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SPACES WITH A PROPERTY RELATED TO UNIFORMLY
LOCAL FINITENESS

By

Takao HOSHINA

Throughout this paper a space always means a topological space.
A collection $d$ of subsets of a space $X$ is said to be uniformly locally finite

if there is a normal open cover $cU$ of $X$ such that each member of $cU$ intersects
only finitely many members of $d$ . If every locally finite collection of subsets of
$X$ is uniformly locally finite, then $X$ is said to have property $(U)$ . These notions
are defined in K. Morita [10], and it is pointed out there that every M-space or
every strongly normal ( $=collectionwise$ normal and countably paracompact) space
is a space with property $(U)$ , and such a space is expandable in the sense of L. L.
Krajewski [7]. Hence for normal spaces property $(U)$ , expandability and strong
normality all coincide with each other by a well-known theorem of M. Kat\v{e}tov [6],
and so a question was posed by Morita [10] to find a condition which, together
with expandability, is equivalent to property $(U)$ .

The purpose of this paper is to investigate spaces with property $(U)$ , mainly by
defining a new notion of U-embedding which is a generalization of P-embedding;
a subspace $A$ of a space $X$ is said to be U-embedded in $X$ if every uniformly locally
finite collection of subsets of $A$ is uniformly locally finite also in $X$ In \S 1 we
treat spaces having a property that every discrete collection of subsets is uniformly
locally finite, which we call spaces with property $(U)^{*}$ . By C. H. Dowker [1],
collectionwise normal spaces are precisely those spaces any of whose closed set is
P-embedded. Being motivated with this result we shall establish a theorem that
a space $X$ has property $(U)^{*}$ iff any closed set of $X$ is U-embedded in $X$, and
then it will be shown that a space has property $(U)$ iff it has property $(U)^{*}$ and
is a cb-space in the sense of J. Mack [9]; the latter is a quite analogue to a
theorem of Krajewski [7] that a space is expandable iff it is discretely expandable
and countably paracompact. In \S 2 we shall give another description of spaces with
property $(U)$ , which is an answer to the question of Morita above, by defining
spaces with weak property $(U)$ that include all M’-spaces [5] and all extremally
disconnected spaces.
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\S 1. $U^{m}$-embedding

Let cfl be a collection of subsets and $cU$ an open cover of a space $X$ Then

we say, for convenience, that a is locally finite with respect to $cU$ in case every

member of $cU$ intersects only a finite number of members of $c\Lambda$ The following

lemma, which is proved in [10], [12] will be useful.

LEMMA 1.1. For a collection $\Lambda=\{A_{a}|\alpha\in\Omega\}$ of subsets of a space $X$ the follow-
$ing$ are equivalent.

(a) $\llcorner fl$ is uniformly locally finite.
(b) There is a normal open cover $\mathcal{V}$ of $X$ with Card $\mathcal{V}=Card\Omega$ such that $d$

is locally finite with respect to $\mathcal{V}$

(c) There are cozero-sets $G_{\alpha}$ and zero-sets $F_{\alpha},$ $\alpha\in\Omega$ of $X$ such that $A_{\alpha}\subset F_{\alpha}\subset G_{\alpha}$

for each $\alpha\in\Omega$ and $\{G_{\alpha}|\alpha\in\Omega\}$ is locally finite.
The union of a locally finite collection cfl of zero-sets is not always a zero-

set. If $cA4$ is uniformly locally finite, then the union is a zero-set. This fact was
proved earlier in [11] and will be frequently used in the present paper.

Let $\mathfrak{m}$ denote an infinite cardinal number. A subspace $A$ of a space $X$ is said

to be $P^{\mathfrak{m}}$ -embedded in $X$ if for any normal open cover $cU$ of $A$ with cardinality

$\leqq \mathfrak{m}$ there is a normal open cover $\mathcal{V}$ of $X$ such that $\mathcal{V}\cap A=\{V\cap A|V\in \mathcal{V}\}$ refines
$cU$ If $A$ is $P^{\mathfrak{m}}$ -embedded in $X$ for every $\mathfrak{m},$

$A$ is said to be P-embedded in $X[15]$ .
It is known that $P^{\aleph 0}$-embedding coinsides with C-embedding [2].

DEFINITION 1.2. A subspace $A$ of a space $X$ is said to be $U^{\mathfrak{m}}$ -embedded in $X$

if every uniformly locally finite collection of subsets of $A$ with cardinality $\leqq \mathfrak{m}$ is

uniformly locally finite in $X$ If $A$ is $U^{\mathfrak{m}}$ -embedded in $X$ for every $\mathfrak{m},$
$A$ is said

to be U-embedded in $X$.
In view of Lemma 1.1 $P^{\mathfrak{m}}-$ (rest. P-) embedding implies $U^{\mathfrak{m}}-$ (resp. U-) embed-

ding; in particular C-embedding implies $U^{\aleph_{0}}$-embedding. Clearly, in a space with

property $(U)$ any closed set is U-embedded. Hence any non-normal M-space

contains a closed U-embedded, subspace which is not C-embedded, and so the

converse of the implications above does not hold in general.

The following theorem may be of interest in itself when compared with the

notion of P’-embedding.

THEOREM 1.3. A subspace $A$ of a space $X$ is U’-embedded in $X$ iff for every

normal open cover $cU$ of $A$ with cardinality $\leqq \mathfrak{m}$ there exists a normal open cover
$\mathcal{V}$ of $X$ such that for each $V\in \mathcal{V}V\cap A$ is contained in a union of finitely many

members $of\subset U$ .
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PROOF. To prove the “ if” part, assume that the condition is satisfied. Let
di be a uniformly locally finite collection of subsets of $A$ with Card $cfl\leqq \mathfrak{m}$ . Then
by Lemma 1.14 is locally finite with respect to a normal open cover $cU$ of $A$

with Card $ cU\leqq \mathfrak{n}\iota$ . By assumption take a normal open cover $\mathcal{V}$ of $X$ satisfying
the condition above. Then it is easy to see that $d$ is locally finite with respect
to $\mathcal{V}$ . Hence $A$ is $U^{\mathfrak{m}}$ -embedded in $X$. Coversely suppose that $A$ is $U^{\mathfrak{m}}$-embedded
in $X$, and let $ cU=\dagger U_{l}|\lambda\in\Lambda$ } be a normal open cover of $A$ with Card $\Lambda\leqq \mathfrak{m}$ . Since
$cU$ is normal, there are a locally finite cozero-set cover $\{G_{\lambda}|\lambda\in\Lambda\}$ and a zero-set
cover $\mathcal{F}=\{F_{\lambda}|\lambda\in\Lambda\}$ of $A$ such that

$F_{\lambda}\subset G_{\lambda}\subset U_{2},$ $\lambda\in\Lambda$ .

Then by Lemma 1.1 $\mathcal{F}$ is uniformly locally finite in $A$ , and by the assumption,
so is also in $X$ Let $\mathcal{V}$ be a normal open cover of $X$ so that $\mathcal{F}$ is locally finite
with respect to $\mathcal{V}$ Then for each $V\in \mathcal{V}$ there are $\lambda_{1},$

$\cdots,$
$\lambda_{n}\in\Lambda$ such that $ V\cap A\subset$

$F_{\lambda_{1}}\cup\cdots\cup F_{\lambda_{n}}$ since $\mathcal{F}$ covers $A$ . Hence we have $V\cap A\subset U_{\lambda_{1}}\cup\cdots\cup U_{\lambda_{n}}$ . Thus, the
“ only if” part is proved. This completes the proof.

In case $\mathfrak{m}=\aleph_{0}$ , we have

COROLLARY 1.4. A subspace $A$ of a space $X$ is $U^{\aleph_{0}}$-embedded in $X$ iff for
any countable increasing normal open cover $cU$ of $A$ there exists a normal open
cover $\mathcal{V}$ of $X$ such that $\mathcal{V}\cap A$ refines $cU$ .

In [4] T. Ishii and H. Ohta defined the notion of $C_{1}$ -embedding; a subspace $A$

of a space $X$ is said to be $C_{1}$ -embedded in $X$ if any zero-set $Z_{1}$ of $X$ and any
zero-set $Z_{2}$ of $A$ disjoint from $Z_{1}$ are completely separated in $X$ It is proved
there that C-embedding implies $C_{1}$ -embedding. The following lemma contains this
result.

LEMMA 1.5. $U^{tt_{0}}$-embedding implies $C_{1}$ -embedding.

PROOF. Assume that a subspace $A$ of a space $X$ is $U^{\aleph_{0}}$-embedded in $X$ Let
$Z_{1}$ be a zero-set of $X$ and $Z_{2}$ a zero-set of $A$ disjoint from $Z_{1}$ . Let $f:X\rightarrow I$ be a
continuous map such that $Z_{1}=\{x|f(x)=0\}$ , where $I=[0,1]$ . Let us put for $n\in N$

( $=the$ set of natural numbers)

$G_{n}=\{x\in X|f(x)>1/n\},$ $E_{n}=\{x\in X|f(x)\geqq 1/n\}$

and
$U_{n}=(A\cap G_{n})\cup(A-Z_{2})$ .

Then $U_{n}$ is a cozero-set of $A$ and we have

$U_{n}\subset U_{n+1},$ $n\in N;A=\cup\{U_{n}|n\epsilon N\}$ .
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Since $A$ is $U^{\aleph_{0}}$-embedded, by Corollary 1.4 there are a locally finite cozero-set
cover $\{V_{n}|n\in N\}$ and a zero-set cover $\{F_{n}|n\in N\}$ of $X$ such that $V_{n}\cap A\subset U_{n}$ and
$F_{n}\subset V_{n}$ for each $n\in N$. Let us set

$Z_{3}=\cup\{E_{n}\cap F_{n}|Z_{2}\cap F_{n}\neq\emptyset, n\in N\}$ .

Note that $\{E_{n}\cap F_{n}|n\in N\}$ is a uniformly locally finite collection of zero-sets of $X$

Hence $Z_{3}$ is a zero-set of $X$, and we easily have

$Z_{3}\supset Z_{2},$ $ Z_{3}\cap Z_{1}=\emptyset$ .

Therefore $Z_{1}$ and $Z_{2}$ are completely separated in $X$. This completes the proof.

REMARK. Let $X=Y\cup\{p\}$ be the one-point Lindelofication of an uncountable
set $Y$. Then $Y$ is $C_{1}$ -embedded in $X$ ([4], Example 6.3), but not $U^{\aleph_{0}}$-embedded in
$X$ Hence the converse of Lemma 1.5 does not hold in general.

It should be noted that the condition which describes $U^{\mathfrak{m}}$ -embedding in Theo-
rem 1.3 has already appeared in [11, Theorem 2.2], where it is shown that this
condition together with $c*$ -embedding is equivalent to $P^{\mathfrak{m}}$ -embedding. Hence by

Theorem 1.3, Lemma 1.5 and a result of [4] that $C_{1}-$ and z-embedding is equal to
C-embedding, we have the following proposition.

Recall that a subspace $A$ of a space $X$ is z-embedded in $X$ if for any zero-set
$Z$ of $A$ there is a zero-set $Z^{\prime}$ of $X$ such that $Z^{\prime}\cap A=Z$.

PROPOSITION 1.6. $P^{\mathfrak{m}}- embedding\Leftrightarrow U^{m}$-and z-embedding.

As another characterization of $U^{\mathfrak{m}}$ -embedding, we prove the following theorem.

THEOREM 1.7. A subspace $A$ of a space $X$ is $U^{\mathfrak{m}}$ -embedded in $X$ iff $A$ is
$U^{\aleph 0}$-embedded in $X$ and if $\mathcal{F}$ is a discrete and uniformly locally finile collection of
subsets in $A$ with cardinality $\leqq \mathfrak{m}$ then $\mathcal{F}$ is uniformly locally finite in $X$

PROOF. We shall only prove the ” if” part. Assume that the condition is

satisfied. Let $cU$ be a normal open cover of $A$ with Card $cU\leqq \mathfrak{m}$ . Then there exist
a cozero-set cover $\mathcal{H}=\cup \mathcal{H}_{n}$ , a zero-set cover $\mathcal{F}=\cup \mathcal{F}_{n}$ a cozero-set cover $\mathcal{G}=\cup \mathcal{G}_{n}$

of $A$ , where $\mathcal{H}_{n}=\{H_{n\alpha}|\alpha\in\Omega_{n}\},$ $\mathcal{F}_{n}=\{F_{n\alpha}|\alpha\in\Omega_{n}\},$ $\mathcal{G}_{n}=\{G_{n\alpha}|\alpha\in\Omega_{n}\}$ with Card $\Omega_{n}\leqq \mathfrak{m}$ for
$n\in N$ such that

(1) $\mathcal{G}$ refines $cU$ ,

(2) $\mathcal{G}_{n}$ is discrete for $n=1,2,$ $\cdots$ ,

(3) $H_{n\alpha}\subset F_{n\alpha}\subset G_{n\alpha}$ for $\alpha\in\Omega_{n},$ $n=1,2,$ $\cdots$ .
Let $H_{n}=\cup\{H_{k\alpha}|\alpha\in\Omega_{k}, k\leqq n\}$ . Then $\{H_{n}|n\in N\}$ is an increasing cozero-set cover of
$A$ . Hence, by assumption, there is a countable cozero-set cover $\{L_{n}|n\in N\}$ of $X$



Spaces with a property related to uniformly local finiteness 55

such that $L_{n}\cap A\subset H_{n}$ for $n\in N$ On the other hand, since $\mathcal{F}_{k}$ is discrete and uni-
formly locally finite in $A$ by (2), by assumption for $\bigcup_{k\leqq n}\mathcal{F}_{k}$ we can choose a locally

finite cozero-set cover $\mathcal{V}_{n}=\{V_{n\lambda}|\lambda\in\Lambda_{n}\}$ of $X$ so that $\bigcup_{k\leqq n}\mathcal{F}_{k}$ is locally finite with
respect to $\mathcal{V}_{n}$ . Let

$\mathcal{V}^{\prime}=\bigcup_{n\in N}\mathcal{V}_{n}^{\prime},$
$\mathcal{V}_{n}^{\prime}=\{V_{n\lambda}\cap L_{n}|\lambda\in\Lambda_{n}\}$ .

Then $\mathcal{V}^{\prime}$ is a $\sigma$-locally finite cozero-set cover of $X$, and hence a normal open
cover of $X$, and it is easy to see that for each $V_{n\lambda}\cap L_{n}\in \mathcal{V}_{n^{\prime}},$ $V_{n\lambda}\cap L_{n}\cap A$ is con-
tained in a finite union of members of $\bigcup_{k\leqq n}\mathcal{F}_{k}$ , and so, by (1), (3) it is also in a
union of finitely many members of $cU$ . Thus, by Theorem 1.3 $A$ is $\subset U^{\mathfrak{m}}$ -embedded
in $X$ This completes the proof.

Let us now proceed to prove our results mentioned in the introduction.

DEFINITION 1.8. A space $X$ is said to have property $(U^{\mathfrak{m}})^{*}$ (resp. $(U^{\mathfrak{m}})$ ) if every
discrete (resp. locally finite) collection of subsets of $X$ with cardinality $\leqq \mathfrak{m}$ is
uniformly locally finite in $X$ If $X$ has property $(U^{\mathfrak{m}})^{*}$ for any $\mathfrak{m},$ $X$ is said to
have property $(U)^{*}$ .

Obviously, a space has property $(U)$ iff it has property $(U^{\mathfrak{m}})$ for any $\mathfrak{m}$ .

THEOREM 1.9. For a space $X$ the following are equivalent.
(a) $X$ has property $(U)^{*}$ .
(b) Every locally finite collection of closed sets of $X$ of finite order is uniformly

locally finite.
(c) Every closed set of $X$ is U-embedded in $X$.
Theorem 1.9 directly follows from the following.

THEOREM 1.10. For a space $X$ the following are equivalent.
(a) $X$ has property $(U^{\mathfrak{m}})^{*}$ .
(b) Every locally finite collection of closed sets of $X$ of finite order with

cardinality $\leqq \mathfrak{m}$ is uniformly locally finite.
(c) Every closed set of $X$ is $U^{\mathfrak{m}}$ -embedded in $X$.

PROOF. $(a)\rightarrow(b)$ . The method is similar to that of $Kat\check{e}tov[6]$ . Suppose (a),
and let $\mathcal{F}=\{F_{\alpha}|\alpha\in\Omega\}$ be a locally finite collection of closed sets of $X$ of finite order
and with Card $\Omega\leqq \mathfrak{m}$ . We shall prove (b) by induction on the order $n$ of $\mathcal{F}$ . (b)
is evidently valid in case $n=1$ . Assume that (b) is true for $k\leqq n$ , and that $\mathcal{F}$ has
order $n+1$ . Let $\Gamma$ be the set of all finite subsets of $\Omega$ , and let us put

$\Gamma^{*}=\{\gamma|Card\gamma=n+1, \gamma\in\Gamma\}$ ,

$\mathcal{F}^{*}=$ { $\bigcap_{a\in\gamma}$ F. $|\gamma\in\Gamma^{*}$ }.



56 Takao HOSHINA

Then $\mathcal{F}^{*}$ is a discrete collection of closed sets with cardinality $\leqq \mathfrak{m}$ . Hence by
(a) and Lemma 1.1 there are a cozero-set $L_{\gamma}$ , a zero-set $K_{r}$ and cozero-set $M_{\gamma}$ of
$X$ such that for $\gamma\in\Gamma^{*}$

$\bigcap_{a\in\gamma}F_{a}\subset L_{\gamma}\subset K_{\gamma}\subset M_{r}$

and $\{M_{\gamma}|\gamma\in\Gamma^{*}\}$ is locally finite. Let

$L_{\gamma}^{\prime}=L_{\gamma}-\cup\{F_{a}|\alpha\not\in\gamma\}$ ,

for $\gamma\in\Gamma^{*}$ , and
$L=\cup\{L_{r^{\prime}}|\gamma\in\Gamma^{*}\}$ .

Then $\{F.-L|\alpha\in\Omega\}$ is a locally finite closed collection of order $\leqq n$ with cardinality
$\leqq \mathfrak{m}$ . Therefore by induction hypothesis and Lemma 1.1 there are a cozero-set $H_{a}$

and zero-set D. for $\alpha\in\Omega$ such that

$F_{a}-L\subset D_{a}\subset H_{a}$ ,

and {H. $|\alpha\epsilon\Omega$ } is locally finite. Let us set for $\alpha\in\Omega$

$E_{\alpha}=D_{\alpha}\cup\cup\{K_{\gamma}|\gamma\in\Gamma^{*}, \alpha\in\gamma\}$

$G_{a}=H_{\alpha}\cup\cup\{M_{\gamma}|\gamma\in\Gamma^{*}, \alpha\in\gamma\}$ .
Then E. is a zero-set and $G_{\alpha}$ a cozero-set since $\{K_{\gamma}\}$ is uniformly locally finite
and $\{M_{\gamma}\}$ locally finite. We shall prove that $F.\subset E_{a}$ and $\{G_{a}|\alpha\in\Omega\}$ is locally finite.
Let $x\epsilon F_{\alpha}$ . If $x\not\in L$ , then $x\in F_{a}-L\subset D_{\alpha}$ . Hence $x\in E_{a}$ . If $x\in L$ , then $x\in L_{\gamma}^{\prime}$ for some
$\gamma\in\Gamma^{*}$ . Hence $ F.\cap L_{\gamma}^{\prime}\neq\emptyset$ , and so $\alpha\in\gamma$ . Since $x\in L_{\gamma}^{\prime}\cap K_{\gamma}$ and $\alpha\in\gamma$ , we have $x\in E_{\alpha}$ .
Thus $F_{\alpha}\subset E_{\alpha}$ . To show that $\{G_{\alpha}\}$ is locally finite, let $x\in X$ and $U$ be a neighborhood
of $x$ such that for some $\gamma_{0}\in I$

’ and a finite subset $\{\gamma_{1}, \cdots, \gamma_{s}\}$ of $\Gamma^{*}$ we have
$ U\cap H_{\alpha}=\emptyset$ if $\alpha\not\in\gamma_{0}$ , and

$ U\cap M_{\gamma}=\emptyset$ if $\gamma\not\in\{\gamma_{1}, \cdots, \gamma_{s}\}$ .
Then we see that if $\alpha\not\in\gamma_{0}$ and $ U\cap G_{\alpha}\neq\emptyset$ , then

$\alpha\in\gamma_{1}\cup\cdots\cup\gamma_{g}$ .
Hence $\{G_{a}|\alpha\in\Omega\}$ is locally finite. Thus, by Lemma 1.1 $\mathcal{F}$ is uniformly locally
finite, and (b) holds.

$(b)\rightarrow(c)$ . Suppose (b), and let $A$ be a closed set of $X$ To apply Theorem 1.7,
first we shall prove that $A$ is $U^{\aleph_{0}}$-embedded in $X$ Let $cU=\{U_{n}|n\in N\}$ be an in-
creasing cozero-set cover of $A$ . Then there are a cozero-set $V_{n}$ and a zero-set $F_{n}$

of $A$ such that
$F_{n}\subset U_{n},$ $V_{n}\subset F_{n}\subset V_{n+l},$ $n\in N$,

$A=\cup\{V_{n}|n\in N\}$ .
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Let us set
$\mathcal{F}=\{F_{n}-V_{n-1}|n\in N\}$ ,

where $ V_{0}=\emptyset$ . Then $\mathcal{F}$ is a locally finite closed collection in $X$ since $A$ is closed,

and we have the order of $\mathcal{F}\leqq 2$ . Hence by (b) there are a cozero-set $G_{n}$ and a
zero-set $F_{d}n$ of $X$ such that

$F_{n}-V_{n-1}\subset E_{n}\subset G_{n},$ $n\in N$, and
$\{G_{n}|n\in N\}$ is locally finite.

Let
$H_{0}=X-\bigcup_{n}E_{n}$ ; $H_{n}=G_{1}\cup\cdots\cup G_{n}-\bigcup_{i>n}E_{i}(n\geqq 1)$

Then $\mathcal{H}=\{H_{0}, H_{n}|n\in N\}$ is a countable cozero-set cover of $X$. Hence it is normal

and we have

$A\cap H_{0}=\emptyset;A\cap H_{n}\subset F_{n}\subset U_{n},$ $n\in N$.

Hence $A$ is $U^{\aleph_{0}}$-embedded in $X$ by Corollary 1.4. Now again by (b) we see that
$A$ satisfies the condition in Theorem 1.7. Thus, $A$ is $U^{\mathfrak{m}}$ -embedded in $X$

$(c)\rightarrow(a)$ . Suppose (c), and let $\{A_{\alpha}\}$ be a discrete collection of subsets in $X$ with
cardinality $\leqq \mathfrak{m}$ . Then the collection {Cl $A_{\alpha}$ } is discrete and uniformly locally finite

in the closed set UCl $A_{\alpha}$ . Hence by (c), it is uniformly locally finite in $X$, which

shows (a). This completes the proof of the theorem.
A space $X$ is called a (weak) cb-space if for any decreasing sequence $\{F_{n}\}$ of

(regular) closed sets of $X$ with $\bigcap_{n}F_{n}=\emptyset$ , there is a sequence $\{Z_{n}\}$ of zero-sets of

$X$ with $\bigcap_{n}Z_{n}=\emptyset$ such that $Z_{n}\supset F_{n}$ for each $n\in N$ ([8], [9]). It is known that every

normal and countably paracompact space is $cb$ , and a space is $cb$ iff it is weak $cb$

and countably paracompact. Weak cb-spaces are known to include all Tychonoff

pseudocompact spaces, more generally all Tychonoff M’-spaces [5], and all extre-

mally disconnected spaces. Recall that a space is extremally disconnected if the

closure of every open set is open.

LEMMA 1.11. A space satisfies property $(U^{\aleph 0})$ iff it is $cb$ .

PROOF. We shall only prove the “ if” part. Suppose that a space $X$ is $cb$

and $\mathcal{F}=\{F_{n}|n\in N\}$ a locally finite collection of closed sets in $X$. Let $E_{n}=\bigcup_{k\geq n}F_{k}$ .

Then $\{E_{n}\}$ is a decreasing sequence of closed sets with $\bigcap_{n}E_{n}=\emptyset$ . Hence there is

a sequence $\{Z_{n}\}$ of zero-sets of $X$ with $\bigcap_{n}Z_{n}=\emptyset$ such that $Z_{n}\supset E_{n}$ for each $n\in N$.

Then $cU=\{X-Z_{n}|n\in N\}$ is a countable cozero-set cover of $X$. Hence $cU$ is normal,

and $\mathcal{F}$ is locally finite with respect to $cU$ as is easily seen. This completes the

proof.
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THEOREM 1.12. A space has property $(U)$ iff it satisfies property $(U)^{*}$ and is
a cb-space.

Theorem 1.12 follows directly from the following.

THEOREM 1.13. A space has property $(U^{\mathfrak{m}})$ iff it satisfies property $(U^{m})^{*}$ and
is a cb-space.

PROOF. By Lemma 1.11 the ” only if” part is obvious. Let a space $X$ be a
cb-space :with property $(U^{\mathfrak{m}})^{*}$ . Let $\mathcal{F}=\{F_{\alpha}|\alpha\in\Omega\}$ be a locally finite collection of
subsets of $X$ with $Card\Omega\leqq \mathfrak{m}$ . We may assume that each $F_{\alpha}$ is closed. Let us
put

$U_{n}=\{x\in X|ord_{x}\mathcal{F}<n\}$ ,

where $ord_{x}\mathcal{F}$ denotes the order of $\mathcal{F}$ at $x$ . Then $U_{n}$ is an open set and we have
$U_{n}\subset U_{n+1},$

$n\in N;X=\bigcup_{n}U_{n}$ .

Since $X$ is $cb$ , one can readily choose a cozero-set $V_{n}$ of $X$ so that $V_{n}\subset U_{n}$ for
$n\in N$ and $X=\bigcup_{n}V_{n}$ . Then $\{V_{n}\}$ is normal, and hence, we may assume that $\{V_{n}\}$

is locally finite and admits a zero-set cover $\{Z_{n}\}$ with $Z_{n}\subset V_{n}$ for each $n\in N$ Let
$\mathcal{E}_{n}=\{Z_{n}\cap F_{a}|\alpha\in\Omega\}$ . Then we have order of $\mathcal{E}_{n}<n$ . Hence, by assumption and
Theorem 1.10, there are a cozero-set $G_{n\alpha}$ and a zero-set $Z_{na}$ such that

$Z_{n}\cap F_{\alpha}\subset Z_{n\alpha}\subset G_{na},$ $\alpha\in\Omega$ .
Let us put for $\alpha\in\Omega$

$E_{a}=\cup\{Z_{n\alpha}\cap Z_{n}|n\in N\}$ .
$H_{\alpha}=\cup\{G_{n\alpha}\cap V_{n}|n\in N\}$ .

Then, since $\{V_{n}\}$ is locally finite, $E_{\alpha}$ is a zero-set and $H_{\alpha}$ a cozero-set of $X$, and
$F_{\alpha}\subset E_{a}\subset H_{\alpha}$ . Moreover, it is easy to see that $\{H_{\alpha}|\alpha\in\Omega\}$ is locally finite. Thus, by
Lemma 1.1 $\mathcal{F}$ is uniformly locally finite, and the proof is completed.

A space $X$ is called $\mathfrak{m}$-expandable (resp. discretely $\mathfrak{m}$-expandable) if for any
locally finite (resp. discrete) collection $\{F_{\alpha}|\alpha\in\Omega\}$ of closed sets in $X$ with Card $\Omega\leqq \mathfrak{m}$

there is a locally finite collection of {G. $|\alpha\in\Omega$ } of open sets of $X$ such that $F.\subset G_{\alpha}$

for each $\alpha\in\Omega$ . Expandable (resp. discretely expandable) spaces are defined to be
an $\mathfrak{m}$-expandable (resp. a discretely $\mathfrak{m}$-expandable) space for any $\mathfrak{m}$ . It is known
that a space is $(\mathfrak{m}-)$ expandable iff it is discretely $(\mathfrak{m}-)$ expandable and countably
paracompact, and $\aleph_{0}$ -expandability coincides with countably paracompactness.
These notions and facts are obtained by Krajewski [7] and Smith and Krajewski
[16]. Our Theorem 1.12 as well as Lemma 1.11 may be compared with these
results.
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In Theorem 1.12 it is unknown whether cb-property can be replaced by
countably paracompactness, or equivalently, any countably paracompact space with
property $(U^{\aleph_{0}})^{*}$ is $cb$ .

In [3] Hardy and Juhasz defined the notion of nd-spaces; a space $X$ is called
$nd$ if for any decreasing sequence $\{F_{n}\}$ of nowhere dense closed sets with $\cap F_{n}=\emptyset$

there is a sequence $\{Z_{n}\}$ of zero-sets with $\cap Z_{n}=\emptyset$ such that $Z_{n}\supset F_{n}$ for each $n\in N$

The following lemma can be proved similarly as Lemma 1.11. Note that the union
of a locally finite collection of nowhere dense closed sets is nowhere dense and
closed.

LEMMA 1.14. A space $X$ is $nd$ iff every countable locally finite collection of
nowhere dense closed sets is uniformly locally finite.

In [3] it is obtained that cb-property implies nd-property, and nd-property
implies countably paracompactness (its proof seems to contain a gap, but the fact
still remains true), and an example of countably paracompact but not an nd-space.
It is also conjectured that an nd-space need not be $cb$ .

Relating to our question above or this conjecture, we shall prove the following
proposition.

PROPOSITION 1.15. A space is $cb$ iff it has property $(U^{\aleph_{0}})^{*}$ and is $nd$.

PROOF. We shall only prove the “ if” part. Let $X$ be an nd-space with
property $(U^{\aleph_{0}})^{*}$ , and let $\{F_{n}\}$ be a decreasing sequence of closed sets of $X$ with
$\cap F_{n}=\emptyset$ . Then {Bd $F_{n}|n\in N$} is a locally finite collection of nowhere dense closed
sets, where Bd $F_{n}=the$ boundary of $F_{n}$ . Hence by Lemma 1.14 there are cozero-
sets $C_{n},$ $A_{n}$ and a zero-set $B_{n}$ such that $\{A_{n}|n\in N\}$ is locally finite and

Bd $F_{n}\subset C_{n}\subset B_{n}\subset A_{n},$ $n\in N$.

Let $E_{n}=F_{n}-C_{n+1}\cup F_{n+1}$ . Then $\{E_{n}\}$ is a discrete closed collection. Since $X$ has
$(U^{tt_{0}})^{*}$ , there is a locally finite cozero-set collection $\{G_{r\iota}\}$ and a zero-set collection
$\{D_{n}\}$ such that $E_{n}\subset D_{n}\subset G_{n}$ for each $n\in N$ Let

$Z_{n}=\cup\{B_{k}|k>n, k\in N\}\cup\cup\{D_{k}|k\geqq n, k\in N\}$ .

Then it is easily checked that $\{Z_{n}\}$ is a decreasing sequence of zero-sets of $X$ with
$\cap Z_{n}=\emptyset$ such that $Z_{n}\supset F_{n}$ for each $n\in N$ Thus, $X$ is $cb$ and that completes the
proof.

COROLLARY 1.16. A space has property $(U)$ iff it has property $(U)^{*}$ and is $nd$.

REMARK. By the result above of [8] or Proposition 1.15 we see that for nd-
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spaces property $(U^{\aleph_{0}})^{*}$ or weak cb-property is equivalent to cb-property. However,

in general, property $(U^{\aleph_{0}})^{*}$ or weak cb-property does not imply the other. Indeed,

there exists a normal space which is not weak $cb$ ([3], [131), and every normal

space has $(U^{\aleph_{0}})^{*}$ . On the other hand, the Tychonoff plank is weak $cb$ but not

has property $(U^{\aleph_{0}})^{*}$ .

\S 2. Property $(U)^{\prime}$

DEFINITION 2.1. A space $X$ is said to have property $(U)^{\prime}$ if every locally finite
collection $\mathcal{F}$ of regular closed sets in $X$ is uniformly locally finite.

Obviously by definition, every extremally disconnected space has property $(U)^{\prime}$ .
By a modified proof of a theorem of Isiwata [5] that every Tychonoff M’-space is

weak $cb$ , we see also that every Tychonoff M’-space has property $(U)^{\prime}$ .
If $\mathcal{F}$ is further assumed to be countable, similarly as Lemma 1.11 the above

definition is shown to be equivalent to weak cb-property. Thus analogous to the

result of [8] mentioned in \S 1, we have the following theorem, which is an answer
to the question of Morita in the introduction.

$Tl1\llcorner OR\llcorner M2.2$ . $\Lambda$ space has property $(U)$ iff it has properly $(U)^{\prime}$ and is cx-
pandable.

$PROO1^{-}$ . Let $\mathcal{F}=\{F_{\alpha}^{\tau}\}$ be a locally finite collection of subsets of an expandable

space $X$ with property $(U)$ . Then there is a locally finite collection $\{G_{a}\}$ of open
sets such that $F.\subset G_{a}$ for each $\alpha$ . By property $(U)^{\prime}$ {Cl $G_{\alpha}$ } is uniformly locally

finite, and so is also $\mathcal{F}$ . This completes the proof.

QUESTION. In Theorem 2.2 can property $(U)^{\prime}$ be weakened to weak cb-pro-

perty ?

\S 3. Products and $U^{\aleph_{0}}$-embedding

Finally we shall give an application of Corollary 1.4.

THEOREM 3.1. For a subset $A$ of a space $X$ the followiug are $equiva/ent$ .
(a) $A$ is $U^{\aleph_{0}}$-embedded in $X$.
(b) $A\times Y$ is $U^{\aleph_{0}}$-embedded in $x\times Y$ for any compact space $Y$.
(c) $A\times I$ is $C_{1}$ -embedded in $X\times I$.

PROOF. $(a)\rightarrow(b)$ . Assume that $A$ is $U^{\aleph_{0}}$-embedded in $X$ and let $cU=\{U_{n}|n\in N\}$

be a countable increasing cozero-set cover of $A\times Y$. Let $p;X\times Y\rightarrow X$ be the pro-
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jection. Then each $V_{n}=A-p(A\times Y-U_{n})$ is a cozero-set of $A$ , and

$V_{n}\subset V_{n+1},$
$n\in N_{j}\cdot\bigcup_{n}V_{n}=A$ .

Hence by Corollary 1.4 there exists a normal open cover $cW$ of $X$ such that $cW\cap A$

refines $\{V_{n}\}$ . Then $cW^{\prime}=\{W\times Y|W\in cW\}$ is a normal open cover of $X\times Y$, and
$cW^{\prime}\cap(A\times Y)$ refines $cU$ Thus, by Corollary 1.4 $A\times Y$ is $U^{\{t_{0}}$-embedded in $X\times Y$,
which shows (b).

$(b)\rightarrow(c)$ . This follows from Lemma 1.5.
$(c)\rightarrow(a)$ . Assume (c). Let $cU=\{U_{n}|n\in N\}$ be a countable increasing cozero-set

cover of $A$ . Then there exist a zero-set $E_{n}$ and a cozero-set $V_{n}$ such that
$V_{n}\subset E_{n}\subset U_{n},$ $V_{n}\subset V_{n+1},$ $E_{n}\subset E_{n+1},$

$n\in N;\bigcup_{n}V_{n}=A$ .

Then $Z=\cup\{(A-U_{n})\times\{1/n\}|n\in N\}$ is a zero-set of $A\times I$ and we have $ Z\cap(X\times\{0\})=\emptyset$ .
By (c) there exist a zero-set $Z^{\prime}$ of $X\times I$ such that

$Z\subset Z^{\prime},$ $ Z^{\prime}\cap(X\times\{0\})=\emptyset$ .

Let us put for each $n\in N$

$G_{n}=\{x\in X|(x, 1/n)\not\in Z^{\prime}\}$ .
Then $G_{n}$ is a cozero-set of $X$ and we have

$\bigcup_{n}G_{n}=X,$ $G_{n}\cap A\subset U_{n},$ $n\in N$

Thus, by Corollary 1.4 $A$ is $U^{\aleph_{0}}$-embedded in $X$ This proves the theorem.
In [11], [14] it is proved that for a subset $A$ of a space X $A$ is $P^{\mathfrak{m}}$ -embedded

in $X$ iff $A\times Y$ is $c*$ -embedded in $X\times Y$ for a compact Hausdorff space $Y$ with
weight $\mathfrak{m}$ . If we replace $P^{\mathfrak{m}}$ and $c*$ by $U^{\mathfrak{m}}$ and $C_{1}$ respectively, Theorem 3.1
sllows that the analogue is valid or not valid according as llt $=\aleph_{0}$ or llt $>\aleph_{0}$
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