f^{\prime}]\rangle$ , then $r([f])=r([f^{\prime}])$ .
(iii) means that $r([f])$ does not depend on representations of the equivalence

class $\langle[f]\rangle$. Thus we may define $r(\langle[f]\rangle)=r([f])$ . By (i) and (ii) we easily

show that

(iv) $r(\langle[g^{\prime}]\rangle)r(\langle[f]\rangle)=r(\langle[g^{\prime}]\rangle\langle[f]\rangle)$ , where $g^{\prime}:(ct;, \mathcal{V})^{\prime}\rightarrow(g, \varphi\mu)^{\prime}$ is an
approximative system map.

By (ii) we have that

(v) $r(\langle[1_{X}]_{p.p^{\prime}}\rangle)=1_{X}$ .
Now we define the realization functor $R;ASh(CTOP_{3.5})\rightarrow CT0P_{3.5}$ as follows:

$R(X)=X$ for $X\in 0bCT0P_{3.5}$ and $R(m)=r(\Phi(p, q)^{-1}(m))$ for $m\in ASh(CT0P_{35})$

(X, $Y$ ). Here $p:X\rightarrow(X, cU)$ and $q:Y\rightarrow(c|j, \mathcal{V})$ are approximative POL-resolu-

tions and $\Phi(p, q):E(p, q)\rightarrow ASh(X, Y)$ is defined in (5.4). By (iii) $R$ is well

defined. By (iv) and (v) $R$ forms a functor. (7.4) and (iii) mean that $R\circ AS=1$ .
(7.7) and (iii) mean that $AS\circ R=1$ . Hence we summarize as follows:

(7.8) THEOREM. There exists a realization functor $R:A8h(CT0P_{3.5})\rightarrow CT0P_{8.5}$

with the following commutative diagram:

$\blacksquare$

Let $P$ be the full subcategory of TOP consisting of all paracompact spaces.

Note that paracompact spaces are topologically complete Tychonoff spaces.
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(7.9) COROLLARY. (i) $R:ASh(CT0P_{3.5})\rightarrow CT0P_{3.5}$ is a categorical isomor-
phism.

(ii) $R$ induces a categorical isomorphism $R:AShP(P)\rightarrow P$. $\blacksquare$

(7.10) COROLLARY. Let $f:X\rightarrow Y$ be a map. Let $p:X\rightarrow(X, \eta)$ and $ q:Y\rightarrow$

$(qJ, \mathcal{V})$ be approximative AP-resolutions. Let $f:(X, V)\rightarrow(q\oint, \mathcal{V})$ be an approxi-

mative resolution of $f$ with respect to $p$ and $q$ . Then the following assertions
are equivalent:

(i) $f$ satisfies (ISO) in Appro-AP.
(ii) $[f]$ is an isomorphism in Appro-AP.
(iii) AS $(f)$ is an isomorphism in ASh.
(iv) $CT(f):CT(X)\rightarrow CT(Y)$ is a homeomorphism.

(7.11) COROLLARY. Spaces $X$ and $Y$ have the same approximative shape type

iff CT(X) and $CT(Y)$ are homeomorphic.

PROOFS OF (7.10) AND (7.11). We show (7.10). (i) and (ii) are equivalent

by (2.16). From the definition of ASh it is easy to show that (ii) and (iii) are
equivalent. By (6.9), (6.11) and (7.8) (iii) and (iv) are equivalent. (7.11) follows

from (6.9), (6.11) and (7.10). $\blacksquare$

Shape theory is a generalization of homotopy theory on POL. The principle

of shape theory is to “ investigated bad spaces and bad maps by means of the
good category HPOL”. (7.9) gives us a new description of $CT0P_{35}$ . Thus we
can study TOP throughout ASh. The principle of approximative shape theory

is to “ Investigate bad spaces and bad maps by means of the good category POL”.
Our theory and shape theory are similar in ideas. We say that our approxi-

mative shape theory is a shape theory without homotopies. In the papers which
will follow we will show that ASh has richer structures than TOP and has

many applications in topology.
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