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0. Introduction

A Riemannian curvature is said to be harmonic if the Ricci tensor $S$ satisfies the so-call-
ed Codazzi equation $\delta S=0$ . Riemannian manifolds with harmonic curvature are studied by

A. Derzi\’{n}ski [2] and A. Gray [4], who required a sufficient condition for the manifolds to be
Einstein and constmcted examples of non-parallel Ricci tensor. On the other hand, hyper-
surfaces with harmonic curvature in a Riemannian manifold of constant curvature are
recently investigated by E. $\hat{0}$machi [9], M. Umehara [12] and the authors [5], who deter-
mined completely the manifold stmctures provided that the mean curvature is constant, or
provided that the shape operator has no simple roots. The purpose of this paper is to in-
vestigate submanifolds with harmonic curvature in a Riemannian manifold of constant cur-
vature.

1. Submanifolds

Let $\overline{M}=M^{n+p}(c)$ be an $(n+p)$-dimensional connected Riemannian manifold of constant
curvature $c$ and $\phi$ an isometric immersion of an n-dimensional connected Riemannian
manifold $M$ into $\overline{M}$. When the argument is local, $M$ need not be distinguished from $\phi(M)$ .
We choose a local field of orthonormal frames $\{e_{1}, \cdots, e_{n}, e_{n+1}, \cdots, e_{n+p}\}$ in $\overline{M}$, in such a
way that, restricted to $M$, the vectors $e_{1},$ $\cdots,$ $e_{n}$ are tangent to $M$ and hence the others are
normal to $M$. Let $\{\overline{\omega}_{1}, \cdots,\overline{\omega}_{n},\overline{\omega}_{n+1}, \cdots,\overline{\omega}_{n+p}\}$ be the field of dual frames with respect to
the above frame field. Here and in the sequel the following convention on the range of in-
dices are used, unless otherwise stated:

$A,$ $B,$ $\cdots=1,$ $\cdots,$ $n,$ $n+1,$ $\cdots,$ $n+p$ ,
$i,j,$ $\cdots=1,$ $\cdots,$ $n$ ,
$\alpha,$

$\beta,$ $\cdots=n+1,$ $\cdots,$ $n+p$ .
Then the stmcture equations of $\overline{M}$ are given by
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$d\overline{\omega}_{A}+\Sigma_{B}\overline{\omega}_{AB}\wedge\overline{\omega}_{B}=0$ ,
(1.1)

$d\overline{\omega}_{AB}+\Sigma_{C}\overline{\omega}_{AC}$ A $\overline{\omega}_{CB}=c\overline{\omega}_{A}$ A $\overline{\omega}_{B}$ ,

where $\overline{\omega}_{AB}$ denote connection forms on $\overline{M}$. By restricting these forms $\overline{\omega}_{A}$ and $\overline{\omega}_{\mathscr{O}}$ to $M$,

they are simply denoted by $\omega_{A}$ and $\omega_{AB}$ without bar, respectively. Then we have

(1.2) $\omega_{\alpha}=0$ .

The metric on $M$ induced from the Riemannian metric $\overline{g}$ on the ambient space $\overline{M}$ under the
immersion $\phi$ is given by $g=2\Sigma_{i}\omega_{i}\omega_{i}$ . Then $\{e_{1}, \cdots, e_{n}\}$ becomes a field of orthonormal
frames on $M$ with respect to this metric and $\{\omega_{1}, \cdots, \omega_{n}\}$ are the canonical forms on $M$. It
follows from (1.1), (1.2) and Cartan’s lemma that

(1.3) $\omega_{\alpha i}=\Sigma_{j}h_{ij}^{\alpha}\omega_{j}$, $h_{ij}^{\alpha}=h_{ji}^{\alpha}$ .
The quadratic form $\Sigma_{i,j}h_{ij}^{\alpha}\omega_{i}\omega_{i}$ is called a secondfundamentalform on $M$ in the direction of
$e_{\alpha}$ and the second fundamental form $\sigma$ on $M$ can be written as

$\sigma(X, Y)=\Sigma_{\alpha,ij}h_{ij}^{\alpha}\omega_{i}(X)\omega_{j}(Y)e_{\alpha}$

for any tangent vectors $X$ and $Y$. For the canonical forms $\{\omega_{i}\}$ and the connection forms
$\{\omega_{ij}\}$ , the following equations on $M$ are given:

$d\omega_{i}+\Sigma_{j}\omega_{ij}\wedge\omega_{j}=0$ ,
(1.4)

$d\omega_{ij}+\Sigma_{k}\omega_{ik}\wedge\omega_{kj}=\Omega_{ij}$ ,

$\Omega_{ij}=-\frac{1}{2}\Sigma_{k,l}R_{iju}\omega_{k}\wedge\omega_{l}$,

where $\Omega_{ij}$ and $R_{ijkl}$ denote the curvature form and the Riemannian curvature tensor on $M$ re-
spectively. Moreover the forms $\{\omega_{\alpha\beta}\}$ which are called nomal connection forms in the nor-
mal bundle $N(M)$ of $M$ satisfy

$d\omega_{\alpha\beta}+\Sigma_{\gamma}\omega_{\alpha\gamma}\wedge\omega_{\gamma\beta}=\Omega_{\alpha\beta}$ ,
(1.5)

$\Omega_{\alpha\beta}=-\frac{1}{2}\Sigma_{k,l}R_{\alpha\beta u}\omega_{k}\wedge\omega_{l}$,

where $\Omega_{\alpha\beta}$ and $R_{\alpha\beta kl}$ are called the noryptal curvature form and the normal curvature tensor on
$M$. By means of the above stmcture equations on $M$ and $\overline{M}$, the Gauss equation of the sub-
manifold is obtained as

(1.6) $R_{ijkl}=c(\delta_{il}\delta_{jk}-\delta_{ik}\delta_{jl})+\Sigma_{\alpha}(h_{il}^{\alpha}h_{jk}^{\alpha}-h_{ik}^{\alpha}h_{jl}^{\alpha})$ .
Now, the covariant derivative $h_{ijk}^{\alpha}$ of $h_{ij}^{\alpha}$ are defined as follows:

(1.7) $\Sigma_{k}h_{ijk}^{\alpha}\omega_{k}=dh_{ij}^{\alpha}-\Sigma_{k}h_{kj}^{\alpha}\omega_{h}-\Sigma_{k}h_{ik}^{\alpha}\omega_{kj}+\Sigma_{\beta}h_{ij}^{\beta}\omega_{\alpha\beta}$ .
By differentiating (1.3) exteriorly and by making use of (1.1), (1.4) and (1.7), the equation

$d\omega_{\alpha i}=\Sigma_{j}dh_{ij}^{\alpha}$ A $\omega_{j}+\Sigma_{j}h_{ij}^{\alpha}d\omega_{j}$
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is reduced to

$\Sigma_{j,k}h_{ijk}^{\alpha}\omega_{k}\wedge\omega_{j}=0$ ,

from which the Codazzi equation on $M$

(1.8) $h_{ijk}^{\alpha}-h_{ikj}^{\alpha}=0$

is yielded. By taking account of the stmcture equation (1.1) of the ambient space, the nor-
mal curvature form on $M$ is also given by

$\Omega_{\alpha\beta}=-\Sigma_{j}\omega_{\alpha i}\wedge\omega_{i\beta}$ ,

which means

(1.9) $R_{\alpha\beta kl}=\Sigma_{i}(h_{il}^{\alpha}h_{ik}^{\beta}-h_{ik}^{\alpha}h_{il}^{\beta})$ .

This is called the Ricci equation of the submanifold $M$.
A smooth section in the normal bundle $N(M)$ of $M$ is called a normal vector field on $M$.

When a normal vector field $\xi$ on $M$ is given, its covariant derivative with respect to the nor-
mal connection means the normal vector field $ D\xi$ , which is defined as follows: If
$\xi=\Sigma_{\alpha}V^{\alpha}e_{\alpha}$ , then

$D\xi=\Sigma_{\alpha}DV^{\alpha}e_{\alpha}$ , $DV^{\alpha}=dV^{\alpha}+\Sigma_{\beta}\omega_{\alpha\beta}V^{\beta}$ .

It is easily seen that this is well defined, namely it is independent of the choice of the nor-
mal frames on $M$. By means of this normal connection $D$ and the shape operator $A_{\alpha}=A_{e\alpha}$

for the normal vector $e_{\alpha}$ which is defined by $g(A_{\alpha}X, Y)=\overline{g}(\sigma(X, Y),$ $e_{\alpha}$ ), the normal cur-
vature $R_{\alpha\beta u}$ is given by

$R_{\alpha\beta kl}=g([A_{\alpha}, A_{\beta}](e_{k}), e_{l})$

(1.10)
$=g((D_{k}D_{l}-D_{l}D_{k}-D([e_{k}, e_{l}]))e_{\alpha}, e_{\beta})$ ,

where $D(X)Y=D_{X}Y$ and $D_{k}=D(e_{k})$ .
A given normal vector field $\xi$ on $M$ is said to be parallel in the normal bundle if it

satisfies $D\xi=0$ for the normal connection $D[7]$ . For a parallel normal vector field $\xi$ , we put
$\xi=ae_{n+1}$ , where $ a=\Vert\xi\Vert$ is constant. Then a local field of orthonormal frames $\{e_{n+1},$ $\cdots$ ,

$e_{n+p}\}$ such that $e_{n+1}$ is parallel may be chosen. In this case, the fact that $\xi$ is parallel and
(1.10) show

(1.11) $\omega_{n+1\beta}=0$ , $R_{n+1\beta kl}=0$ .

2. Parallel mean curvature vector

Let $M$be an n-dimensional submanifold with harmonic curvature in $M^{n+p}(c)$ . This sec-
tion is devoted to the investigation of submanifolds with parallel mean curvature vector.

The covariant derivative of the Ricci tensor satisfies
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(2.1) $R_{ijk}=R_{ikj}$ .

Let $\tau$ be the mean curvature vector field. Namely, it is defined by

$\tau=\Sigma_{i}\sigma(e_{i}, e_{i})/n=\Sigma_{\alpha}h^{\alpha}e_{\alpha}/n$ ,

where $h^{\alpha}=\Sigma_{i}h_{ii}^{\alpha}$ , which is independent of the choice of the local field of orthonormal frames
$\{e_{\alpha}\}$ . Let us assume that the mean curvature vector is parallel, and we may choose a local
field $\{e_{\alpha}\}$ in such a way that $\tau=ae_{n+1}$ . Because of the choice of the local field, the
parallelism of $\tau$ yields

$h^{\alpha}=0$ , $\alpha\geqq n+2$ ,
(2.2)

$h^{n+1}=n||\tau||$ .
From Gauss and Codazzi equations and the definition of harmonic curvature it follows that

(2.3) $\Sigma_{\alpha.r}h_{ijr}^{\alpha}h_{rk}^{\alpha}=\Sigma_{\alpha,r}h_{ikr}^{\alpha}h_{\dot{\eta}}^{\alpha}$.
By means of the Ricci eq. (1.10), the normal curvature on $M$ implies

$[A_{n+1}, A_{\alpha}]=0$

for any index $\alpha$ , which yields

(2.4) $\Sigma_{r}h_{ir}h_{\dot{\eta}}^{\alpha}=\Sigma_{r}h_{jr}h_{n}^{\alpha}$ ,

where $h_{ij}=h_{ij}^{n+1}$ . By the straightforward calculation of the exterior derivative of the above
equation, we have

(2.5) $\Sigma_{r}(h_{irk}h_{\dot{\eta}}^{\alpha}+h_{ir}h_{\eta k}^{\alpha})=\Sigma_{r}(h_{jrk}h_{n}^{\alpha}\cdot+h_{jr}h_{nk}^{\alpha})$ ,

from which it follows

$\Sigma_{\alpha.r,s}(h_{irk}h_{rs}^{\alpha}h_{sj}^{\alpha}-h_{rsk}h_{sj}^{\alpha}h_{\dot{n}}^{\alpha})=\Sigma_{\alpha,r.s}(h_{irk}^{\alpha}h_{rs}h_{sj}^{\alpha}-h_{rsk}^{\alpha}h_{ir}h_{sj}^{\alpha})$ .
By the properties (2.3) and (2.4) the second term in the right hand side is deformed as
follows:

$-\Sigma_{\alpha,r,s}h_{nk}^{\alpha}h_{ir}h_{sj}^{\alpha}=-\Sigma_{\alpha.r,s}h_{jsk}^{\alpha}h_{ir}h_{rs}^{\alpha}=-\Sigma_{\alpha,r,s}h_{jsk}^{\alpha}h_{sr}h_{n}^{\alpha}$ .

This means that the right hand side is skew-symmetric with respect to indices $i$ and $j$ and
therefore it tums out that

(2.6) $\Sigma_{\alpha,r,s}h_{ijk}h_{\kappa k}h_{n}^{\alpha}\cdot h_{sj}^{\alpha}=\Sigma_{\alpha,r.s}h_{ijk}h_{irk}h_{rs}^{\alpha}h_{sj}^{\alpha}$ .
On the other hand, for fixed indices $k$ and $\alpha\Sigma_{r}(h_{irk}h_{\eta}^{\alpha}-h_{ir}^{\alpha}h_{\dot{\eta}k})$ can be regarded as a

square matrix of order $n$ . By (2.6) the norm of this matrix with respect to the usual inner
product vanishes identically, which implies

(2.7) $\Sigma_{r}h_{irk}h_{\eta}^{\alpha}=\Sigma_{r}h_{ir}^{\alpha}h_{\eta k}$

for any indices $\alpha,$
$i,$ $j$ and $k$ . The eqs. (2.5) and (2.7) show
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(2.8) $\Sigma_{r}h_{ir}h_{\eta k}^{\alpha}=\Sigma_{r}h_{jr}h_{nk}^{\alpha}$ .

Since the matrix $h_{ij}$ is diagonalizable, the local field $\{e_{j}\}$ can be specialized so that $h_{ij}=\lambda_{i}\delta_{ij}$ .
Then, for the eigenvalues $\lambda_{i}$ the following result is proved.

LEMMA 2.1. Each eigenvalue $\lambda_{i}$ is constant on $M$.

PROOF. In the case where $\alpha=n+1$ in (2.8), we get

(2.9) $\Sigma_{r}h_{ir}h_{\eta k}=\Sigma_{r}h_{jr}h_{nk}=\Sigma_{r}h_{kr}h_{\dot{n}j}$ .

This shows that a formula similar to that given in the case of hypersurfaces with harmonic
curvature can be derived. Namely, it is easy that $dh_{2}=0$ , where the function $h_{2}$ on $M$ is
defined by $h_{2}=\Sigma_{i,j}h_{ij}h_{ij}$ . When a function $h_{m}$ for any integer $m\geqq 2$ is defined by
$h_{m}=\Sigma_{i,j,\cdots,l}h_{ij}h_{jk}\cdots h_{li}$ , m-times, it is easily seen that

$dh_{m+1}(X)/(m+1)=dh_{m}(A_{n+1}(X))/m$

can be derived by using the eq. (2.9). This implies inductively the fact that the function $h_{m}$

for any integer $m\geqq 2$ is constant on $M$. This means that the assertion is verified.
By $\mu_{1},$ $\cdots,$ $\mu_{k}$ mutually distinct eigenvalues of the shape operator $A_{n+1}$ are denoted.

Let $n_{1},$ $\cdots,$ $n_{k}$ be their multiplicities. Since each eigenvalue $\mu_{a}(a=1, \cdots, k)$ is constant, the

smooth distribution $T_{a}$ which consists of all eigenspaces associated with the eigenvalue $\mu_{a}$

can be defined. By using the notation $[i]=\{j:\lambda_{j}=\lambda_{i}\}$ the distribution $T_{a}$ is given by
$T_{a}=$ { $\omega_{i}=0$ for $i\not\in[a]$ }. For $i\not\in[a]$ the stmcture eq. (1.4) shows

$d\omega_{i}=-\Sigma_{k}\omega_{ik}\wedge\omega_{k}\equiv-\Sigma_{k\epsilon[a]}\omega_{ik}\wedge\omega_{k}$ $(mod. \omega_{j}:j\not\in[a])$ ,

which implies that the distribution $T_{a}$ is completely integrable, provided that $\omega_{ik}\equiv 0(mod$ .
$\omega_{j};j\not\in[a])$ for any index $k\in[a]$ . In particular, the distribution $T_{a}$ is said to be parallel if the
connection forms $\omega_{ij}$ satisfy $\omega_{ik}=0$ for $i\not\in[a]$ and $k\in[a]$ . The parallelism of the distribution
means geometrically that the covariant derivative of the vector field belonging to the
distribution belongs also to itself.

LEMMA 2.2. Distributions $T_{a}$ are mutually orthogonal and parallel.

PROOF. Mutual orthogonality is trivial. Since the second fundamental form $h_{ij}$ can be
diagonalized, we have by (2.4) and (2.8) $(\lambda_{j}-\lambda_{i})h_{ij}^{\alpha}=0$ and $(\lambda_{i}-\lambda_{j})h_{ijk}^{\alpha}=0$ , which show that

$h_{ij}^{\alpha}=0$ , $h_{ijk}^{\alpha}=0$

for any index $\alpha$ provived that $\lambda_{i}\neq\lambda_{j}$ . Accordingly we have

(2.10) $h_{ij}^{\alpha}=0$ , $h_{ijk}^{\alpha}=0$ for $i\not\in[a],$ $j\in[a]$ ,

from which the definition of $h_{ijk}$ gives

$(\lambda_{j}-\lambda_{j})\omega_{ji}=0$ for $i\not\in[a],$ $j\in[a]$ ,
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because the eigenvalues are all constant. This concludes the proof.
By means of Lemma 2.2 and the local decomposition theorem (cf. [6]) the above discus-

sion is summerized in the following way.

PROPOSITION 2.3. Let $\overline{M}$ be an $(n+p)$ -dimensional Riemannian manifold of constant
curvature $c$, and Man n-dimensional submamfold with harmonic curvature in M. If the mean
curvature vector of $M$ is parallel in the normal bundle, then $M$ is locally a product ofRieman-
nian manifolds.

In the case where the ambient space is a Euclidean space, the theorem due to B. Smyth
[10] is completely applied to the situation given above. Thus we have

THEOREM 2.4. Let $M$ be a compact simply connected Riemannian manifold with har-
monic curvature and $\phi$ the isometric immersion of$M$ into $R^{n+p}$ . If the mean curvature vector is
parallel in the normal bundk, then $M$ is a product of Riemannian manifolds $M_{1}\times\cdots\times M_{b}$

and $\phi$ is a product of minimal immersions of their factors into spheres.

3. Flat normal connection

This section is concemed with the study of submanifolds with flat normal connection.
Let $\overline{M}$ be an $(n+p)$ -dimensional Riemannian manifold of constant curvature $c$ and $M$ an n-
dimensional submanifold with harmonic curvature in $\overline{M}$. The normal connection of $M$ is
said to be flat if the normal curvature form $\Omega_{\alpha\beta}$ vanishes identically. As is well known [1],

the normal connection is flat if and only if there exist $p$ mutually orthogonal unit normal
vector fields $e_{\alpha}$ such that each of the $e_{\alpha}$ is parallel in the normal bundle. Of course, all of the
shape operators $A_{\alpha}$ can be simultaneously diagonalizable. These facts imply that we may
choose a local field of orthonormal frames $\{e_{i}, e_{\alpha}\}$ such that

(3.1) $\omega_{\alpha\beta}=0$ , $[A_{\alpha}, A_{\beta}]=0$ .

In addition, assume that the mean curvature vector $\tau$ is parallel in the normal bundle. It is
easily seen that the function $h^{\alpha}$ is constant for any index $\alpha$ on $M$. Accordingly, under these
situations all of calculations which were done for the parallel mean curvature vector in the
previous section are considered. Consequently we have

LEMMA 3.1. The second fundamental form $\sigma$ on $M$ is parallel.

PROOF. Using (3.1) we have $\Sigma_{r}h_{ir}^{\alpha}h_{\eta}^{\beta}=\Sigma_{r}h_{jr}^{\alpha}h_{n}^{\beta}$ , from which it follows

(3.2) $\Sigma_{r}h_{irk}^{\alpha}h_{\eta}^{\beta}=\Sigma_{r}h_{jrk}^{\alpha}h_{n}^{\beta}$

by the similar argument to that of (2.7). Therefore it tums out that

$\Sigma_{r}h_{jr}^{\beta}h_{irk}^{\alpha}=\Sigma_{r}h_{ir}^{\beta}h_{\eta k}^{\alpha}=\Sigma_{r}h_{kr}^{\beta}h_{\dot{\eta}i}^{\alpha}$ .
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By differentiating the equation exteriorly and by making use of the Ricci formula, the
straightforward calculation gives rise to

$\Sigma_{r}(h_{ljr}^{\beta}h_{hr}^{\alpha}+h_{ljr}^{\alpha}h_{hr}^{\beta}-h_{ijr}^{\beta}h_{lkr}^{\alpha}-h_{ijr}^{\alpha}h_{lkr}^{\beta})=\Sigma_{r,s}(R_{liks}h_{sr}^{\alpha}h_{rj}^{\beta}-R_{hrs}h_{sj}^{\beta}h_{rk}^{\alpha}$

$-R_{hrs}h_{rk}^{\beta}h_{sj}^{\alpha}-R_{lijs}h_{sr}^{\alpha}h_{rk}^{\beta})$ .

Because all shape operators $A_{\alpha}$ are simultaneously diagonalizable, alocal field of orthonor-
mal frames $\{e_{i}\}$ may be chosen such that $h_{ij}^{\alpha}=\lambda_{i}^{\alpha}\delta_{ij}$ . This shows

(3.3) $\Sigma_{r}(h_{ljr}^{\alpha}h_{kir}^{\beta}+h_{ljr}^{\beta}h_{kir}^{\alpha}-h_{ijr}^{\alpha}h_{lkr}^{\beta}-h_{ijr}^{\beta}h_{lk\prime}^{\alpha})=R_{likj}(\lambda_{j}^{\alpha}-\lambda_{k}^{\alpha})(\lambda_{j}^{\beta}-\lambda_{k}^{\beta})$

for any indices $\alpha,$
$\beta,$ $i,$ $j,$ $k$ and $l$. When $l=j,$ $k=i$ and $\alpha=\beta$ in (3.3), it is reduced to

(3.4) $R_{ijji}(\lambda_{j}^{\alpha}-\lambda_{i}^{\alpha})^{2}=2\Sigma_{r}(h_{iir}^{\alpha}h_{jjr}^{\alpha}-h_{ijr}^{\alpha}h_{ijr}^{\alpha})$ .

On the other hand, (3.2) is equivalent to $(\lambda_{j}^{\beta}-\lambda_{i}^{\beta})h_{ijk}^{\alpha}=0$ , which yields that for any indices $\beta$

and $k$

(3.5) $h_{ijk}^{\beta}=0$ ,

provided that there exist indices $i$ and $j$ such that $\lambda_{l}^{\alpha}\neq\lambda_{j^{\alpha}}$ . Under this condition, (3.4) is de-
formed as $R_{ijji}(\lambda_{j^{\alpha}}-\lambda_{i}^{\alpha})^{2}=0$ for any indices. In fact, for a fixed $\alpha$ , the same notation $[i]$ as
that in \S 2, that is, $[i]=\{k:\lambda_{k}^{\alpha}=\lambda_{i}^{\alpha}\}$ is adapted. Then $\Sigma_{r}h_{ijr}^{\alpha}h_{ijr}^{\alpha}$ vanishes identically, because
of $\Sigma_{r}=\Sigma_{r\in[i]}+\Sigma_{r\in[j]}+\Sigma_{r\not\in[i]\cup[j]}$ . This means $R_{ijji}=0$ if $\lambda_{i}^{\alpha}\neq\lambda_{j}^{\alpha}$ . Summing up for $i,j$ and $\alpha$ in
(3.4) we have

$-2\Sigma_{\alpha,tj,k}h_{ijk}^{\alpha}h_{ijk}^{\alpha}=\Sigma_{ij}R_{ijji}\Sigma_{\alpha}(\lambda_{j}^{\alpha}-\lambda_{i}^{\alpha})^{2}$ .

By coming back together with above two equations, the fact that the second fundamental
form of $M$ is parallel is asserted. According to the decomposition theorem of J. Erbacher
[3], K. Yano and S. Ishihara [13] and M. Takeuchi [11], we can prove the following

THEOREM 3.2. Let $\overline{M}$ be an $(n+p)$ -dimensional complete simply connected Riemannian
manifold of constant curvature $c$, and let $M$ be an n-dimensional Riemannian submanifold
with harmonic curvature in M. Assume that the mean curvature vector is pamllel in the normal
bundle and the normal connection is flat. Then the second fundamental form is parallel and
moreover $\iota fM$ is complete, then the following properties are asserted:

(a) When $c\geqq 0,$ $M$ is a product ofRiemannian manifolds $M_{1}\times\cdots\times M_{k}$, where each $M_{a}$

is a small $n_{a}$-dimensional sphere of $\overline{M}$, except that one of $M_{a}$ is a great sphere.
(b) When $c<0$ , $M$ is a product of Riemannian manifolds $M^{no}(c_{0})\times M_{1}$

$\times\cdots\times M_{k}\subset M^{n0}(c_{0})\times M^{n+p-no-I}(c^{\prime})\subset M^{n+p}(c)$ with $c_{0}<0$ , $c’>0,1/c_{0}+1/c^{\prime}=1/$

$c$ , where $M_{1}\times\cdots\times M_{k}\subset M^{n+p-no-1}(c^{\prime})$ is a submamfold as the one in the case
where $c>0$ and the second inclusion is the natural one.
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