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ON PROJECTIVE COHEN-MACAULAYNESS OF A DEL PEZZO
SURFACE EMBEDDED BY A COMPLETE

LINEAR SYSTEM

By

Yuko HOMMA

Let $k$ be an algebraically closed field. We understand by a Del Pezzo surface
$X$ over $k$ a non-singular rational surface on which the anti-canonical sheaf $-\omega x$ is
ample. We call the self-intersection number $d=\omega_{X}^{2}$ of $\omega_{X}$ the degree of $X$, then
we get that $1\leqq d\leqq 9$ . It is well known that $X$ is isomorphic to $P^{1}\times P^{1}$ , which has
degree 8, or an image of $P^{2}$ under a monoidal transformation with center the union
of $r=9-d$ points which satisfies the following conditions:

(a) no three of them lie on a line;

(b) no six of them lie on a conic;
(c) there are no cubics which pass through seven of them and have a double

point at the eighth point.
Conversely any surface described above is a Del Pezzo surface of the corresponding

degree ([8, $m$ , Theorem 1]). It is also well known that $-\omega_{X}$ is very ample when
$d\geqq 3$ and that ample divisors on $X$ of degree 3, which is a cubic surface, are very
ample too. In this paper we will get that ample divisors on $X$ of degree $d\geqq 3$ are
very ample and that ample divisors on $X$ of degree 2 [resp. 1] other than $-\omega_{X}$

[resp. $-\omega x$ nor $-2\omega_{X}$] are very ample.

A closed subscheme $V$ in $P^{N}$ is said to be projectively Cohen-Macaulay if its
affine cone is Cohen-Macaulay. It is equivalent to that $H^{1}(P^{N}, 3_{V}(m))=0$ for every
$m\in Z$ and $H^{i}(V, \mathcal{O}_{V}(m))=0$ for every $m\in Z$ and $0<i<\dim V$. In this paper, we will
get that $\psi_{|D|}(X)$ is projectively Cohen-Macaulay for a very ample divisor $D$ on $X$,

where $\psi_{|D|}$ is the morphism from $X$ to $P^{dlm|D|}$ defined by the complete linear system

$|D|$ of $D$ . We also study the homogeneous ideal $I(D)=Ker[S\Gamma(D)\rightarrow\bigoplus_{n\geqq 0}\Gamma(nD)]$

defining $\psi_{|D|}(X)$ . These results will be stated and proved in \S 3 and \S 5. The

fourth section will be devoted to a study on $-n\omega_{X}$ of a Del Pezzo surface $X$ of
degree 1 or 2.

In \S 1 we will compute the dimension $h^{i}(D)$ of the i-th cohomology group
$H^{i}(X, \mathcal{O}_{X}(D))$ of the invertible sheaf $\mathcal{O}_{X}(D)$ corresponding to a divisor D.
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By abuse of terminology we use a divisor $D$ and the corresponding invertible
sheaf $\mathcal{O}_{X}(D)$ interchangeably. In \S 2 we have general studies of the equations
defining a projective variety. Throughout this paper a curve on a surface will
mean a reduced curve.

\S 1. Cohomology groups of a divisor on a Del Pezzo surface.

From now on, a Del Pezzo surface means one which is not $P^{1}\times P$ ‘ unless
otherwise specified. Let $X$ be a Del Pezzo surface of degree $d\leqq 8$ , and $f:X\rightarrow P^{2}$

be its representation in the form of monoidal transformation of the plane with
center $P_{1},$

$\cdots,$
$P_{r}$ . The linearly equivalent class of the exceptional curve $E_{i}=f^{-1}(P_{i})$

is denoted by $e_{i}\in Pic(X)$ . Put $l=f^{*}\mathcal{O}_{P}(1)$ . Then $(l, e_{1}, \cdots, e_{r})$ is a free basis of

Pic (X) and $\omega_{X}\sim-3l+\sum_{i=1}^{r}e_{i}$ . We denote by $\mathcal{E}$ the set of all exceptional curves on
$X$, then

$\mathcal{E}=$ { $Y|$ an irreducible curve $Y$ with $Y^{2}<0$}.

$\mathcal{E}$ is a finite set and it is easy to list up all $E\in \mathcal{E}$ , as follows.

a $b_{1}$ $b_{2}$ $b_{3}$ $b_{4}$ $b_{5}$ $b_{6}$ $b_{7}$ $b_{8}$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$

111 $0$ $0$ $0$ $0$ $0$ $0$

2 11111 $0$ $0$ $0$

3 2 111111 $0$

4 2 2 2 11111
5 2 2 2 2 2 2 11
6 3 2 2 2 2 2 2 2

where $\mathcal{O}_{X}(E)\sim al-\sum_{-1}^{r}b_{i}e_{i}$ with $b_{1}\geqq\cdots\geqq b_{r}$ .

We begin with a lemma on $X$ of degree 8, which is isomorphic to a rational
ruled surface $F_{1}$ with invariant one.

LEMMA 1.1. Let $X$ be a $Del$ Pezzo surface of degree 8 and $D\sim al-b_{1}e_{1}$ a divisor
on X Then the following assertions hold:

(1) if $a\geqq b_{1}\geqq-1$ or $a-b_{1}=-1$ , then $h^{1}(D)=h^{2}(D)=0$ ;
(2) $D$ is $ample\Leftrightarrow D$ is very $ample\Leftrightarrow a>b_{1}>0$ .

PROOF. We can prove (1) in the manner of [6, \S 71. The statement (2) is found
in [1, $V$, Cor. 2.18].

The following remark is available for us.
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REMARK 1.2. Let $X$ be a $Del$ Pezzo surface of degree $d\leqq 7$ and $D$ a divisor
with $D.E>0$ for each $E\in \mathcal{E}$ . Then there exists a monoidal transformation $f:X\rightarrow P^{2}$

such that $D\sim al-\sum_{i\Leftarrow 1}^{r}$ biei with $a\geqq b_{1}+b_{2}+b_{a}$ (in case $r=2,$ $a>b_{1}+b_{2}$ ) and $ b_{1}\geqq b_{2}\geqq\cdots\geqq$

$b_{r}>0$ .

PROOF. We prove the result by induction on $r$. The assertion is trivial for
$r=2$ . In fact for any monoidal transformation $f$ : $X\rightarrow P^{2}$ we can assume $ D.e_{1}\geqq$

$D.e_{2}$ . Also we get $D.(l-e_{1}-e_{2})>0$ and $D.e_{2}=b_{2}>0$ by the assumption.
For $r\geqq 3$ , choose $E_{r}$ so that $D.E=b_{r}$ is equal to the minimum value of $D.E$ for

any $E\in \mathcal{E}$ . Blowing down $E_{r}$ , we have a monoidal transformation $\pi:X\rightarrow X^{\prime}$ , where
$X^{\prime}$ is a Del Pezzo surface of degree $d+1$ . By the induction hypothesis for a
divisor $D^{\prime}$ on $X^{\prime}$ such that $\pi^{*}D^{\prime}\sim D+b_{r}e_{r}$ , there exists a monoidal transforma-
tion $f^{\prime}$ : $X^{\prime}\rightarrow P^{2}$ satisfying the condition of this remark. Then $ f^{;0}\pi$ is what we
want.

LEMMA 1.3. Let $X$ be a $Del$ Pezzo surface of degree $d\leqq 7$ and $D\sim al-\sum_{i=1}^{r}b_{i}e_{i}$

a divisor on Xsuch that $a\geqq b_{1}+b_{2}+b_{5}$ (if $r=3$ or 4, $a\geqq b_{1}+b_{2}+b_{r}$ ; if $r=2,$ $a>b_{1}+b_{2}$ )

and $b_{1}\geqq b_{2}\geqq\cdots\geqq b_{r}>0$ . Then in case $3\leqq d\leqq 7,$ $D$ is very ample and in case $d\leqq 2$ ,
$D$ is ample. Moreover in case $d=2,$ $|D|$ is free from base points.

PROOF. If $r=2$ , then it is clear that $D\sim-\omega_{X}+(b_{1}-1)(l-e_{1})+(b_{2}-1)(l-e_{2})+$

$(a-b_{1}-b_{2}-1)l$ is very ample. Because $-\omega_{X}$ is very ample and $|l-e_{i}|$ and $|l|$ are
free from base points. Next assume $r\geqq 5$ [resp. $r=3$ or 4]. We put $D_{r}=-\omega x$ ,

$D_{0}=l,$ $D_{1}=l-e_{1},$ $D_{i}=2l-\sum_{j=1}^{i}e_{j}$ , for $2\leqq i\leqq 4$ [resp. $2\leqq i\leqq r-1$ ], and $D_{k}=3l-\sum_{j=1}^{k}e_{j}$ , for

$5\leqq k\leqq r-1$ . Then $D$ is linearly equivalent to $\sum_{i=0}^{r}c_{i}D_{i}$ , where $c_{r}=b_{r},$ $c_{i}=b_{i}-b_{i+1}$ for
$1\leqq i\leqq r-1$ and $c_{0}=a-(b_{5}+b_{2}+b_{1})$ [resp. $c_{0}=a-(b_{r}+b_{2}+b_{1})$ ]. Since $|D_{i}|$ has no base
points and $c_{i}\geqq 0$ for every $i,$ $0\leqq i\leqq r-1,$ $D$ is ample or very ample according as $-\omega_{X}$

is ample or very ample. Also $|D|$ has no base points if $|-\omega_{X}|$ has no base points.

Since the anti-canonical divisor $3l-\sum_{i=1}^{6}e_{i}$ is very ample on a cubic surface, it has no

unassigned base points. This shows that $|-\omega_{X}|=|3l-\sum_{i=1}^{7}e_{i}|$ on $X$ of degree 2 has

no base points.

PROPOSITION 1.4.1. Let $D\sim al-\sum_{i=1}^{r}$ biei be a divisor on a $Del$ Pezzo surface $X$ of
degree $d\leqq 7$. Assume that $|D|$ has an irreducible curve. Then $h^{1}(D)=h^{2}(D)=0$ and

$h^{0}(D)=\frac{1}{2}(a+1)(a+2)-\sum_{i=1}^{r}\frac{1}{2}b_{i}(b_{i}+1)$ .
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$PROO1^{\tau^{\backslash }}$ . Let $Y\in|D|$ be an irreducible curve on $X$ and $p_{a}(Y)$ the arithmetic
genus of $Y$. We consider the following exact sequence

$0\rightarrow \mathcal{O}_{X}\rightarrow D\rightarrow D|_{Y}\rightarrow 0$ .

From its long cohomology sequence we have $H^{2}(D)=0$ and $H^{1}(D)\cong H^{1}(Y, D|_{Y})$ .
Since $\deg(D|_{Y})-(2p_{a}(Y)-1)=Y$. $(-\omega_{X})-1$ is not less than zero by the ampleness

of $-\omega_{X}$ , we get $h^{1}(Y, D|_{Y})=0$ and $h^{1}(D)=0$ . Finally $h^{0}(D)=h^{0}(D|_{Y})+1$ is computed
by Riemann-Roch theorem.

COROLLARY 1.4.2. Let $D\sim al-\sum_{i=1}^{r}b_{i}e_{i}$ be a divisor on a $Del$ Pezzo surface of
degree $d\leqq 7$ . Assume that $a\geqq b_{1}+b_{2}+b_{3}$ (in case $r=2,$ $a\geqq b_{1}+b_{2}$ ) and $ b_{1}\geqq b_{2}\geqq\cdots\geqq$

$b_{r}\geqq 0$ , then $h^{1}(D)=h^{2}(D)=0$ .

$PROOI^{I^{\neg}}$ . First we consider the case $r=2$ . If $a>b_{1}+b_{2}$ and $b_{2}>0$ , then $D$ is very
ample by Lemma 1.3. So $|D|$ has an irreducible curve, which proves $h^{1}(D)=h^{2}(D)=0$

by Proposition 1.4.1. Next if $a>b_{1}$ and $b_{2}=0$ , then $H^{i}(D)\cong H^{i}(F_{1}, al-b_{1}e_{1})$ , which
are vanishing by Lemma 1.1 (1) when $i=1$ or 2. In the other case (i.e., $a=b_{1}+b_{2}$ ),

we contract $l-e_{1}-e_{2}$ to a point on $P^{1}\times P^{1}$ . Any divisor on $P^{1}\times P^{1}$ is denoted by

a pair of integers $(, )$ in $Z\oplus Z$ under the isomorphism

Pic $(P^{1}\times P^{1})\cong p_{1}^{*}(PicP^{1})\oplus p_{2}^{*}(PicP^{1})=Z\oplus Z$,

where $p_{1}$ and $p_{2}$ are the projections of $P^{1}\times P^{1}$ onto the two factors. Then we get
$H^{i}(X, D)\cong H^{i}(P^{1}\times P^{1}, (b_{1}, b_{2}))$ , since $D$ is $b_{1}(l-e_{1})+b_{2}(l-e_{2})$ . By the assumption
$b_{1}\geqq b_{2}\geqq 0$ we get $H^{i}(P^{1}\times P^{1}, (b_{1}, b_{2}))=0$ for $i=1,2$ .

Second we consider the case when $3\leqq r\leqq 6$ . If $b_{r}>0$ , then $D$ is very ample by

Lemma 1.3. In that case we can apply Proposition 1.4.1 and conclude $h^{i}(D)=0$ for
$i=1,2$ . If $b_{r}=0$ , then $H^{i}(D)\cong H^{i}(X^{\prime}, D^{\prime})$ for each $i$ , where $X^{\prime}$ is the contraction of
$X$ via $E_{r}$ and $D^{\prime}$ is a divisor on $X^{\prime}$ such that $D$ is its transform. Thus we can
prove the corollary by induction on $r$ .

Finally for the case $r=7,8$ , we may assume $b_{r}>0$ by using the inductive proof
above. Let $C\in|-\omega_{X}|$ be an irreducible curve, which has the arithmetic genus
$p_{a}(C)=1$ . Consider the following exact sequence

$0\rightarrow D+t\omega_{X}\rightarrow D+(t-1)\omega_{X}\rightarrow D+(t-1)\omega_{X}|_{C}\rightarrow 0$

where $1\leqq t\leqq b_{r}$ . Since $\deg(D+(t-1)\omega_{X})|_{C}>0$ for $1\leqq t\leqq b_{r},$ $H^{1}(C, D+(t-1)\omega_{X})=0$ . So
we get the surjection $H^{1}(D+t\omega_{X})\rightarrow H^{1}(D(t-1)\omega_{X})$ and the isomorphism

$H^{2}(D+t\omega_{X})\cong H^{2}(D+(t-1)\omega x)$ .

Immediately we get the surjection $H^{1}(D+b_{r}\omega_{X})\rightarrow H^{1}(D)$ and the isomorphism
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$H^{2}(D+b_{r}\omega_{X})\cong H^{2}(D)$ . But $D+b_{r}\omega_{X}=(a-3b_{r})l-\sum_{i=1}^{r-1}(b_{i}-b_{r})e_{i}$ satisfies the condition of
this corollary too. Hence we obtain that $h^{i}(D+b_{r}\omega_{X})=0$ for $i=1,2$ , and $h^{i}(D)=0$

for $i=1,2$ as required.

COROLLARY 1.4.3. Let $D$ be an ample divisor on a $Del$ Pezzo surface $X$, which
may be isomorphic to $P^{1}\times P^{1}$ . Then:

(i) $H^{i}(X, D+\omega_{X})=0$ for $i=1,2$ ;
(ii) $H(X, -D)=0$ for $i=0,1$ .

PROOF. Since (i) and (ii) are equivalent by Serre’s duality, it is sufficient to
prove (i). In case $X\cong P^{2}$ or $P‘\times P^{1}$ , the assertion is clear. For the case $X\cong F_{1}$

see Lemma 1.1. For $r\geqq 2$ , by Remark 1.2 we may assume that $D$ is such that
$a\geqq b_{1}+b_{2}+b_{3}$ (in case $r=2,$ $a>b_{1}+b_{2}$ ) and $b_{1}\geqq\cdots\geqq b_{r}>0$ , because $D.E>0$ for all $E\in \mathcal{E}$

by Nakai’s criterion. It follows that $h^{i}((a-3)l-\sum_{i=1}^{r}(b_{i}-1)e_{i})=0$ for $i=1,2$ by Corol-
lary 1.4.2.

This corollary implies that Kodaira’s vanishing theorem holds on a Del Pezzo
surface in any characteristic. The following lemma is also a vanishing theorem on
some divisors which are not ample. This will be used in \S 4 and \S 5.

LEMMA 1.5. Let $X$ be a $Del$ Pezzo surface of degree $d\leqq 7$ and $E_{\alpha}^{\prime}s$ exceptional
curves on X Then:

(1) $h^{0}(E_{a})=1$ and $h^{1}(E_{\alpha})=h^{2}(E_{\alpha})=0$ ;
(2) $h^{i}(-E_{a})=0$ for every $i$ ;
(3) $h^{2}(E_{\alpha}-E_{\beta})=0$ ;
(4) $h^{2}(E_{\alpha}-E_{\beta}-E_{\gamma})=0$ and $h^{2}(-E_{\beta}-E_{\gamma})=0$ ;
(5) $h^{2}(E_{\alpha}-E_{\beta}-E_{\gamma}-E_{\delta})=0$ and $h^{2}(-E_{\beta}-E_{\gamma}-E_{\delta})=0$ unless $E_{\beta}.E_{\gamma}=E_{\gamma}.E_{\delta}=E_{\delta}.E_{\beta}=1$ .

PROOF. In Proposition 1.4.1, (1) is already proved. To prove (2) we assume
$X\cong F_{1}$ and $E_{\alpha}\sim e_{1}$ . Then (2) is given by Lemma 1.1 (1). For (3) we consider the
following exact sequence

$0\rightarrow-E_{\beta}\rightarrow E_{\alpha}-E_{\beta}\rightarrow \mathcal{O}_{P^{1}}(-1-F_{d}\alpha\cdot E_{\beta})\rightarrow 0$

and the resulting cohomology sequence $H^{2}(-E_{\beta})\rightarrow H^{2}(E_{\alpha}-E_{\beta})\rightarrow 0$ . Since
$H^{2}(-E_{\beta})=0$ , we get $H^{2}(E_{a}-E_{\beta})=0$ . Similarly if $H^{2}(-E_{\beta}-E_{\gamma})=0$ [resp. $H^{2}(-E_{\beta}-$

$E_{\gamma}-E_{\delta})=0]$ , then $H^{2}(E_{\alpha}-E_{\beta}-E_{\gamma})=0$ [resp. $H^{2}(-E_{\alpha}-E_{\beta}-E_{\gamma}-E_{\delta})=0$]. To show that
$H^{2}(-E_{\beta}-E_{\gamma})=0$ , we consider the following exact sequence

$0\rightarrow-E_{\beta}-E_{\gamma}\rightarrow-E_{\gamma}\rightarrow \mathcal{O}_{P^{1}}(-E_{\beta}.E_{\gamma})\rightarrow 0$ .

Since - $E_{\beta}.E_{\gamma}\geqq-1,$ $\Pi^{1}(\mathcal{O}_{P^{1}}(-E_{\beta}.E_{\gamma}))=0$ . This means $H^{2}(-E_{\beta}-E_{\gamma})\cong H^{2}(-E_{\gamma})$ , which
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is vanishing by (2). Finally assume that $E_{\beta}.E_{\gamma}\neq 1$ or $E_{\beta}.E_{\delta}\neq 1$ . Then in the same
manner we get $H^{2}(-E_{\beta}-E_{\gamma}-E_{\delta})\cong H^{2}(-E_{\gamma}-E_{\delta})$ because $H^{1}(\mathcal{O}_{P^{1}}(-E_{\beta}.E_{\gamma}-E_{\beta}.E_{\delta}))=0$ .
Hence we get that $H^{2}(-E_{\beta}-E_{\gamma}-E_{\delta})=0$ unless $E_{\beta}.E_{\gamma}=E_{\gamma}.E_{\delta}=E_{\delta}.E_{\beta}=1$ . We have
finished the proof.

\S 2. On the equations defining a projective variety.

In this section let V be a projective variety of dimension $n\geqq 2$ over $k$ .

PROPOSITION 2.1. Assume $V\subset P^{N}$ . Let $H$ be a hyperplane of $P^{N}$ such that
$v_{(\ddagger H}$ Put $V^{\prime}=V\cap H$ We denote by .9 $v$ the ideal sheaf of $V$ in $P^{N}$ and by $J_{V^{\prime},H}$

the ideal sheaf of $V^{\prime}$ in H For a positive integer $m$ , we assume $H^{1}(J_{V}(m))=0$ . If
1 $1(J_{V^{\prime}.H}(m+1))\otimes I^{\tau}(\mathcal{O}_{H}(1))\rightarrow l’(J_{V^{\prime}.H}(m+2))$ is surjective, then

$l^{1}(\beta_{V}(m+1))\otimes l^{\urcorner}(\mathcal{O}_{P}(1))\rightarrow I^{1}(\mathcal{J}_{V}(m+2))$

is also surjective. Futhermore if $H^{1}(c\mathcal{J}_{V}(m+1))=0$ , then the converse is also true.

PROOF. We note the following exact sequence

$(^{*})$

$0\rightarrow\beta_{V}()\rightarrow\bigotimes_{m}H_{\beta_{V}(m+1)}\rightarrow J_{V^{\prime},H}^{c}(m+1)\rightarrow 0$ ,

which is obtained from the exact sequence

$0\rightarrow \mathcal{O}_{P^{N}}(-1)\rightarrow\otimes H_{\mathcal{O}_{P^{N}}}\rightarrow \mathcal{O}_{H}\rightarrow 0$

tensored with $J_{V}^{c}(m+1)$ (cf. [3, p. 101]). Taking cohomology groups of the exact
suquences $(^{*})$ and $(^{*})\otimes \mathcal{O}_{P^{N}}(1)$ , we have the following commutative diagram.

$H^{0}(J_{V}(m+1))\otimes H^{0}(\mathcal{O}_{P}(1))$ – $H^{0}(J_{V^{\prime}.H}(m+1))\otimes H^{0}(\mathcal{O}_{P}(1))\rightarrow 0$

$/_{\backslash \backslash \backslash ^{\prime}\backslash ^{\prime}\backslash \backslash ^{\prime}\backslash ^{Z^{\backslash }}}’\backslash \backslash \backslash \backslash \backslash |\alpha$ $\downarrow$

$0-H^{0}((\mathcal{J}_{V}(m+1))-H^{0}(g_{V}(m+2))\rightarrow H^{0}(J_{V^{\prime}.H}(m+2))\rightarrow H^{1}(J_{V}(m+1))$

If we define the dotted arrow by $t-t\otimes H$ where $t\in H^{0}(J_{V}(m+1))$ , then the shaded
triangle commutes, which proves that the map $\alpha$ is surjective. The rest of the
proposition is clear.

COROLLARY 2.2. Assume $H^{1}(\mathcal{O}_{V})=0$ . Let $\mathcal{L}$ be an ample invertible sheaf on
$V$ such that $H^{1}(m\mathcal{L})=0$ for every $m\geqq 1$ . Assume that there exists a non-zero section



Projective Cohen-Macanlayness 95

$s\in H^{0}(\Leftrightarrow C)$ . Put $V^{\prime}=(s)_{0}$ and $\mathcal{L}^{\prime}=\mathcal{L}|_{V^{J}}$ . $T/len\mathcal{L}$ is normally generated(*) if and
only if $\mathcal{L}^{\prime}$ is normally generated. In this case $I(\mathcal{L})=Ker[S\Gamma(\mathcal{L})\rightarrow\bigoplus_{m\geq 0}\Gamma(m\mathcal{L})]$ is

generated by its elements of degree 2, 3, $\cdot$ . ., and $\nu$ if and only if $I(\mathcal{L}^{\prime})$ is generated

by ils elements of degree 2, 3, $\cdots$ , and $\nu$ .

PROOF. First we note that $\mathcal{L}^{\prime}$ is ample on $V^{\prime}$ . From the following exact
sequence

$0\rightarrow(m-1)\mathcal{L}\rightarrow m\mathcal{L}\otimes s\rightarrow m\mathcal{L}^{\prime}\rightarrow 0$ , where $m\geqq 1$ ,

we get the following commutative diagram with exact rows

$0-\Gamma((m-1)\mathcal{L})\otimes l’(\mathcal{L})-\Gamma(m\mathcal{L})\otimes\Gamma(\mathcal{L})/^{F}-$

$\Gamma(V^{\prime}, m\mathcal{L}^{\prime})\otimes\Gamma(\mathcal{L})\rightarrow 0$

$\alpha$ $\beta$

/

$0$
$\Gamma(m\mathcal{L})^{\prime}-$

$l’((m+1)\mathcal{L})$ $l’(V^{\prime}, (m+1)\mathcal{L}^{\prime})$ –0,

where the dotted arrow is defined by $t-t\otimes s$ for $t\in\Gamma(m\mathcal{L})$ . So $\alpha$ is surjective
if and only if $\beta$ is surjective. This proves that the normal generatedness of $\mathcal{L}$

is equivalent to that of $\mathcal{L}^{\prime}$ . In this case the following diagram commutes

$f_{|\mathcal{L}|}$ I $V=P^{\dim \mathcal{L}|}|$

$\cup$ $\cup$

$\phi_{|X^{\prime}|}$ ; $V^{\prime}\subset-H\cong P^{\dim|\mathcal{L}^{\prime}|}$ ,

where $H$ is a hyperplane section such that $V^{\prime}=V\cap H$ Since $\mathcal{L}$ is normally

generated, $H^{1}(J_{V}(m))=$ for every $m\geqq 0$ . Applying Proposition 2.1 to $V$ and $V^{\prime}$ , im-
mediately we get the rest of the corollary.

For curves the following theorem is known.

THEOREM 2.3 ([5], [9] and [10]). Let $C$ be an irreducible reduced proiective

curve and $D$ a divisor on C. Then:
(1) if $\deg D\geqq 2p_{a}(C)+1$ , then $D$ is normally generated and $I(D)$ is generated by

its homogeneous parts $I_{2}(D)$ of degree 2 and $I_{3}(D)$ of degree 3;

(2) if $\deg D\geqq 2p_{a}(C)+2$ , then $I(D)$ is generated by $I_{2}(D)$ .

$(*)$ According to [2], an ample invertible sheaf $\mathcal{L}$ on a projective variety is said to be
normally generated if $\Gamma(\mathcal{L})\otimes\Gamma(m_{\Leftrightarrow}C)\rightarrow\Gamma((m+1)\mathcal{L})$ is surjective for every $m\geqq 1$ . By abuse
of terminology we say that a divisor $D$ is normally generated if the corresponding invertible
sheaf is normally generated. In this case $D$ is very ample.
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\S 3. Ample divisors on a Del Pezzo surface of dgree $d$, where $3\leqq d\leqq 8$.
Now we enter the main issue of this paper.

PROPOSITION 3.1. Let $X$ be a $Del$ Pezzo surface of degree $d\leqq 7$ . For a divisor
$D$ on $X$ the following conditions are equivalent:

(i) for every exceptional curve $E$ on $X,$ $E.D>0$ ;
(ii) $D$ is ample.

Moreover if $3\leqq d\leqq 7$ , the above conditions are equivalent to the next one.
(iii) $D$ is very ample.

PROOF. The implication $(ii)\Rightarrow(i)$ is clear by Nakai’s criterion. Combining
Remark 1.2 and Lemma 1.3, we get $(i)\Rightarrow(ii)$ , (iii).

LEMMA 3.2. Let $X$ be a $Del$ Pezzo surface of degree $d\leqq 8$ . For an ample

divisor $D\sim al-\sum_{i=1}^{r}$ biei assume that:

(a) $|D|$ has an irreducible curve; and

(b) $3a-\sum_{i=1}^{r}b_{i}-3\geqq 0$ .
Then $D$ is very ample and $\psi_{|D|}(X)$ is projectively Cohen-Macaulay. In this case $I(D)$

is generated by $I_{2}(D)$ and $I_{3}(D)$ . Moreover if $D$ satisfies the condition
$(b^{\prime})$ $3a-\sum_{i=1}^{r}b^{i}-3>0$ ,

then $I(D)$ is generated by $I_{2}(D)$ .

PROOF. Let $Y\in|D|$ be an irreducible curve. By the adjunction formula we get

$\deg(D|_{Y})-(2p_{a}(Y)+1)=3a-\sum_{i=1}^{r}b_{i}-3$ , which is not less than zero. Then $D|_{Y}$ is

normally generated by Theorem 2.3 and so is $D$ by Corollary 2.2, since $H^{1}(mD)=0$

for every $m\geqq 0$ . Also $H^{1}(mD)$ vanishes for every $m<0$ by Corollary 1.4.3 (ii), so
we see that $\psi_{|D|}(X)$ is $pro$]$ectively$ Cohen-Macaulay. The rest follows also Theorem
2.3 and Corollary 2.2.

THEOREM 3.3. Let $X$ be a $Del$ Pezzo surface of degree $3\leqq d\leqq 8$ and $D$ be a
very ample divisor on X. Then $\psi_{|D|}(X)$ is projectivefy Cohen-Macaulay. Moreover if
$D$ is not linearly equivalent to the anti-canonical divisor on a cubic surface, then
$I(D)=Ker[S\Gamma(D)\rightarrow\bigoplus_{m\geq 0}\Gamma(mD)]$ is generated by its elements of degree 2.

PROOF. We have only to apply Lemma 3.2. Since $D$ is very ample, the con-
dition (a) of the lemma is satisfied. If $d=8$ , then $D$ on $F_{1}$ can be written $al-b_{1}e_{1}$

with $a>b_{1}>0$ by Lemma 1.1. In case $3\leqq d\leqq 7$ , we may assume that $D\sim al-\sum_{i=1}^{r}b_{i}e_{l}$

is such as in Remark 1.2. In each case $D$ satisfies the condition (b). The equality
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holds if and only if $a=3$ and $b_{1}=\cdots=b_{6}=1$ . So we get the theorem.

\S 4. Anti-canonical divisors on Del Pezzo surfaces of degree 1 and 2.

A detailed study on anti-canonical divisors on Del Pezzo surfaces is found in
[8, IV and V]. Here the author will add a few results on generaters of $I(-n\omega_{X})$ .

THEOREM 4.1. Let $X$ be a $Del$ Pezzo surface of degree 2. Then $-n\omega_{X}$ is very
ample if and only if $n\geqq 2$ . In this case $\psi_{|-n\omega_{X}|}(X)$ is projectively Cohen-Macaulay and
$I(-n\omega_{X})$ is generated by its elements of degree 2.

PROOF. We prove only that $I(-n\omega_{X})$ is generated by its elements of degree

2. For the other assertions are found in [8, V, Theorem 1]. Since $-n\omega_{X}\sim 3nl-$

$\sum_{i\Rightarrow 1}^{7}ne_{i},$ $3a-\sum_{i=1}^{7}b_{i}-3=9n-7n-3$ is grater than zero under $n\geqq 2$ . Hence $I(-n\omega_{X})$ is

generated by its elements of degree 2 from Lemma 3.2.

THEOREM 4.2. Let $X$ be a $Del$ Pezzo surface of degree 1. Then:
(1) $Bs|-\omega_{X}|=$ {$one$ point} and $ Bs|-2\omega_{X}|=\phi$ ;
(2) $|-n\omega_{X}|$ has an irreducible member for every $n\geqq 1$ ;

(3) $-n\omega_{X}$ is very ample if and only if $n\geqq 3$ . In this case $\psi_{|-n\omega_{X}|}(X)$ is pro.iec-
tively Cohen-Macaulay;

(4) if $n\geqq 4$ , then $I(-n\omega_{X})$ is generated by $I_{2}(-n\omega_{X})$ ;
(5) $I(-3\omega_{X})$ is generated by its elements of degree 2 and 3 but not generated

by only those of degree 2.

PROOF. The assertions (1), (2) and (3) are found in [8, IV, Proposition 6 and V,

Theorem 1]. We will prove (4) and (5), applying Lemma 3.2. The condition $(b^{\prime})$

of Lemma 3.2, that is $3a-\sum_{i=1}^{8}b_{i}-3=9n-8n-3>0$ , holds when $n\geqq 4$ , hence (4) is

proved. When $n=3$ , the condition (b) holds, so $I(-3\omega_{X})$ is generated by its ele-
ments of degree 2 and 3. Let $Y\in|-3\omega_{X}|$ be a non-singular irreducible curve whose
genus is equal to four. To prove (5) we have only to study generaters of $I(-3\omega_{X}|_{Y})$

by Corollary 2.2. By the adjunction formula we get $\omega_{Y}\sim-2\omega_{X}|_{Y}$ , this implies
$-3\omega_{X}|\sim\omega_{Y}+(-\omega_{X})|_{Y}Y$ We claim that $-\omega_{X}|Y$ is an effective divisor of degree 3.
In fact considering the following exact sequence

$0\rightarrow\Gamma(2\omega_{X})\rightarrow\Gamma(-\omega_{X})\rightarrow I^{\gamma}(Y, -\omega_{X}|_{Y})\rightarrow H^{1}(2\omega_{X})$ ,

we get $\Gamma(-\omega_{X}|_{Y})\cong\Gamma(-\omega_{X})$ , because $H^{i}(2\omega_{X})=0$ for $i=0$ and 1. So $-\omega_{X}|_{Y}$ is effec-
tive. It is clear that $\deg(-\omega_{X}|)=3\omega_{X}^{2}=3Y$ An application of the next lemma to
$-3\omega x|Y$ yields that $I(-3\omega_{X}|_{Y})$ is not generated by only its elements of degree 2.
Hence $I(-3\omega_{X})$ is not generated by its elements of degree 2 by Corollary 2.2.
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LEMMA 4.3. ([4]). Let $C$ be a non-singular irreducible curve of genus $g\geqq 1$ and $D$

a divisor on $C$ of type $\omega_{C}+P_{1}+P_{2}+P_{3}$ , where $P_{i}$ is a closed point of C. Then $D$ is
normally generated and $I(D)$ is generated by its elements of degree 2 and 3 but not
generated by only those of degree 2.

\S 5. Ample divisors on Del Pezzo surfaces of degree 1 and 2.

In this section $X$ is a Del Pezzo surface of degree 1 or 2. We study ample
divisors on $X$ from the same point of view as \S 3.

THEOREM 5.1. Let $D$ be an ample divisor other than $-\omega_{X}$ on $X$ of degree 2.
Then $D$ is very ample, $\psi_{|D|}(X)$ is projectively Cohen-Macaulay and $I(D)$ is generated
by its elements of degree 2.

THEOREM 5.2. Let $D\sim al-\sum_{i=1}^{8}$ biei be an ample divisor on $X$ of degree 1 such
that $a\geqq b_{1}+b_{2}+b_{3}$ and $b_{1}\geqq\cdots\geqq b_{8}>0$ . Assume that $D$ is neither $-\omega_{X}$ nor $-2\omega_{X}$ .
Then the following assertions hold:

(1) $D$ is very ample and $\psi_{|D|}(X)$ is projectively Cohen-Macaulay;
(2) if $D$ is $4l-2e_{1}-\sum_{J=2}^{8}e_{j}$ or $6l-2\sum_{i=1}^{7}e_{i}-e_{8}$ or $9l-3\sum_{i=1}^{8}e_{i}$ , then $I(D)$ is generated by

$I_{2}(D)$ and $I_{3}(D)$ , but not generated by only $I_{2}(D)$ .
(3) if $D$ is not any of the three divisors described above, then $I(D)$ is generated

by $I_{2}(D)$ .

Before the proof, we state some lemmas.

LEMMA 5.3. ([2, \S 1. Generalized lemma of Castelnuovo]). Suppose that $\ovalbox{\tt\small REJECT}$ is
an invertible sheaf on a variety $V$ such that $\Gamma(\ovalbox{\tt\small REJECT})$ has no base points. Let $\mathcal{F}$ be a
coherent sheaf on $V$ such that $H^{i}(\mathcal{F}\otimes(-i\ovalbox{\tt\small REJECT}))=0$ for every $i\geqq 1$ . Then the map
$\Gamma(\mathcal{F}\otimes(i-1)\ovalbox{\tt\small REJECT})\otimes\Gamma(\ovalbox{\tt\small REJECT})\rightarrow\Gamma(\mathcal{F}\otimes i\ovalbox{\tt\small REJECT})$ is surjective for every $i\geqq 1$ .

LEMMA 5.4. Let $D$ be an ample divisor on $X$ such that $l^{\urcorner}(D)$ has no base
points. Assume that the map $\beta:\Gamma(D)\otimes\Gamma(D)\rightarrow l^{\urcorner}(2D)$ is surjective. Then $D$ is
normally generated.

PROOF. From Corollary 1.4.2, $H^{i}((t-i)D)=0$ for every $i=1,2$ and $t\geqq 2$ . By
Lemma 5.3 we see that $\Gamma(tD)\otimes\Gamma(D)\rightarrow\Gamma((t+1)D)$ is surjective for each $t\geqq 2$ .
Under the assumption that $\beta$ is surjective, this proves that $D$ is normally generated.

LEMMA 5.5.1. Let $D$ be an ample divisor on $X$ such that $\Gamma(D)$ has no base points.
Assume:

(1) $-D.\omega x\geqq 3$ ;
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(2) $|D+\omega_{X}|$ has no base points;
(3) $h^{2}(-D-2\omega_{X})=0$ .

Then $D$ is normally generated.

PROOF. By Lemma 5.4 we have only to prove the surjectivity of the map $\beta$ .
Let $C$ be an irreducible curve of $|-\omega_{X}|$ whose arithmetic genus is equal to one.
Consider the following commutative diagram.

$0-\Gamma(D+\omega_{X})\otimes l^{\tau}(D)$ – $l^{7}(D)\otimes l^{\tau}(D)$ – $l’(D|_{C})\otimes l^{\urcorner}(D)$ –0
$\alpha$

$\beta$ $\gamma$

$ 0\rightarrow$ $\Gamma(2D+\omega_{X})$ – $\Gamma(2D)$ – $l^{1}(2D|_{C})\rightarrow 0$

Since $h^{1}(mD+\omega_{X})=0$ for every $m\geqq 1$ , the rows are exact. The assumption (1)
implies that $\deg(D|_{C})\geqq 2p_{a}(C)+1$ . Hence $D|_{C}$ is normally generated by Theorem
2.3(1). So $\gamma$ is surjective. Next we can apply Lemma 5.3 to $\alpha$ by the assumptions
(2), (3) and the fact that $h^{1}(D-(D+\omega_{X}))=0$ . Hence $\alpha$ is surjective, and so is $\beta$ .

LEMMA 5.5.2. Let $X$ be a $Del$ Pezzo surface of degree 1 and let $D$ be an ample
divisor on $X$ such that $\Gamma(D)$ has no base points. Assume:

(0) $h^{1}(D+2\omega_{X})=0$ ;
(1) $-D.2\omega_{X}\geqq 5$ ;
(2) $|D+2\omega_{X}|$ has no base points;
(3) $h^{2}(-D-4\omega_{X})=0$ .

Then $D$ is normally generated.

PROOF. By Theorem 4.2(2) there exists an irreducible curve $C$ of $|-2\omega x|$ whose
arithmetic genus is equal to two. Then we have only to replace $\omega_{X}$ in Lemma
5.5.1 by $2\omega_{X}$ .

Now to prove the theorems we may assume that $D\sim al-\sum_{i=1}^{r}b_{i}e_{i}$ is such that
$a\geqq b_{1}+b_{2}+b_{3}$ and $b_{1}\geqq\cdots\geqq b_{r}>0$ by Remark 1.2. In this case we get $a\geqq 4$ since
$D*-\omega_{X}$ . Moreover if $a=4$ , then $D$ is either $4l-\sum_{i=1}^{r}e_{t}$ (say $D_{(4)}$ ) or $4l-2e_{1}-\sum_{j=2}^{r}e_{j}$

(say $D_{(4^{\prime})}$ ).

PROOF OF THEOREM 5.1. We have only to apply Lemma 3.2. For the condi-
tion (a) of Lemma 3.2, we will prove that $D$ is very ample, classifying $D^{\prime}s$ as
follows.

Case 1. $D$ is either $D_{(4)}$ or $D_{(4)}$ .
Case 2. $b_{7}\geqq 2$ .
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Case 3. $a>4,$ $a>b_{1}+b_{2}+b_{5}$ and $b_{7}=1$ .
Case 4. $a>4,$ $a=b_{1}+b_{2}+b_{3},$ $b_{1}>b_{3}=b_{5}$ and $b_{7}=1$ .
Case 5. $a=3b_{1},$ $b_{1}=b_{5}\geqq 2$ and $b_{7}=1$ .

Since it is a simple calculation to check the condition $(b^{\prime})$ of Lemma 3.2, it is

omitted.
Case 1. We will prove that $D$ is normally generated using Lemma 5.5.1. First

we note that $\Gamma(D)$ has no base points by Lemma 1.3. Easily we can check the

condition (1) of Lemma 5.5.1. Since $D_{(4)}+\omega_{X}$ [resp. $D_{(4^{\prime})}+\omega_{X}$] is $l$ [resp. $l-e_{1}$ ], the

condition (2) holds. Finally for (3), since $-D-2\omega_{X}$ is $2l-\sum_{i=1}^{7}e_{i}=(2l-\sum_{i=1}^{5}e_{i})-e_{6}-e_{7}$

[resp. $(2l-\sum_{j=2}^{6}e_{f})-e_{7}$], its second cohomology is vanishing by Lemma 1.5 (4) [resp.

Lemma 1.5 (3)]. Thus we can apply Lemma 5.5.1 and get that $D$ is normally

generated.
Case 2. We will prove that $D$ is very ample. Put $\nu=[(1/2)b_{7}]$ . then $D$ is linearly

equivalent to the sum of the very ample divisor $\nu(-2\omega_{X})$ and the divisor $(a-6\nu)l-$

$\sum_{i=1}^{7}(b_{i}-2\nu)e_{i}$ . Since $|(a-6\nu)l-\sum_{i=1}^{7}(b_{i}-2\nu)e_{i}|$ is free from base points by Lemma 1.3,

$D$ is very ample.
Case 3. Since $|D-D_{(4)}|$ has no base points, $D$ is very ample.

Case 4. Since $|D-D_{(4)}|$ has no base points, $D$ is very ample.

Case 5. First we note that if $b_{1}=2$ , then $D$ is either $6l-2\sum_{i=1}^{5}e_{i}-e_{6}-e_{7}$ (say $D_{(6)}$ )

or $6l-2\sum_{i=1}^{6}e_{i}-e_{7}$ (say $D_{(6^{J})}$ ). It is clear that $D_{(6)}\sim D_{(4^{\prime})}+(2l-\sum_{j=2}^{5}e_{j})$ is very ample.

For $D_{(6\prime)}$ , we can prove its normal generatedness applying Lemma 5.5.1. Indeed

it is easy to see that the conditions (1) and (2) of Lemma 5.5.1 are satisfied. Since
$h^{2}(-D_{(6\prime)}-2\omega x)=h^{2}(-e_{7})=0$ by Lemma 1.5, (3) holds. Finally when $b_{1}\geqq 3$ , we see
that $|D-D_{(6)}|$ or $|D-D_{(6\prime)}|$ has no base points. So $D$ is very ample.

Now we will prove Theorem 5.2 on the same lines as above. But in the first
place we have to prove the following lemma.

LEMMA 5.6. Let $D\sim al-\sum_{i=1}^{8}$biei be a divisor other $than-\omega_{X}$ such that $a\geqq b_{1}+b_{2}+b_{3}$

and $b_{1}\geqq\cdots\geqq b_{8}=1$ or 2. Then $|D|$ has no base points.

PROOF. When $b_{8}=1$ , we consider a morphism $\pi;X\rightarrow X^{\prime}$ to a Del Pezzo

surface $X^{\prime}$ of degree 2 such that $\pi(E_{8})$ is a point. By abuse of notation we also

denote by $(l, e_{1}, \cdots, e_{7})$ the basis of Pic (X’) such that $e_{i}\sim\pi^{*}e_{i}$ for $1\leqq i\leqq 7$ . Then

the divisor $al-\sum_{i\Leftarrow 1}^{7}b_{i}e_{i}$ on $X^{\prime}$ is ample, hence very ample by Theorem 5.1. So it has

no unassigned base points, which shows that $|al-\sum_{i\Leftarrow 1}^{7}b_{i}e_{i}-e_{8}|$ has no base points on

X. Next if $b_{8}=2$ , then we may assume $D*-2\omega x$ since we have already known
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that $|-2\omega_{X}|$ has no base points. Then $|D+2\omega_{X}|$ is free from base points, and so
is $|D|$ .

PROOF OF THEOREM 5.2. We classify ample divisors $D$ other than $-\omega_{X}$ nor
$-2\omega_{X}$ into the following six cases.

Case 1. $D$ is either $D_{(4)}$ or $D_{(4\prime)}$ .
Case 2. $b_{8}\geqq 3$ .
Case 3. $a>4,$ $a>b_{1}+b_{2}+b_{5}$ and $b_{8}=1,2$ .
Case 4. $a>4,$ $a=b_{1}+b_{2}+b_{\epsilon},$ $b_{1}>b_{3}=b_{5}$ and $b_{8}=1,2$ .
Case 5. $b_{8}=1,$ $a=3b_{1}$ and $b_{1}=b_{6}\geqq 2$ .
Case 6. $b_{8}=2,$ $a=3b_{1}$ and $b_{1}=b_{5}\geqq 3$ .
Case 1. By Lemma 5.6 $|D|$ is free from base points, so we get that $D$ is

normally generated from Lemma 5.5.1.
Case 2. Put $\nu=[(1/3)b_{8}]$ , then $D$ is linearly equivalent to the sum of the two

divisors $\nu(-3\omega_{X})$ and $(a-9\nu)l-\sum_{i=1}^{8}(b_{i}-3\nu)e_{i}$ . If the latter is $-\omega_{X}$ , then $D\sim-(3\nu+1)\omega_{X}$

with $\nu\geqq 1$ , which is very ample by Theorem 4.2. In the other case, $|(a-9\nu)l-$

$\sum_{i=1}^{8}(b_{i}-3\nu)e_{i}|$ is free from base points by Lemma 5.6, hence $D$ is very ample.

Case 3. When $b_{8}=1,$ $|D-D_{(4)}|$ has no base points, so $D$ is very ample. When
$b_{8}=2$ , we replace $D_{(4)}$ by $4l-\sum_{i=1}^{7}e_{i}-2e_{8}$ .

Case 4. Unless $D\sim 7l-3e_{1}-2\sum_{j=2}^{8}e_{j},$ $D$ is very ample. Because $|D-D_{(4)}|$ is free

from base points. When $D\sim 7l-3e_{1}-2\sum_{j=2}^{8}e_{j}$ , we get that it is normally generated

from Lemma 5.5.1.
Case 5. Similarly to Case 5 of the previous proof, first we note that if $b_{1}=2$ ,

then $D$ is one of the $D_{(6,k)^{\prime}}s$ , where $D_{(6,k)}\sim 6l-2\sum_{i=1}^{5+k}e_{i}-\sum_{j=6+k}^{8}e_{j},$ $k=0,1,2$ . It is clear

that $D_{(6,0)}$ , which is the sum of $41-\sum_{i\neq 5}^{8}e_{i}-2e_{5}$ and $2l-\sum_{i=1}^{4}e_{i}$ , is very ample. Applying

Lemma 5.5.1 we can prove that $D_{(6,1)}$ and $D_{(6,2)}$ are normally generated. When
$b_{1}\geqq 3,$ $|D-D_{(6,k)}|$ has no base points, for some $k$ . Hence $D$ is very ample.

Case 6. In the same manner as above, we have only to prove that $D$ with
$b_{1}=3$ is very ample. Such $D$ is one of the $D_{(9.k)^{\prime}}s$ , where $D_{(9.k)}\sim 9l-3\sum_{i=1}^{5+k}e_{i}-\sum_{i=6+k}^{8}e_{f}$ ,

$k=0,1,2$ . For $k=0$ or 1, since $D_{(9,k)}\sim D_{(6,k)}+(3l-\sum_{i=1}^{5+k}e_{i}-e_{8})$ , it is very ample. Next
applying Lemma 5.5.2 to $D_{(9,2)}$ , we conclude that $D_{(9,2)}$ is normally generated.

Finally we will examine the condition (b) of Lemma 3.2. By a simple calcula-
tion we see that $3a-\sum_{i=1}^{8}b_{i}-3is$ zero when $D$ is either $D_{(4)},$ $D_{(6,2)}$ or $-3\omega_{X}$ , and
that it is grater than zero for the other cases. Hence we get the assertions (1)
and (3) of the theorem.
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Now to complete the proof we will show that $I(D_{(4)})$ and $I(D_{(6.2)})$ are not
generated by their elements of degree 2. Since the homogeneous part of $I(D_{(4^{\prime})})$

of degree 2 is the kernel of the surjection $S^{2}\Gamma(D_{(4^{\prime})})\rightarrow\Gamma(2D_{(4^{\prime})})$ , its dimension is
equal to ${}_{5}H_{2}-h^{0}(2D_{(4)})=(1/2)6\times 5-(1/2)(9\times 10-4\times 5-7\times 2\times 3)=1$ . This implies that
$I(D_{(4\prime)})$ cannot be generated by its elements of degree 2. Next when $D\sim D_{(6,2)}$ , the

proof is similar to that of Theorem 4.2(5) for $-3\omega_{X}$ . Let $Y$ be an irreducible
curve of $|D|$ , then $D|_{Y}\sim\omega_{Y}+(-\omega_{X})|_{Y}$ . Looking at the following exact sequence

$0\rightarrow\Gamma(-D-\omega_{X})\rightarrow\Gamma(-\omega_{X})\rightarrow\Gamma(-\omega_{X}|_{Y})\rightarrow H^{1}(-D-\omega_{X})$ ,

since $h^{i}(-D-\omega_{X})=h^{2-i}(D+2\omega_{X})=h^{2-i}(e_{8})=0$ for $i=0,1$ , we get that

$\Gamma(-\omega_{X})\cong\Gamma(-\omega_{X}|_{Y})\neq 0$ .

Thus $-\omega_{X}|_{Y}$ is an effective divisor of degree 3. Applying Theorem 2.3 and
Corollary 2.2, we conclude that $I(D)$ is not generated by $I_{2}(D)$ . We have done.
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