SOME ALMOST-HOMOGENEOUS COMPLEX STRUCTURES

ON $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$

Mirella Manaresi

1. Introduction

It is well known that on $\boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C})$ there exists an infinite sequence of different complex structures, namely the Hirzebruch surfaces $\Sigma_{2 m}, m \in \boldsymbol{N}$. These surfaces are of the form $\boldsymbol{P}\left(\mathcal{O}_{P_{1}}(m) \oplus \mathcal{O}_{P_{1}}(-m)\right.$) and are all almost-homogeneous (see [H]). In generalization of this, Brieskorn has studied \boldsymbol{P}^{n}-bundles over \boldsymbol{P}^{1} and has proved that all complex structures on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{n}$ satisfying some supplementary conditions (see [Br], (5.3)) are such \boldsymbol{P}^{n}-bundles. All these structures are almost-homogeneous.

Motivated by these results, it is natural to consider complex structures on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of the form $\boldsymbol{P}(E)$, where E is a topologically trivial holomorphic vector bundle of rank 3 on \boldsymbol{P}^{2}. In contrast with the situation on \boldsymbol{P}^{1}, a complete classification of such bundles is not known, however Bǎnicǎ has classified all topologically trivial rank 2 vector bundles on \boldsymbol{P}^{2} (see [B], §2). In particular these bundles do not depend only on discrete parameters, but also on "continuous" moduli. Using rank 3 vector bundles on \boldsymbol{P}^{2} of the form $E:=F \oplus \mathcal{O}_{P}$, with F topologically trivial of rank 2 , one can easily construct complex structures on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$, depending on "continuous" moduli, which are not almost-homogeneous.

Here we study some examples of almost-homogeneous complex structures on $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ of the form $\boldsymbol{P}(E)$, for homogeneous and almost-homogeneous E. In $\S 2$ are studied the cases when E is $T_{P^{2}}(-1) \oplus \mathcal{O}_{P^{2}}(-1)$ or its dual (together with $\mathcal{O}_{P^{2}}^{\oplus 3}$, these are the only topologically trivial homogeneous rank 3 vector bundles on \boldsymbol{P}^{2}, see for example [M]. It turns out that the automorphism group of $X_{1}:=\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}}(-1) \oplus \mathcal{O}_{\boldsymbol{P}^{2}}(-1)\right)$ has an open orbit, whose complement is an irreducible homogeneous hypersurface (hence X_{1} gives an example of the manifolds classified by Ahiezer [Ah]), while the automorphism group of $X_{2}:=\boldsymbol{P}\left(T_{P^{2}}(-2) \oplus \mathcal{O}_{P^{2}}(1)\right)$ has an open orbit, whose complement is irreducible and homogeneous of codimension 2. In §3 we consider the complex manifold $X:=\boldsymbol{P}\left(F \oplus \mathcal{O}_{P^{2}}\right)$ with F a topologically trivial rank 2 vector bundle on \boldsymbol{P}^{2} of generic splitting type ($-1,1$) and we prove that the automorphism group of X has an open orbit, whose complement is an irreducible hypersurface, which contains a whole fiber of $\boldsymbol{P}(E)$.

This paper was written with the financial support of M.P.I. (Italian Ministry of Education). The author is a member of G.N.S.A.G.A. of the C.N.R.
Received September 2, 1985.

Section 1.

In this section we introduce some notations and preliminary material.
Here a vector bundle is always a holomorphic vector bundle and we often identify vector bundles and locally free sheaves. Following the notations of [OSS] for a vector bundle $E \rightarrow \vec{\pi} S$ we denote by $E(x)$ the fiber over a point $x \in S$.

Let S be a complex manifold, $E \rightarrow{ }_{n} S$ a rank m vector bundle on S, and let $P(E){ }_{p} S$ be the corresponding projective bundle. Set $X:=\boldsymbol{P}(E)$. We denote by
-Aut (E) the group of all biholomorphic maps $E \rightarrow E$, which tranform fibers in fibers and are linear on fibers;
-Aut $(\boldsymbol{P}(E))$ the group of all biholomorphic maps of $\boldsymbol{P}(E)$ into itself, which transform fibers in fibers;

- $\mathrm{Aut}_{s}(E), \mathrm{Aut}_{S}(\boldsymbol{P}(E))$ the subgroups of all elements of Aut (E) and Aut $(\boldsymbol{P}(E))$ respectively, which induce the identity on S;
$-\mathrm{PGL}(E)$ the subgroup of all elements of $\mathrm{Aut}_{s}(\boldsymbol{P}(E))$, which are induced by elements of $\mathrm{Aut}_{s}(E)$;
-Aut (X) the group of all biholomorphic maps of X onto itself.

(1.1) Proposition.

With the same notations as above, let us suppose S simply connected. Then

$$
\operatorname{Aut}_{s}(\boldsymbol{P}(E))=\operatorname{PGL}(E) .
$$

Proof: Let U be a simply connected open subset of S such that $E \mid U$ is trivial. An element $\phi \in$ Aut $_{U}(\boldsymbol{P}(E \mid U)$) can be regarded as a holomorphic map $\bar{\phi}: U \rightarrow \mathrm{PGL}(m)$. Since U is simply connected and SL (m) is a coverning space of PGL (m), the map $\bar{\phi}$ can be lifted to a holomorphic map $\Phi: U \rightarrow \mathrm{SL}(m)$, and this gives an element $\Phi \in \mathrm{Aut}_{s}(E \mid U)$, which induces ϕ.

Now let $\phi \in \operatorname{Aut}_{S}(\boldsymbol{P}(E))$ and let $\mathcal{U}:=\left\{U_{i}\right\}_{i \in I}$ be an open covering of S such that every U_{i} is simply connected and $E \mid U_{i}$ is trivial. Then for each U_{i} there exists $\Phi_{i} \in \mathrm{Aut}_{U_{i}}\left(E \mid U_{i}\right)$ with $\operatorname{det} \Phi_{i}=1$, which induces ϕ. On $U_{i} \cap U_{j}$ the two matrices Φ_{i} and Φ_{j} induce the same projective automorphism ϕ, therefore they coincide up to the multiplication by an m-th root of unity. Thus we obtain an element of $H^{1}\left(S, \mu_{m}\right)$, where μ_{m} is the locally constant sheaf of m th roots of unity. Since S is simply connected $H^{1}\left(S, \mu_{m}\right)=0$, hence $\Phi_{i} \cdot \Phi_{j}^{-1}=\lambda_{i} \cdot \lambda_{j}^{-1}$ where λ_{i}, λ_{j} are m-th roots of unity. Thus the $\lambda_{i}^{-1} \cdot \Phi_{i}$ can be glued together to give an element $\Phi \in \mathrm{Aut}_{s}(E)$ which induces ϕ.

We recall the following
(1.2) Definition.

Let S be a homogeneous complex manifold and let $E \vec{\pi} S$ be a vector bundle on S.

We say that E is homogeneous if for all $g \in$ Aut (S) one has $g^{*} E \simeq E$.
We say that E is almost-homogeneous if there exists a subgroup G of Aut (S), one of whose orbits is a Zariski open dense subset of S, such that $g^{*} E \simeq E$ for all $g \in G$.
(1.3) Corollary.

Let S be a homogeneous simply connected complex manifold, $E_{\vec{\pi}} S$ a homogeneous vector bundle on S and let $\boldsymbol{P}(E) \vec{p} S$ be the corresponding projective bundle.
Then there is the exact sequence

$$
0 \rightarrow \operatorname{PGL}(E) \rightarrow \operatorname{Aut}(\boldsymbol{P}(E)) \rightarrow \operatorname{Aut}(S) \rightarrow 0 .
$$

Proof: This is an obvious consequence of (1.1).

Section 2.

In this section we show that the complex manifolds $X_{1}:=\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}} \oplus \mathcal{O}_{\boldsymbol{P}^{2}}\right)$ and $X_{2}:=$ $\boldsymbol{P}\left(T_{P^{2}}(-3) \oplus \mathcal{O}_{P^{2}}\right)$ are almost-homogeneous and we determine the orbits with respect to the action of the group of automorphisms.

It is well known (see [A], th. 3) that in the decomposition $E:=E_{1} \oplus \cdots \oplus E_{n}$ of a vector bundle over a compact variety into direct sum of indecomposable bundles, the bundles E_{i} are uniquely determined up to order and isomorphy; however in general the bundles E_{i} are not uniquely determined as subbundles of E.

(2.1) Lemma.

Let $E_{1}:=T_{P^{2}} \oplus \mathcal{O}_{P^{2}}$. In this decomposition only the vector bundle $F_{1}:=T_{P^{2}} \oplus 0$ is uniquely determined as subbundle of E_{1}.

Proof: We first observe that the vector bundle $G_{1}:=0 \oplus \mathcal{O}_{P^{2}}$ is not uniquely determined as subbundle of E, since it is not invariant under an automorphism $\phi \in A u t_{s}\left(E_{1}\right)$ of the form

$$
\left(\begin{array}{c|c}
i d_{T_{P^{2}}} & \psi \\
\hline 0 & i d_{\theta_{P^{2}}}
\end{array}\right)
$$

with $\psi \in \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, T_{P^{2}}\right), \psi \neq 0$.
On the other hand, from the Euler sequence

$$
0 \rightarrow \mathcal{O}_{P^{2}}(-1) \rightarrow \mathcal{O}_{P^{2}}^{\oplus 3} \rightarrow T_{P^{2}}(-1) \rightarrow 0,
$$

if follows that the vector bundle $T_{P^{2}}(-1)$ is generated by global sections, therefore $F_{1}(-1)$ is the subbundle of $E_{1}(-1)$ generated by $\Gamma\left(\boldsymbol{P}^{2}, E_{1}(-1)\right)$ and this characterizes $F_{1}(-1)$ as subbundle of $E_{1}(-1)$.
(2.2) Corollary.

Let $E_{2}:=T_{P^{2}}(-3) \oplus \mathcal{O}_{P^{2}}$. In this decomposition only the vector bundle $G_{2}:=0 \oplus \mathcal{O}_{P^{2}}$ is uniquely determined as subbundle of E_{2}.

Proof: Since E_{2} is the dual bundle of E_{1} and G_{2} consists of the linear forms on E_{1}, which are zero on $F_{1}:=T_{P^{2}} \oplus 0$, the assertion follows from (2.1).
(2.3) Theorem.

Let $E_{1}:=T_{P^{2}} \oplus \mathcal{O}_{P^{2}}$ and let $X_{1}:=\boldsymbol{P}\left(E_{1}\right)$. The group Aut $\left(X_{1}\right)$ has exactly two orbits: $A_{1}:=\boldsymbol{P}\left(T_{P^{2}} \oplus 0\right)$ and $A_{2}:=X_{1}-A_{1}$.

Proof: We first prove that A_{1} is transformed into itself by all $\phi \in \operatorname{Aut}\left(X_{1}\right)$. By [S], th. A, Aut $\left(X_{1}\right)=$ Aut $\left(\boldsymbol{P}\left(E_{1}\right)\right)$, hence ϕ determines an automorphism $\bar{\phi} \in$ Aut (S) and an isomorphism $\boldsymbol{P}\left(E_{1}\right) \leadsto \bar{\phi}^{*} \boldsymbol{P}\left(E_{1}\right)$, which induces the identity on \boldsymbol{P}^{2} and which can be identified with ϕ. Therefore E_{1} is isomorphic to $\bar{\phi}^{*} E_{1} \otimes \mathcal{O}_{P^{2}}(k)$ and calculating the first Chern classes one sees that $k=0$. Thus ϕ induces an isomorphism $\Phi: E_{1} 工 \bar{\phi}^{*} E_{1}$, which must transform $\left(T_{P^{2}} \oplus 0\right)(x)$ into $\left(\bar{\phi}^{*}\left(T_{P^{2}} \oplus 0\right)\right)(x)=\left(T_{P^{2}} \oplus 0\right)(\bar{\phi}(x))$ for all $x \in \boldsymbol{P}^{2}$. Therefore $\phi\left(\boldsymbol{P}\left(T_{P^{2}} \oplus 0\right)\right)$ $=\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}} \oplus 0\right)$.

Now we prove that the action of Aut (X_{1}) is transitive on both A_{1} and A_{2}, by showing that for all $x \in \boldsymbol{P}^{2}$ the subgroup of Aut $\left(X_{1}\right)$, which fixes the fiber $\boldsymbol{P}\left(E_{1}\right)_{x}$, acts transitively on $A_{1} \cap \boldsymbol{P}\left(E_{1}\right)_{x}$ and on $A_{2} \cap \boldsymbol{P}\left(E_{1}\right)_{x}$. Let $\xi, \xi^{\prime} \in A_{1} \cap \boldsymbol{P}\left(E_{1}\right)_{x}$. They correspond to lines r, r^{\prime} of \boldsymbol{P}^{2} through the point x. Let $\alpha \in \operatorname{Aut}\left(\boldsymbol{P}^{2}\right)$ be such that $\alpha(x)=x$ and $\alpha(r)=r^{\prime}$ and take an element $\phi \in \operatorname{Aut}\left(\boldsymbol{P}\left(E_{1}\right)\right)$ such that $\bar{\phi}=\alpha$. It is easy to show that $\phi(\xi)=\xi^{\prime}$.

$$
\text { Since End } \quad E_{1}=\left(\begin{array}{l|l}
\text { End } T_{P^{2}} & \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, T_{P^{2}}\right) \\
\hline \operatorname{Hom}\left(T_{P^{2}}, \mathcal{O}_{P^{2}}\right) & \text { End } \mathcal{O}_{P^{2}}
\end{array}\right)
$$

and since $\operatorname{Aut}_{P^{2}}\left(T_{P^{2}}\right) \simeq \operatorname{Aut}_{P^{2}}\left(\mathcal{O}_{P^{2}}\right) \simeq \boldsymbol{C}^{*}$ the action on $\boldsymbol{P}\left(E_{1}\right)_{x}$ of an element of PGL $\left(E_{1}\right)$ can be thought as the action on \boldsymbol{P}^{2}, with projective coordinates ($x_{1}: x_{2}: x_{3}$), of a matrix like

$$
\left(\begin{array}{ccc}
\lambda & 0 & a_{1} \\
0 & \lambda & a_{2} \\
0 & 0 & \mu
\end{array}\right) \text { with } \lambda, \mu \in C^{*}, a_{1}, a_{2} \in C
$$

In this $\boldsymbol{P}^{2}, A_{1} \cap \boldsymbol{P}\left(E_{1}\right)_{x}$ can be identified with the line $x_{3}=0$ and $A_{2} \cap \boldsymbol{P}\left(E_{1}\right)_{x}$ with the complement of such a line; therefore it is clear that PGL (E) acts transitively on $A_{2} \cap \boldsymbol{P}\left(E_{1}\right)$.
(2.4) Theorem.

Let $F_{2}:=T_{P^{2}}(-3) \oplus \mathcal{O}_{P^{2}}$ and let $X_{2}:=\boldsymbol{P}\left(E_{2}\right)$. The orbits of X_{2} with respect to the action of Aut $\left(X_{2}\right)$ are exacty $B_{1}:=\boldsymbol{P}\left(0 \oplus \mathcal{O}_{P^{2}}\right)$ and $B_{2}:=X_{2}-B_{1}$.

Proof: With an argument similar to the one used in prop. (2.3) and using (2.2), one has that all $\phi \in \operatorname{Aut}\left(X_{2}\right)=\operatorname{Aut}\left(\boldsymbol{P}\left(E_{2}\right)\right)$ transform B_{1} into itself.

Since for all $x \in \boldsymbol{P}^{2}, B_{1} \cap \boldsymbol{P}\left(E_{2}\right)_{x}$ consists exactly of one point, we have only to prove that for all $x \in \boldsymbol{P}^{2}$ the action of the subgroup Σ of Aut (X_{2}), containing all automorphisms, which fix the fiber $\boldsymbol{P}\left(E_{2}\right)_{x}$, is transitive on $B_{2} \cap \boldsymbol{P}\left(E_{2}\right)_{x}$.
Let $\left(x_{1}: x_{2}: x_{3}\right)$ and $\left(y_{1}: y_{2}: y_{3}\right)$ be two points in $B_{2} \cap \boldsymbol{P}\left(E_{2}\right)_{x}$. With an argument similar to the one used in proving prop. (2.3), there exists $\phi \in \Sigma$, which transforms ($x_{1}: x_{2}: x_{3}$) into ($y_{1}: y_{2}: y_{3}^{\prime}$). Now there exists an element ψ in $\operatorname{PGL}\left(E_{2}\right)$ (whose action on $\boldsymbol{P}\left(E_{2}\right)_{x}$ can be thought as the action on \boldsymbol{P}^{2} of a matrix like
$\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ a_{1} & a_{2} & \mu\end{array}\right)$ with $\left.\lambda, \mu \in C^{*}, a_{1}, a_{2} \in C\right)$, which transforms $\left(y_{1}: y_{2}: y_{3}^{\prime}\right)$ in $\left(y_{1}: y_{2}: y_{3}\right)$.

Section 3.

In this section we show that the complex manifold $\boldsymbol{P}\left(F \oplus \mathcal{O}_{P^{2}}\right)$, where F is a rank 2 topologically trivial vector bundle on \boldsymbol{P}^{2} of generic splitting type ($-1,1$), is almosthomogeneous.

(3.1) Proposition.

Let F be a rank 2 topologically trivial vector bundle on \boldsymbol{P}^{2} of generic splitting type ($-1,1$). Then
i) there is an exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{P^{2}}(1) \underset{\alpha}{\rightarrow} F \underset{\beta}{\rightarrow} \mathscr{I}_{Z}(-1) \rightarrow 0, \tag{*}
\end{equation*}
$$

where Z is a simple point of \boldsymbol{P}^{2}, which determines the bundle F up to isomorphy;
ii) $F \simeq F^{\vee}$ (that is F is self-dual);
iii) F is almost-homogeneous.

Proof: i) The existence of the exact sequence $(*)$ has been proved by Bǎnicá (see [B], lemma 4).
Now let F^{\prime} be a vector bundle on \boldsymbol{P}^{2}, which makes exact the sequence

$$
0 \rightarrow \mathcal{O}_{P^{2}}(1) \rightarrow F^{\prime} \rightarrow \mathcal{I}_{Z}(-1) \rightarrow 0
$$

Both F and F^{\prime} correspond to elements $\eta, \eta^{\prime} \in \operatorname{Ext}^{1}\left(\mathcal{I}_{Z}(-1), \mathcal{O}_{P^{2}}(1)\right.$, which are not zero, since the trivial extension $\mathcal{O}_{P^{2}}(1) \oplus \mathcal{S}_{Z}(-1)$ is not a vector bundle. But, from [B], $\S 2$, $\operatorname{dim} \operatorname{Ext}^{1}\left(\mathcal{J}_{Z}(-1), \mathcal{O}_{P^{2}}(1)\right)=1$, therefore $\eta=a \eta^{\prime}$ with $a \in C^{*}$, hence $F \simeq F^{\prime}$.
ii) Since F has rank 2, we have $F^{\vee} \simeq F \otimes \operatorname{det} F^{\vee} \simeq F$.
iii) Let $G:=\left\{g \in \operatorname{Aut}\left(\boldsymbol{P}^{2}\right) \mid g(Z)=Z\right\}$, and let $g \in G$.

The vector bundle $g^{*} F$ makes exact the sequence

$$
0 \rightarrow \mathcal{O}_{P^{2}} \rightarrow g^{*} F \rightarrow \mathcal{I}_{Z}(-1) \rightarrow 0
$$

and with the same argument used in (i), $g^{*} F \simeq F$.

(3.2) Lemma.

Let $E:=F \oplus \mathcal{O}_{p^{e}}$, with F as in (3.1), and let $\mathcal{V}_{1}:=\alpha\left(\mathcal{O}_{P^{2}}(1)\right) \oplus 0, \mathcal{V}:=\alpha\left(\mathcal{O}_{p^{2}}(1)\right) \oplus \mathcal{O}_{p^{2}}$. The filtration $\vartheta_{1} \subset \mathfrak{V} \subset E$ is invariant with respect to Aut (E).

Proof: From the exact sequence (*), one has $\Gamma\left(\boldsymbol{P}^{2}, F\right)=\Gamma\left(\boldsymbol{P}^{2}, \alpha\left(\mathcal{O}_{\boldsymbol{P}^{2}}(1)\right)\right.$). It follows $\mathcal{V}=\mathcal{O}_{\boldsymbol{P}^{2}} \cdot \Gamma\left(\boldsymbol{P}^{2}, E\right)$. In the same way, from the exact sequence

$$
0 \rightarrow \mathcal{O}_{P^{2}} \vec{\alpha}^{\rightarrow} F(-1) \vec{\beta}^{\prime} \mathscr{I}_{Z}(-2) \rightarrow 0
$$

one has $\Gamma\left(\boldsymbol{P}^{2}, F(-1)\right)=\Gamma\left(\boldsymbol{P}^{2}, \alpha^{\prime}\left(\mathcal{O}_{P^{2}}\right)\right.$, hence $\mathcal{V}_{1}(-1)=\mathcal{O}_{P^{2}} \cdot \Gamma\left(\boldsymbol{P}^{2}, E(-1)\right)$.
(3.3) THEOREM.

Let $E:=F \oplus \mathcal{O}_{P^{2}}$, with F as in (3.1), and let $X:=\boldsymbol{P}(E)$. The action of Aut (X) on X has an open orbit, whose complement is an irreducible hypersurface $H \subset X$, which can be described as follows: let V be the subbundle of $E \mid P^{2}-Z$ defined by $V:=\left(\alpha\left(\mathcal{O}_{P(}(1)\right) \oplus \mathcal{O}_{P^{2}}\right) \mid P^{2}-Z$. Then $H=\boldsymbol{P}(V) \cup \boldsymbol{P}(E)_{z}$.

Proof: We first observe that, from the fact that Z is characterized by the property that every non-zero section of $E(-1)$ vanishes exactly on Z (see the proof of (3.2)), it follows that every $\phi \in \operatorname{Aut}(X)\left(=\operatorname{Aut}(P(E))\right.$ by [S], th. A) transforms $P(E)_{z}$ into itself. By lemma (3.2), with an argument similar to the one used in proving prop. (2.3), one has that every $\phi \in$ Aut (X) transforms also $\boldsymbol{P}(V)$ into itself.

Now we show that Aut (X) acts transitively on $A:=X-\left(\boldsymbol{P}(V) \cup \boldsymbol{P}(E)_{z}\right)$, by proving that for all $x \in \boldsymbol{P}^{2}-Z$ the subgroup $\operatorname{PGL}(E)$ of Aut (X) acts transitively on $A \cap \boldsymbol{P}(E)_{x}$.

$$
\text { We observe that End } E=\left(\begin{array}{l|l}
\operatorname{End} F & \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, F\right) \\
\hline \operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}\right) & \text { End } \mathcal{O}_{P^{2}}
\end{array}\right) .
$$

From the exact sequence (*) we get the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}(1)\right) \underset{\sigma}{\vec{\sigma}} \operatorname{End} F \underset{\tau}{\vec{\tau}} \operatorname{Hom}\left(F, \mathcal{I}_{z}(-1)\right) \rightarrow \cdots \tag{**}
\end{equation*}
$$

Since the endomorphisms of F, which are in $\operatorname{Im} \sigma=\operatorname{Ker} \tau$, cannot be surjective, $i d_{F} \notin \operatorname{Ker} \tau$, hence $\operatorname{dim}\left(\operatorname{Hom}\left(F, \mathcal{I}_{Z}(-1)\right)\right) \geqq 1$. On the other hand, from (*) we have also the exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{J}_{z}(-1), \mathcal{I}_{z}(-1)\right) \rightarrow \operatorname{Hom}\left(F, \mathcal{I}_{z}(-1)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{P^{2}}(1), \mathscr{J}_{z}(-1)\right) \rightarrow \cdots
$$

where $\operatorname{Hom}\left(\mathcal{O}_{P^{2}}(1), \mathcal{I}_{Z}(-1)\right) \quad \operatorname{Hom}\left(\mathcal{O}_{P^{2}}(1), \mathcal{O}_{P^{2}}(-1)\right)=0$. Therefore $\operatorname{Hom}\left(F, \mathcal{S}_{Z}(-1)\right)$ $\simeq \operatorname{Hom}\left(\mathcal{I}_{Z}(-1), \mathcal{I}_{Z}(-1)\right) \quad \operatorname{Hom}\left(\mathcal{I}_{Z}(-1), \mathcal{O}_{P}(-1)\right)$ and the last, by Riemann's extension theorem, is isomorphic to $\operatorname{Hom}\left(\mathcal{O}_{p^{2}}(-1), \mathcal{O}_{P^{2}}(-1)\right) \simeq C$. Therefore, $\operatorname{Hom}\left(F, \mathcal{I}_{Z}(-1)\right)$ $\simeq C$, and, since $\tau\left(i d_{F}\right) \neq 0$, the morphism τ of (**) is surjective and (**) becomes
(**)'

$$
0 \rightarrow \operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}(1)\right) \underset{\sigma}{\vec{\sigma}} \text { End } F \underset{\tau}{\rightarrow} \operatorname{Hom}\left(F, \mathcal{I}_{z}(-1)\right) \rightarrow 0 .
$$

Again from (*), we have the exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{J}_{Z}(-1), \mathcal{O}_{P^{2}}(1)\right) \rightarrow \operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}(1)\right) \rightarrow \operatorname{End}\left(\mathcal{O}_{P^{2}}(1)\right) \rightarrow 0,
$$

since $H^{1}\left(\operatorname{Hom}\left(\mathcal{I}_{Z}(-1), \mathcal{O}_{P^{2}}(1)\right) \simeq H^{1}\left(\mathcal{O}_{P^{2}}(2)\right)=0\right.$
as $\operatorname{codim} Z=2$. Moreover, since $\operatorname{Hom}\left(\mathcal{I}_{Z}(-1), \mathcal{O}_{P^{2}}(1)\right) \simeq \operatorname{Hom}\left(\mathcal{O}_{P^{2}}(-1), \mathcal{O}_{P^{2}}(1)\right) \simeq \mathcal{O}_{P^{2}}(2)$ and End $\left(\mathcal{O}_{P^{2}}(1)\right) \simeq \mathcal{O}_{P^{2}}$ are globally generated, for any point x in $\boldsymbol{P}^{2}-Z$ every homomorphism of $F(x)$ into $\left(\mathcal{O}_{P^{2}}(1)\right)(x)$ is induced by an element of $\operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}(1)\right)$. Now we fix a point x in $\boldsymbol{P}^{2}-Z$ and a base v_{1}, v_{2} of $F(x)$ such that $v_{1} \in\left(\alpha\left(\mathcal{O}_{P^{2}}(1)\right)(x)\right.$. With respect to such a base the automorphisms of $F(x)$ induced by global automorphisms of F can be represented by matrices of the type $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $a, c \in \boldsymbol{C}^{*}, b \in \boldsymbol{C}$. From (*) we have the exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, \mathcal{O}_{P^{2}}(1)\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, F\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, \mathcal{I}_{Z}(-1)=0,\right.
$$

hence $\operatorname{Hom}\left(\mathcal{O}_{P^{2}}, F\right) \simeq \operatorname{Hom}\left(\mathcal{O}_{P^{2}}, \mathcal{O}_{P^{2}}(1)\right)$, that is every homomorphism of $\mathcal{O}_{P^{2}}$ into F has values in $\alpha\left(\mathcal{O}_{P^{2}}(1)\right)$. From (*) we have also

$$
0 \rightarrow \operatorname{Hom}\left(\mathcal{J}_{Z}(-1), \mathcal{O}_{P^{2}}\right) \rightarrow \operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{P^{2}}(1), \mathcal{O}_{P^{2}}\right)=\Gamma\left(\boldsymbol{P}^{2}, \mathcal{O}_{P^{2}}(-1)\right)=0,
$$

hence $\operatorname{Hom}\left(F, \mathcal{O}_{P^{2}}\right) \simeq \operatorname{Hom}\left(\mathcal{I}_{Z}(-1), \mathcal{O}_{P^{2}}\right)$, that is every homomorphism of F into $\mathcal{O}_{P^{2}}$ is zero on $\alpha\left(\mathcal{O}_{P^{2}}(1)\right)$. Now we complete the base v_{1}, v_{2} of $F(x) \simeq(F \oplus 0)(x)$ to a base $v_{1}, v_{2}, v_{3} \in E(x)$ by adding a vector $v_{3} \in\left(0 \oplus \mathcal{O}_{P^{2}}\right)(x)$. With respect to such a base the automorphisms of $E(x)$ induced by global automorphisms of E can be represented by a matrix of the type

$$
\left(\begin{array}{lll}
a & b & d \\
0 & c & 0 \\
0 & e & f
\end{array}\right) \text { with } a, c, f \in C^{*}, b, d, e \in C
$$

Since $A \cap \boldsymbol{P}(E)_{x}$ can be identified with the complement of the line $x_{2}=0$, an easy computation shows that the action of $\mathrm{PGL}(E)$ on $A \cap \boldsymbol{P}(E)_{x}$ is transitive.

Now we prove that $H:=\boldsymbol{P}(V) \cup \boldsymbol{P}(E)_{z}$ is an irreducible hypersurface in X, by showing that $H=\overline{\boldsymbol{P}(V)}$. Let U be an open neighbourhood of Z, over which the bundles F and $\mathcal{O}_{\boldsymbol{P}^{2}}(1)$ are trivial and let (e_{1}, e_{2}) and e bases of $F \mid U$ and $\mathcal{O}_{P^{2}}(1) \mid U$ respectively. With respect to these bases, the morphism $\alpha: \mathcal{O}_{p^{2}}(1) \rightarrow F$ can be described as $\alpha(e)=f_{1} e_{1}+f_{2} e_{2}$, where f_{1}, f_{2} are holomorphic functions on U, which have exactly one common zero in the point Z. In $\boldsymbol{P}(E) \mid U \simeq U \times \boldsymbol{P}^{2}$ we have

$$
\boldsymbol{P}(V) \mid U-Z=\left\{\left(p ; t_{1}: t_{2}: t_{3}\right) \in(U-Z) \times \boldsymbol{P}^{2} \mid t_{1} f_{2}(p)-t_{2} f_{1}(p)=0\right\}
$$

hence

$$
\begin{aligned}
\overline{\boldsymbol{P}(V) \mid U-Z} & =\left\{\left(p ; t_{1}: t_{2}: t_{3}\right) \in U \times \boldsymbol{P}^{2} \mid t_{1} f_{2}(p)-t_{2} f_{1}(p)=0\right\} \\
& =\boldsymbol{P}(V) \mid(U-Z) \cup \boldsymbol{P}(E)_{z} .
\end{aligned}
$$

References

[Ah] Ahiezer, D. N., Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Soviet Math. Dokl. 20 (1979) 278-281.
[A] Atiyah, M., On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France 84 (1956) 307-317.
[B] Bǎnicà, C., Topologisch triviale holomorphe Vektorbündel auf $\boldsymbol{P}^{\boldsymbol{n}}(\boldsymbol{C})$. J. reine angew. Math. (Crelles Journal) 344 (1983) 102-119.
[Br] Brieskorn E., Über holomorphe $\boldsymbol{P}_{\boldsymbol{n}}$-Bündel über \boldsymbol{P}_{1}. Math. Annalen 157 (1965) 343-357.
[H] Hirzebruch F., Über eine Klasse von einfach-zusammenhängenden komplexen Mannigfaltigkeiten. Math. Annalen 124, (1951) 77-86.
[M] Manaresi, M., Families of homogeneous vector bundles on \boldsymbol{P}^{2}. J. Pure and Applied Algebra 35 (1985) 297-304.
[OSS] Okonek, C., Schneider, M., Spindler, H., Vector Bundles on Complex Projective Spaces. Progress in Math. 3, Birkhäuser 1980.
[S] Sato, E., Varieties which have different projective bundle structures. Preprint.

Mirella Manaresi
Università di Bologna
Dipartimento di Matematica
P.za di Porta S. Donato, 5
40127 Bologna (Italia)

