ON TRIVIAL EXTENSIONS WHICH ARE QUASI-FROBENIUS ONES

By

Kazuhiko HIRATA

Recently Y. Kitamura has characterized a trivial extension which is a Frobenius extension in [2]. In this paper we characterize a trivial extension which is a quasi-Frobenius extension.

Let R be a ring with an identity and M an (R, R)-bimodule. The trivial extension S=(R, M) of R by M is the direct sum of additive groups R and M with the multiplication $(r_1, m_1)(r_2, m_2)=(r_1r_2, r_1m_2+m_1r_2)$ for $(r_i, m_i)\in S$. S is a ring containing R with the identification $r \to (r, 0)$ for $r \in R$. Let *S be the dual space of S as a left R-module. Then *S is isomorphic to the direct sum of R and *M= Hom $(_RM, _RR): *S=[R, *M]$. The action of an element $[a, h]\in *S$ on S is given by [a, h]((r, m))=ra+h(m) for $(r, m)\in S$. *S has the structure of an (S, R)-bimodule. This is given by (r, m)[a, h]=[ra+h(m), rh] and [a, h]r=[ar, hr] for $(r, m)\in S$, $[a, h]\in *S$ and $r \in R$.

Following to [3] a ring extension S over R is called a left quasi-Frobenius extension when S is left R-finitely generated projective and a direct summand of a finite direct sum of *S as an (S, R)-bimodule.

Let S be the trivial extension of R by M, and assume that S is a left quasi-Frobenius extension of R. Then there exist (S, R)-homomorphisms $\Phi: S \rightarrow *S \oplus \cdots \oplus *S$ and $\Psi: *S \oplus \cdots \oplus *S \rightarrow S$ such that $\Psi \circ \Phi = 1_S$. Let $\Phi((1, 0)) = ([a_1, h_1], \cdots, [a_n, h_n])$. Then it is easily seen that h_i is contained in Hom $(_RM_R, _RR_R)$ for all *i*. Next, we consider homomorphisms from *S to S. Since S is left R-finitely generated projective, we have following isomorphisms

> Hom $({}_{S}*S_{R}, {}_{S}S_{R}) =$ Hom $({}_{S}$ Hom $({}_{R}S, {}_{R}R)_{R}, {}_{S}S_{R})$ $\cong \{$ Hom $(R_{R}, S_{R}) \otimes_{R}S\}^{S} \cong \{S \otimes_{R}S\}^{S}$

where $\{S \otimes_R S\}^S$ means the set of elements in $S \otimes_R S$ commuting to the elements of S. Explicitly, the correspondence is given by $\sum (s_1 \otimes s_2)(f) = \sum s_1 f(s_2)$ for $\sum s_1 \otimes s_2 \in \{S \otimes_R S\}^S$ and $f \in S$. Let Ψ_i be the restriction of Ψ to *i*-th component of $*S \oplus \cdots \oplus *S$ and $\sum_j (b_{ij}, m_{ij}) \otimes (c_{ij}, n_{ij})$ the corresponding element in $\{S \otimes_R S\}^S$. Then, for $[a, h] \in S$, we have

Received October 15, 1981.

Kazuhiko HIRATA

$$\Psi_i([a, h]) = (b_i a + h(n_i), m_i a + \Sigma_j m_{ij} h(n_{ij}))$$

where $b_i = \sum_j b_{ij} c_{ij}$, $n_i = \sum_j b_{ij} n_{ij}$ and $m_i = \sum_j m_{ij} c_{ij}$. Using the fact that Ψ_i is a left S-homomorphism, we see easily that $m_i \in M^R = \{m \in M \mid rm = mr, \text{ for any } r \in R\}$, $h(rn_i - n_i r) = 0$ for any $h \in M$ and $r \in R$, and $mh(n_i) = m_i h(m)$ for any $h \in M$ and $m \in M$. Further, from $(0, m) = \Psi \circ \Phi((0, m))$ we have $m = \sum_i m_i h_i(m)$ for all $m \in M$. This means that M is a direct summand of a finite direct sum of R as an (R, R)-bimodule: $RM_R < \bigoplus_R (R \bigoplus \cdots \bigoplus R)_R$. From this and $h(rn_i - n_i r) = 0$ above, n_i is in M^R for all i. We have proved the half direction of the next proposition.

PROPOSITION 1. Let S be the trivial extension of R by M. Then S is a left quasi-Frobenius extension of R if and only if M is an (R, R)-direct summand of a finite direct sum of R, and for a system of projective bases $\{m_i, h_i\}$ of M there exist n_is in M^R such that, for all $i, mh(n_i) = m_ih(m)$ hold for any $m \in M^*$ and $h \in M$.

PROOF. We prove the converse. Assume that there are given $\{m_i, h_i\}$ and n_i described in the proposition. Set $e = \sum_i h_i(n_i)$. Then *e* is in the centre *C* of *R*. Further we have $me = \sum_i mh_i(n_i) = \sum_i m_i h_i(m) = m$ for any $m \in M$. In particular, since $h_i(n_i) = h_i(n_i) = h_i(n_i) = e$ is a central idempotent.

Define the map $\Psi_i: *S \to S$ by $\Psi_i([a, h]) = ((1-e)a + h(n_i), m_i a)$. Then Ψ_i is an (S, R)-homomorphism. Set $\Psi = \Sigma_i \Psi_i$, the map from $*S \oplus \cdots \oplus *S$ to S. Next, define the map $\Phi: S \to *S \oplus \cdots \oplus *S$ by $\Phi((1, 0)) = ([1-e, h_1], [0, h_2], \cdots, [0, h_n])$. Then we see that $\Psi \cdot \Phi = 1_S$ and this completes the proof.

We continue the consideration. From the equation $mh(n_i) = m_i h(m)$, we have $m_j h_j(n_i) = m_i h_j(m_j)$, and so $n_i = m_i t$ with $t = \sum_j h_j(m_j)$. Further, as $h_i(n_i) = h_i(m_i)t$ we have $e = t^2$ and $n_i t = m_i$.

As M is an (R, R)-direct summand of a finite direct sum of R, M is isomorphic to $M^R \otimes_C R$ and M^R is C-(and also eC-) finitely generated projective (faithful) by [1] Theorem 1.2. Further, since there hold following isomorphisms

*
$$M$$
= Hom ($_{R}M, _{R}R$) \cong Hom ($_{R}(M^{R}\otimes_{C}R), _{R}R$) \cong Hom ($_{C}(M^{R}, \text{ Hom }(_{R}R, _{R}R))$)
 \cong Hom ($_{C}(M^{R}, R)$) \cong Hom ($_{C}(M^{R}, C)\otimes_{C}R$,

we may regard that Hom $_{\mathcal{C}}(M^{\mathbb{R}}, \mathbb{C})$ is in *M. (Note that Hom $_{\mathcal{C}}(M^{\mathbb{R}}, \mathbb{C}) = \operatorname{Hom}_{eC}(M^{\mathbb{R}}, e\mathbb{C})$). Therefore the relation $mh(n_i) = m_ih(m)$ holds for any $m \in M^{\mathbb{R}}$ and $h \in \operatorname{Hom}_{\mathcal{C}}(M^{\mathbb{R}}, \mathbb{C})$. Thus we have $mh(m_i) = m_ih(m)t$. As $M^{\mathbb{R}} = \sum_i m_i \mathbb{C}$, we have mh(n) = nh(m)t for all $m, n \in M^{\mathbb{R}}$ and $h \in \operatorname{Hom}_{\mathcal{C}}(M^{\mathbb{R}}, \mathbb{C}) = \operatorname{Hom}_{eC}(M^{\mathbb{R}}, e\mathbb{C})$. On the other hand, since we may consider $mh(n) = (m \otimes h)(n)$ where $m \otimes h \in M^{\mathbb{R}} \otimes_{eC} \operatorname{Hom}_{eC}(M^{\mathbb{R}}, e\mathbb{C}) \cong \operatorname{Hom}_{eC}(M^{\mathbb{R}}, M^{\mathbb{R}})$, we conclude that $\operatorname{Hom}_{eC}(M^{\mathbb{R}}, M^{\mathbb{R}}) \cong e\mathbb{C}$. Thus $M^{\mathbb{R}}$ is an eC-finitely generated projective module of rank 1. Conversely, assume that e is a central idempotent of R and M_0 is an eC-finitely generated projective module of rank 1. Then, as the canonical map $eC \rightarrow \operatorname{Hom}_{eC}(M_0, M_0)$ is an isomorphism, for an element $m \otimes h \in M_0 \otimes_{eC} \operatorname{Hom}_{eC}(M_0, eC)$ there exists $a \in eC$ such that $mh(n) = (m \otimes h)(n) = na$ for any $n \in M_0$. Let $\{m_i, h_i\}$ be a system of projective bases for M_0 . Then, since $mh(m_i) = m_i a$, we obtain $h_i(m_i)a = h_i(m_i a) = h_i(mh(m_i)) = h_i(m)h(m_i) =$ $h(h_i(m)m_i)$. Therefore ta = h(m) where $t = \sum_i h_i(m_i)$. Then nh(m) = nta = mh(n)t. As this holds for any n, h and m, we have $nh(m) = mh(n)t = nh(m)t^2$. Therefore, since M_0 is faithful, we have $n = nt^2$ for any $n \in M_0$, and $t^2 = e$. Put $n_i = m_i t$. Then $mh(n_i) =$ $m_i ta = m_i h(m)$ for any $m \in M_0$ and $h \in \operatorname{Hom}_{eC}(M_0, eC)$. Define $M = M_0 \otimes_{eC} R(=M_0 \otimes_{C} R)$. Then M is an (R, R)-direct summand of a finite direct sum of R and it is easily seen that there holds, for each $i, mh(n_i) = m_i h(m)$ for any $m \in M$ and $h \in \operatorname{Hom}(_R M, _R R)$. By Proposition 1, we proved the following theorem.

THEOREM 2. Let S be the trivial extension of R by M and C the centre of R. Then S is a left quasi-Frobenius extension of R if and only if M is isomorphic to $M^R \otimes_C R$ and there exists a central idempotent e in R such that M^R is an eC-finitely generated projective module of rank 1.

REMARK. It can be shown that the element $t = \sum_i h_i(m_i)$ in the proof of Theorem 2 is equal to e.

Since the condition discribed in Theorem 2 is left right symmetric, we have

COROLLARY 3. On a trivial extension, a left quasi-Frobenius extension is as well as a right quasi-Frobenius extension.

Y. Kitamura has proved that a trivial extension is a Frobenius extension if and only if M is isomorphic to eR for some central idempotent e. As M is isomorphic to eR if and only if M^R is isomorphic to eC, we have

COROLLARY 4. A trivial extension which is a quasi-Frobenius one is a Frobenius extension if and only if $M^{\mathbb{R}}$ in Theorem 2 is eC-free of rank 1 for some central idempotent e in R.

Kazuhiko HIRATA

References

- [1] Hirata, K., Some types of separable extensions of rings, Nagoya Math. J. 33 (1968) 107-115.
- [2] Kitamura, Y., A characterization of a trivial extension which is a Frobenius one, Arch der Math. 34 (1980) 111-113.
- [3] Müller, B., Quasi-Frobenius Erweiterungen, Math. Z. 85 (1964) 345-368.

Department of Mathematics Faculty of Science Chiba University Yayoi-cho, Chiba-city 260 Japan.