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A NOTE ON SYMMETRY OF PERPENDICULARITY IN A
$G$-SPACE WITH NONPOSITIVE CURVATURE
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1. Introduction.

Let $\mathfrak{R}$ be a G-space. We denote by $m(a, b)$ , for $a,$
$b\in \mathfrak{R}$ , a midpoint so that

am$(a, b)=m(a, b)b=ab/2$ . The G-space $\mathfrak{R}$ has “ nonpositive curvature” if every point
$p$ has a neighborhood $S(p_{\gamma_{p}})$ , where $0<\gamma_{p}<\rho_{1}(p)$ (see [3] for definition of $\rho_{1}(p)$),
such that for any three points $a,$ $b,$ $c$ in $s(p_{\gamma_{p}})$ the relation $2m(a, b)m(a, c)\leq bc$ holds,
and $R$ has “ negative curvature “ if $2m(a, b)m(a, c)<bc$ when $a,$ $b,$ $c$ are not on one
segment. Because a G-space $\mathfrak{R}$ with nonpositive curvature is finite-dimensional
according to V. N. Berestovskii [1], and hence $\mathfrak{R}$ has “ domain invariance” (see [4]
p. 16), the universal covering space $\overline{\mathfrak{R}}$ of $\mathfrak{R}$ is straight by Busemann [3] p. 254. More-
over the spheres in $\overline{\mathfrak{R}}$ are convex. The straight line $L$ in a G-space is called a
“ perpendicular to the set $M$ at $f$, if $f\in L\cap M$ and every point of $L$ has $f$ as a foot
on $M$, i.e., $qf=qM$ for any $q\in L$ . We say that perpendicularity between lines is
symmetric if the following holds: if a straight line $L$ is a perpendicular to a straight
line $G$ , then $G$ is a perpendicular to $L$ . We say that a set $M$ of a G-space is
totally convex if $p,$ $q\in M$ implies that all geodesic curves from $p$ to $q$ are contained
in $M$. If a closed set $M$ of a G-space $\mathfrak{R}$ in which the spheres are convex is totally
convex, then for each $p\in \mathfrak{R}$ there is a unique point $q\in M$ such that $pq=pM$ If the
spheres of a straight G-space are convex, we denote by $W_{p}$ the point set carring
straight lines through $p\in K(q, \sigma):=\{r;qr=\sigma\}$ but not through any point $p^{\prime}\in S(q, \sigma)=$

$\{r;qr<\sigma\}$ , which are called the supporting lines of $K(q, \sigma)$ at $p$ . $K(q, \sigma)$ is “ differenti-
able at $p\in K(q, \sigma)$

“ if no proper subset of the $W_{p}$ decomposes the space.

In the present paper we prove

THEOREM 1. Let $\Re$ be a G-space of nonposilive curvature. If the spheres in
the universal covering space $\overline{\mathfrak{R}}$ of $\mathfrak{R}$ are differentiable and if perpendicularity between
lines is symmetric in $\overline{\mathfrak{R}}$ , then for every closed totally convex set $M$ in $\mathfrak{R}$ the map
$\rho:\mathfrak{R}\rightarrow M$ defined by sending $p\in \mathfrak{R}$ to the foot of $p$ on $M$ is distance non-increasing.
Further, if $pq=\rho(p)\rho(q)\neq 0$ , then $S:=\bigcup_{0\leq t\leq 1}T(p_{t}, q_{l})$ is isometric to a trapezoid in a
Minkowski plane, where $T(p_{l}, q_{t})$ is the point set carring the segment from $p_{l}\in T(p_{\rho}(p))$

to $q_{l}\in T(q, \rho(q))$ with $pp_{l}$ : $p_{c\rho}(p)=qq_{t}$ : $q_{l}\rho(q)=t:(1-t)$ .
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In the class of Riemannian G-spaces of nonpositive curvature L. Bishop and
B. O’Neill [2] have proved the theorem because our hypothesis is automatically

satisfied in such a class. Our main purpose is to exhibit that the property as in

the theorem depends only on differentiability of the spheres and symmetry of

perpendicularity.

As an application we have

PROPOSITION 1. Let $\mathfrak{R}$ be a G-space with nonpositive curvature. Suppose thal

the spheres in the universal covering space at of $\mathfrak{R}$ are differentiable and that per-
pendicularity between lines in $\overline{\mathfrak{R}}$ is symmetric. If $\mathfrak{R}$ contains a compact tolally con-
vex set $M$, then all free homotopy classes of closed curves in $\mathfrak{R}$ contains closed
geodesics.

Once we establish Theorem 1, the proof of Proposition 1 is done in the same
way as in [2], because Busemann [3] has already given the requisite properties for

the proof. So we omit the proof.
Lastly the author wishes the readers to accept the synthetic approach to

differential geometry.

2. Lemmas and Proof of Theorem 1.

The following lemma is proved in [5].

LEMMA 1. Let $\mathfrak{R}$ be a simply connected G-space with nonpositive curvature in
which the spheres are differentiable. For any point $p$ and for any representation
$x(t),$ $-\infty<t<\infty$ , of each geodesic with $p\not\in x(R)$ if $px(t_{0})=px(R)$ , then $p_{X}(t)$ is d.lffer-
entiable at $t_{0}$ and $(px)^{\prime}(t_{0})=0$ .

Using Lemma 1 we prove

LEMMA 2. Let $\mathfrak{R}$ be a simply connected G-space with nonpositive curvature in
which the spheres are differentiable and let $x(t),$ $-\infty<t<\infty$ , and $y(s),$ $-\infty<s<\infty$ ,

be representations of geodesics in $\mathfrak{R}$ . Then $lhe$ lenglh $L$ of $lhe$ segment $T(x(t_{0}), y(s_{0}))$

attains the distance between $x(R)$ and $y(R)$ if and only if each of $x(t_{0})$ and $y(s_{0})$ is
the foot of the other on the geodesic containing one.

PROOF. If one, say $x(t_{0})$ , is not the foot of the other, say $y(s_{0})$ , on $x(R)$ , then

there is a point $x(t_{1})$ with $y(s_{0})x(t_{1})=y(s_{0})x(R)<L$ and with $t_{0}\neq t_{1}$ . This implies

that $L>x(R)y(R)$ . Thus the necessity is established.
Now, we suppose that each of $x(t_{0})$ and $y(s_{0})$ is the foot of the other on $x(R)$
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or $y(R)$ , i.e., $x(t_{0})y(s_{0})=x(t_{0})y(R)=y(s_{0})x(R)$ . Further we suppose that $L\neq x(R)y(R)$ ,
and hence there exists points $x(t_{1})$ and $y(s_{1})$ with $x(t_{1})y(s_{1})<L$ . Choose parametri-
zations $x_{1}(t)$ and $y_{1}(t),$ $-\infty<t<\infty$ , of $x(R)$ and $y(R)$ respectively in such a way
that $x_{1}(t)=x((t_{1}-t_{0})t+t_{0})$ and $y_{1}(t)=y((s_{1}-s_{0})t+s_{0}),$ $-\infty<t<\infty$ . Then $x_{1}(t)y_{1}(t)=:f(t)$

is a convex function for $t$ (see [3] p. 238). We show that $f^{\prime}(O)=0$ , and then from
convexity of $ff(O)=x_{1}(0)y_{1}(0)=x(t_{0})y(s_{0})$ is a minimum of $f$, contradicting that
$f(1)=x(t_{1})y(s_{1})<L=x(t_{0})y(s_{0})=f(0)$ .

Let $z$ be an interior point of the segment $T(x(t_{0}), y(s_{0}))$ . Then both $x(t_{0})$ and
$y(s_{0})$ are feet of $z$ on $x(R)$ and $y(R)$ respectively. From Lemma 1 we have

$\lim_{l\downarrow 0,(l\uparrow 0)}(f(t)-f(0))/t=\lim_{l\downarrow 0,(t\uparrow 0)}(x_{1}(t)y_{1}(t)-x_{1}(0)y_{1}(0))/t$

$=\lim_{t\downarrow 0,(t\uparrow 0)}(x((t_{1}-t_{0})t+t_{0})y((s_{1}-s_{0})t+s_{0})-x(t_{0})y(s_{0}))/t$

$(\geqq)_{(l\uparrow 0)}^{l\downarrow 0}$

$\leq\lim(x((t_{1}-t_{0})t+t_{0})z-x(t_{0})z)/t+$
$\lim_{t\downarrow 0,(l\uparrow 0)}(y(s_{1}-s_{0})t+s_{0})z-y(s_{0})z)/t$

$=(t_{1}-t_{0})\lim_{h\rightarrow 0}(x(h+t_{0})z-x(t_{0})z)/h+(s_{1}-s_{0})\lim_{h\rightarrow 0}(y(h+s_{0})z-y(s_{0})z)/h=0$ .

Thus $0\leq\lim_{\ell\uparrow 0}(f(t)-f(O))/t\leq\lim_{i\downarrow 0}(f(t)-f(O))/t\leq 0$ from convexity of $f$.

We remark that if the spheres are not differentiable, then, in general, sufficiency
does not hold. Such an example is found in Minkowski geometry (see [3]).

The following is the case where $\mathfrak{R}$ is simply connected.

PROPOSITION 2. Let $\mathfrak{R}$ be a simply connected G-space with non-positive curvature
in which the spheres are differentiable and in which perpendicularity between lines
is symmetric. If $M$ is a closed totally convex set in $\mathfrak{R}$ , then the map $\rho:\mathfrak{R}\rightarrow M$

defined by sending $p\in \mathfrak{R}$ to the foot of $p$ on $M$ is distance nonincreasing. Further,
if $pq=\rho(p)\rho(q)\neq 0$ , then $S:=\bigcup_{0\leq t\leq 1}T(p_{t}, q_{l})$ is isometric to a trapezoid in a Minkowski
plane, where the segment $\tau(p_{l}, q_{l})$ joins $p_{l}\in\tau(p_{\rho}(p))$ and $q_{t}\in T(q, \rho(q))$ with $pp_{t}$ : $p_{l\rho}(p)$

$=qq_{t}$ : $q_{l}\rho(q)=t;(1-t)$ .

PROOF. Let $p$ and $q$ be any points in $\mathfrak{R}$ . If $\rho(p)=\rho(q)$ , then Proposition 2 is
trivial. We assume that $\rho(p)\rho(q)=t_{0}>0$ . Let $x(t),$ $-\infty<t<\infty$ , be the representation
of the geodesic which is determined by $x(O)=\rho(p)$ and $x(t_{0})=\rho(q)$ . Total convexity
of $M$ implies that $x([0, t_{0}])$ is contained in $M$ If $f_{1}=x(t_{1})$ and $f_{2}=x(t_{2})$ are the feet
of $p$ and $q$ on $x(R)$ respectively, then $t_{1}\leq 0<t_{0}\leq t_{2}$ In fact, $t_{1}$ cannot be in $(0, \infty)$ ,
because $x((O, t_{0}))\subset M$ and because $f(t):=p_{X}(t)$ is a strictly convex function for $t$

(see [3] p. 240) which takes a minimum at $t=t_{1}$ or $f(t)=|t-t_{1}|$ . By the same
reasoning $t_{0}\leq t_{2}$ .
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We first treat the case where $p\not\in x(R)$ and $q\not\in x(R)$ . Let $w(t),$ $-\infty<t<\infty$ , and
$z(t),$ $-\infty<t<\infty$ , be the representations of geodesics in $\mathfrak{R}$ with $w(O)=x(t_{1}),$ $w(px(t_{1}))=$

$p,$ $z(O)=x(t_{2})$ and $z(qx(t_{2}))=q$. Now we have only to prove that $w(R)z(R)=x(t_{1})x(t_{2})$ ,

and then we have $pq\geq w(R)z(R)=x(t_{1})x(t_{2})=t_{2}-t_{1}\geq t_{0}=\rho(p)\rho(q)$ . Since perpendicul-
arity between lines is symmetric, $x(t_{1})x(t_{2})=x(t_{1})z(R)=x(t_{2})w(R)$ and therefore by
Lemma 2 $x(t_{1})x(t_{2})=w(R)z(R)$ .

If $p\in x(R)$ and $q\in x(R)$ , then $pq=t_{2}-t_{1}\geq t_{0}=\rho(p)\rho(q)$ . Hence we next treat the
case where, for example, $p\in x(R)$ and $q\not\in x(R)$ . In this case we know from [3] $p$ .
122 that the set $W$ formed by the perpendiculars to $x(R)$ at $x(O)=\rho(p)$ of $x(R)$

decomposes the space into two arcwise connected sets. Because $\rho(p)$ and $\rho(q)$ are
contained in distinct components of $\mathfrak{R}-W$, so are $p$ and $q$. Thus there is a point
$p^{\prime}\in T(p, q)\cap W$. By Lemma 2 $pq\geq p^{\prime}q\geq\rho(p)\rho(q)$ .

On the second part of the statement, see [3] p. 241.

PROOF OF THEOREM 1. The idea of the proof is the same as the one in [2].

Let $\overline{M}\subset\overline{\mathfrak{R}},\overline{p}\in\overline{\mathfrak{R}}$ and $\overline{q}\in\overline{\mathfrak{R}}$ lie over $M,$ $p$ and $q$ respectively and let $\overline{\rho}$ be the map of
$\overline{\mathfrak{R}}$ into $\overline{M}$ defined in Proposition 2. Clearly $\overline{M}$ is a closed totally convex set in $\overline{\mathfrak{R}}$ .
We first prove that $\rho\circ\pi=\pi\circ\overline{\rho}$ where $\pi$ is the covering projection of $\overline{\mathfrak{R}}$ onto $\mathfrak{R}$ . For

any $\overline{p}\in\overline{\mathfrak{N}}$ if the segment $T(\overline{p}_{\rho\pi}\overline{(\overline{p}))}$ from $\overline{p}$ to $\overline{\rho\pi(\overline{p})}$ lies over $\tau(p_{\rho}(p))$ , it is
the distance minimizing segment from $p$ to $\overline{M}$ . If it is false, there is a point
$\overline{\rho}(\overline{p})\neq\overline{\rho\pi(\overline{p})}$ with $\overline{p}\overline{\rho}(\overline{p})<\overline{p}_{\rho\pi}\overline{(\overline{p})}$ . Because $\pi is$ distance nonincreasing, $pM<p_{\rho\pi}(\overline{p})=$

$p_{\rho}(p)$ , a contradiction.
For any $p\in \mathfrak{R}$ and $q\in \mathfrak{R}$ if a segment $T(\overline{p},\overline{q})$ lies over a segment $T(p, q)$ , then

$pq=\overline{p}\overline{q}\geq\overline{\rho}(\overline{p})\overline{\rho}(\overline{q})\geq\pi\overline{\rho}(\overline{p})\pi\overline{\rho}(\overline{q})=\rho\pi(\overline{p})\rho\pi(\overline{q})=\rho(p)\rho(q)$ , and the equality $pq=\rho(p)\rho(q)$

holds if and only if $S:=\bigcup_{0\leq t\leq 1}T(p_{t}, q_{t})$ is isometric to a trapezoid in a Minkowski
plane.

Note. Professor Busemann informed the author that if perpendicularity bet-

ween lines is symmetric in a straight space in which the spheres are convex, then
the spheres are differentiable. So our assumption of the differentiability of the
spheres in Theorem 1 and Proposition 1 is unnecessary. The author would like

to express his thanks to Professor H. Busemann for his valuable information.
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