HOMEOMORPHISMS OF INFINITE-DIMENSIONAL FIBRE BUNDLES

By

Katsuro Sakai

0. Introduction

Throughout in this paper, all spaces are metrizable and E denotes a locally convex linear metric space homeomorphic (\cong) to its own countably infinite product E^{ω} or the subspace E_{f}^{ω} of E^{ω} consisting of all elements whose almost all coordinates are zero.

A manifold modeled on E, briefly *E*-manifold, is a metric space M admitting an open cover by sets homeomorphic to open subsets of E. We assume the following:

Each E-manifold has the same weight as E.

Hence if E is separable, then E-manifolds means separable E-manifolds. It is well-known that each connected E-manifold has the same weight as E.

An *E-manifold bundle* is a locally trivial fibre bundle with fibre an *E*-manifold. An *E*-manifold bundle with fibre *M* is briefly called an *M*-bundle. Then an *E*-bundle is a locally trivial fibre bundle with fibre *E*. It is proved by T. A. Chapman [Ch_s] that each *E*-bundle is trivial, that is, bundle isomorphic a product bundle. In this paper (Section 3 and 4), we show that each *E*-manifold bundle over *B* can be embedded in the product bundle $B \times E$ as a closed or/and an open sub-bundle.

Let $p: X \to B$ be an *E*-manifold bundle. By Bundle Stability Theorem [Sa₂], $p: X \to B$ is bundle isomorphic to $p \circ \text{proj}: X \times E \to B$. A subset *K* of *X* is said to be *B*-preservingly *E*-deficient if there exists a bundle homeomorphism $h: X \to X \times E$ such that $h(K) \subset X \times \{0\}$. From 5-2 in [Sa₂], we can require *h* to satisfy that h(x) = (x, 0) for each $x \in K$. In this paper, we research several properties of *B*preservingly *E*-deficient sets.

In Section 2, we show that a *B*-preservingly *E*-deficient locally closed set *K* is negligible in *X*, that is, $p|X \setminus K: X \setminus K \rightarrow B$ is also an *E*-manifold bundle which is bundle isomorphic to $p: X \rightarrow B$. And in Section 4, we show that if *Y* is a *B*-preservingly *E*-deficient closed set in *X* and $p|Y: Y \rightarrow B$ is also an *E*-manifold bundle, then *Y* is *B*-preservingly collared in *X*, that is, there is an open embedding

Received May 20, 1981. Revised August 21, 1981.

 $g: Y \times [0,1) \rightarrow X$ such that $pg = p \circ \text{proj}$ and g(y,0) = y for each $y \in Y$.

Moreover we establish two Approximation Theorems and Hemeomorphism Extension Theorem. In Section 5, we show that any bundle map of an *E*-manifold bundle to another over same base can be approximated by both closed and open bundle embeddings. In Section 6, we prove that if $f: K \rightarrow X$ is a *B*-preserving embedding of a *B*-preserving *E*-deficient closed set *K* in *X* which is homotopic to the inclusion by a *B*-preserving homotopy, then *f* can extend to a bundle homeomorphism $h: X \rightarrow X$ ambiently invertibly bundle isotopic to the identity.

Thus we extend results of T.A. Chapman and R.Y.T. Wong [C-W] to the case of arbitraly metric base spaces. It was raised as an open question in their paper [C-W]. Our approach is different from theirs.

Finally, we prove that each bundle homotopy equivalence between E-manifold bundles over same base is bundle homotopic to a bundle homeomorphism.

1. Preliminary

Let \mathcal{V} and \mathcal{V} be collections of subsets of X. We say that \mathcal{V} refines \mathcal{V} , denote $\mathcal{V} < \mathcal{V}$, provided each $U \in \mathcal{V}$ is contained in some $V \in \mathcal{V}$. For $A \subset X$, define $\operatorname{st}(A; \mathcal{U}) = \bigcup \{U \in \mathcal{U} | A \cap U \neq \emptyset\}$. And for a collection \mathcal{W} of subsets of X, $\operatorname{st}(\mathcal{W}; \mathcal{V})$ $= \{\operatorname{st}(\mathcal{W}; \mathcal{V}) | \mathcal{W} \in \mathcal{W}\}$ and denote $\operatorname{st}(\mathcal{V}) = \operatorname{st}(\mathcal{U}; \mathcal{V})$. If \mathcal{V} and \mathcal{V} are covers of X and \mathcal{V} refines \mathcal{V} , then we call \mathcal{V} a refinement of \mathcal{V} , and if $\operatorname{st}(\mathcal{V})$ refines \mathcal{V} , then we call \mathcal{V} a star-refinement of \mathcal{V} . We say that a map $f: Y \to X$ is \mathcal{V} -near to a map $g: Y \to X$ or f and g are \mathcal{V} -near if $\{\{f(y), g(y)\} | y \in Y\}$ refines $\mathcal{U} \cup \{\{x\} | x \in X\}$, and a homotopy $h: Y \times I \to X$ is \mathcal{V} -limited if $\{h(\{y\} \times I) | y \in Y\}$ refines $\mathcal{U} \cup \{\{x\} | x \in X\}$. A \mathcal{V} -limited homotopy (isotopy) is called a \mathcal{V} -homotopy (\mathcal{V} -isotopy).

A map $f: B \times X \to B \times Y$ (or $f: X \times B \to Y \times B$) is said to be *B*-preserving if $\pi_B f = \pi_B$, where π_B is the projection onto *B*. Then, for each $b \in B$, define $f_b: X \to Y$ by $f_b(x) = f(b, x)$ (or = f(x, b)). Let $p: X \to B$ and $q: Y \to B$ be maps. A map $f: X \to Y$ is *B*-preserving if qf = p. A map $g: X \times Z \to Y$ (or $g: X \to Y \times Z$) is *B*-preserving if $qg = p\pi_X$ (or $q\pi_Y g = p$). And a homotopy $h: X \times I \to Y$ is *B*-preserving if $qh_t = p$ for $t \in I$. If $p: X \to B$ and $q: Y \to B$ are bundles, then a *B*-preserving continuous map (embedding, homeomorphism, etc.) $f: X \to Y$ is called a bundle map (a bundle embedding, a bundle homeomorphism, etc.) and a *B*-preserving homotopy (isotopy) $h: X \times I \to Y$ is a called a bundle homotopy (a bundle isotopy.)

For topological properties of the linear metric space E, we refer readers to see the Bessaga and Pełczyński's Book [B-P].

In [Mi], E. Micheal established two useful criterion for a property \mathcal{P} in order that a topological space X has \mathcal{P} if each point of X has a neighbourhood which has \mathcal{P} . The first is one for a property of open sets and the second is one for a property of closed sets.

Let \mathcal{P} be a property of open sets in a topological space X. Then \mathcal{P} is Ghereditary if \mathcal{P} satisfies the following conditions:

- a) If U is an open set in X which has property \mathcal{P} , then every open subset of U has also property \mathcal{P} .
- b) A union of two open sets both of which have property \mathcal{P} has also property \mathcal{P} .
- c) A discrete union of open sets all of which have property \mathcal{P} has also property \mathcal{P} .

1-1 THEOREM (Micheal [Mi]): Let \mathcal{P} be a G-hereditary property of open sets in a paracompact (Hausdorff) space X. If each point of X has an open neighbourhood which has property \mathcal{P} , then X has property \mathcal{P} .

Let \mathcal{P} be a property of closed sets in a topological space X. Then \mathcal{P} is *F*-hereditary if \mathcal{P} satisfies the following conditions:

- a) If A is a closed set in X which has property \mathcal{P} , then every closed subset of A has also property \mathcal{P} .
- b) If A' and A'' have property \mathcal{P} and $A = A' \cup A'' = \operatorname{int}_A A' \cup \operatorname{int}_A A''$, then A has also property \mathcal{P} .
- c) A discrete union of closed sets all of which have property \mathcal{P} has also property \mathcal{P} .

1-2 THEOREM (Micheal [Mi]): Let \mathcal{P} be an F-hereditary property of closed sets in a paracompact (Hausdorff) space X. If each point of X has a closed neighbourhood which has property \mathcal{P} , then X has property \mathcal{P} .

2. Negligibility of *E*-deficient sets in Bundles

Let $p: X \to B$ be a map. A subset K of X is said to be *B*-preservingly negligible in X (with respect to p) if there exists a *B*-preserving homeomorphism $f: X \to X \setminus K$. If for each open cover \mathcal{U} of X, there is a *B*-preserving homeomorphism $f: X \to X \setminus K \mathcal{U}$ -near to id, then we say that K is *B*-preservingly strongly negligible in X (with respect to p). A *B*-preserving extractor pushing K off X is an invertible *B*-preserving isotopy $h: X \times I \to X$ such that $h_0 = \text{id}, h_1(X) = X \setminus K$ and h_t is onto for each $t \in [0, 1)$. If h is \mathcal{U} -limited for an open cover \mathcal{U} of K in X, h is called a *B*-preserving \mathcal{U} -extractor pushing K off X. A subset K of X is said to be *B*-preservingly extractible from X (with respect to p) if for each open cover \mathcal{U} of K in X, there is a *B*-preserving \mathcal{U} -extractor pushing K off X. In this section, we will show that if $p: X \rightarrow B$ is an *E*-manifold bundle, then each *B*-preservingly *E*-deficient locally closed set in *X* is *B*-preservingly extractible from *X*, hence *B*-preservingly strongly negligible in *X*. First, we will see the equivalence of *E*-deficiency and \mathbf{R}^{w} - (or \mathbf{R}^{w}_{f} -) deficiency.

2-1 THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle and $K \subset X$. Then the following are equivalent:

- i) K is B-preservingly E-deficient in X.
- ii) K is B-preservingly \mathbf{R}^{w} -deficient or \mathbf{R}_{j}^{w} -deficient in X, according as $E \cong E^{w}$ or $\cong E_{j}^{w}$.
- iii) There is a bundle homeomorphism $h: X \to X \times [0, 1)$ (or $h: X \to X \times [0, 1]$) such that $h(K) \subset X \times \{0\}$ (more strongly, h(x) = (x, 0) for each $x \in K$).

PROOF: The equivalence of i) and ii) is proved as same as Theorem 3.1 in $[Ch_1]$ and Theorem 2-6 in $[Sa_1]$. Since

$$(\boldsymbol{R}^{\omega} \times \boldsymbol{R}^{\omega}, \boldsymbol{R}^{\omega} \times \{0\}) \cong (\boldsymbol{R}^{\omega} \times [0, 1), \boldsymbol{R}^{\omega} \times \{0\}) \cong (\boldsymbol{R}^{\omega} \times [0, 1], \boldsymbol{R}^{\omega} \times \{0\})$$

and

$$(\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times\boldsymbol{R}_{f}^{\boldsymbol{\omega}},\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times\{0\})\cong(\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times[0,1),\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times\{0\})\cong(\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times[0,1],\boldsymbol{R}_{f}^{\boldsymbol{\omega}}\times\{0\}),$$

the equivalence of ii) and iii) is clear. (cf. 5-2 in $[Sa_2]$)

Using above theorem, we can prove the following theorem similarly as Lemma 3 in [Cu] (cf. Corollary 2-7 in $[Sa_1]$).

2-2 THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle. Then any B-preservingly E-deficient locally closed set in X is B-preservingly extractible from X.

Particulary, $p|X \setminus K: X \setminus K \rightarrow B$ is also an E-manifold bundle and it is bundle isomorphic to $p: X \rightarrow B$.

2-3 THEOREM: Assume that E is completely metrizable. Let $p: X \rightarrow B$ be an E-manifold bundle. Then a countable union of B-preservingly E-deficient locally closed sets in X is B-preservingly extractible from X.

PROOF: Locally closed sets are F_{σ} and subsets of *B*-preservingly *E*-deficient sets are *B*-preservingly *E*-deficient, so we may show that a countable union of *B*-preservingly *E*-deficient closed sets is *B*-preservingly extractible. By complete metrizability of the fibre and locally triviality of *p*, there exists a metric *d* on *X* such that each fibre $p^{-1}(b)$ is *d*-complete. From the same proof as Lemma 4 in [Cu], it follows that if $\{K_i\}_{i \in N}$ is a sequence of closed subsets of *X* such that $K_n \cap (X \bigvee_{i=1}^{n-1} K_i)$ is *B*-preservingly extractible from $X \bigvee_{i=1}^{n-1} K_i$ for each $n \in \mathbb{N}$, then $\bigcup_{i=1}^{\infty} K_i$ is also *B*-preservingly extractible from *X*. Thus the result follows from 5-2 in [Sa₂] and above 2-2. \Box

3. Bundle Embedding Theorem

In this section, we will prove that each *E*-manifold bundle over *B* can be embedded in the product bundle $B \times E$ as a closed sub-bundle. To prove it, we need the parametric version of the technique of Klee [K1].

3-1 THEOREM: Let K_1 and K_2 be B-preservingly E-deficient closed sets in $B \times E$. If $f: K_1 \rightarrow K_2$ is a B-preserving homeomorphism, then there is a B-preserving homeomorphism $\tilde{f}: B \times E \rightarrow B \times E$ such that $\tilde{f} | K_1 = f$.

Using Micheal's Theorem (Theorem 1.2) and above Klee's Theorem, we will prove the following Embedding Theorem:

3-2 BUNDLE EMBEDDING THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle. Then there exists a bundle embedding $f: X \rightarrow B \times E$ such that f(X) is B-preservingly E-deficient closed in $B \times E$.

PROOF: Define the Property \mathcal{E} for closed subsets of B as follows:

(\mathcal{E}) A closed subset A of B has Property \mathcal{E} if there exists an B-preserving embedding $f: p^{-1}(A) \rightarrow B \times E$ such that $f(p^{-1}(A))$ is B-preservingly E-deficient closed in $B \times E$.

Since the fibre of $p: X \rightarrow B$ can be embedded in E as an E-deficient closed set, it follows from local triviality of $p: X \rightarrow B$ that each point of B has a closed neighbourhood which has Property \mathcal{E} .

Now we will see that Property \mathcal{E} is *F*-hereditary. Then the result follows from Theorem 1-2. We may see the condition b) of *F*-hereditary property. Let $A=A'\cup A''=\operatorname{int}_{A}A'\cup\operatorname{int}_{A}A''$ where A' and A'' have Property \mathcal{E} . There are *B*-preserving embeddings $f':p^{-1}(A')\to B\times E$ and $f'':p^{-1}(A'')\to B\times E$ such that $f'(p^{-1}(A'))$ and $f''(p^{-1}(A''))$ are *B*-preservingly *E*-deficient closed in $B\times E$. Since $f'(p^{-1}(A'\cap A''))$ and $f''(p^{-1}(A'\cap A''))$ are *B*-preservingly *E*-deficient closed in $B\times E$, using Theorem 3-1, we have a *B*-preserving homeomorphism $h: B\times E\to B\times E$ such that $h|f'p^{-1}(A'\cap A'')=f''f'^{-1}$. Define an embedding $f:p^{-1}(A)\to B\times E$ by $f|p^{-1}(A')$ =hf' and $f|p^{-1}(A'')=f''$. By 5-6 in [Sa₂], $f(p^{-1}(A))=hf'(p^{-1}(A'))\cup f''(p^{-1}(A''))$ is a *B*-preservingly *E*-deficient closed set in $B\times E$. \Box

4. Collaring Theorem for Bundles

Using Micheal's Theorem (Theorem 1.1), M. Brown [Br] proved that a locally collared subset of metric space is collared. (R. Connelly [Co] gave a new proof of this Brown's Collaring Theorem.) A bundle version can be proved in a same way. In case of product bundles, it is mentioned in [C-F] and [Fe].

Let $p: X \to B$ be a map. A subset K of X said to be *B*-preservingly collared in X (with respect to p) if there exists a *B*-preserving open embedding $g: K \times [0, 1)$ $\to X$ such that g(x, 0) = x for each $x \in K$. If each $x \in K$ has an open neighbourhood in K which is *B*-preservingly collared in X, then we say that K is locally *B*preservingly collared in X.

4-1 THEOREM: Let $p: X \rightarrow B$ be a map. Each locally B-preservingly collared subset of X is B-preservingly collared.

From this theorem, we have the following:

4-2 COLLARING THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle. If Y is a B-preservingly E-deficient closed set in X and $p|Y: Y \rightarrow B$ is an E-manifold bundle, then Y is B-preservingly collared in X.

PROOF: By the above theorem, we may show that Y is locally B-preservingly collared in X.

Using locally triviality of $p: X \to B$ and $p|Y: Y \to B$, for each $y \in Y$ there are an open neighbourhood U of p(y) in B, U-preserving open embeddings $g: U \times E \times [0, 1) \to X$ and $f: U \times E \to Y \cap g(U \times E \times [0, 1))$ such that $y \in f(U \times E)$. Since $Y \setminus f(U \times E)$ is a B-preservingly E-deficient closed set in X, we can assume that $f(U \times E) = Y \cap g(U \times E \times [0, 1))$ from 2-2. By 5-2 in $[Sa_2]$, $g^{-1}(f \times id): U \times E \times \{0\} \to U \times E \times [0, 1)$ is a U-preservingly E-deficient closed embedding. Using 3-1, construct a U-preserving homeomorphism $h: U \times E \times [0, 1) \to U \times E \times [0, 1)$ such that $h|U \times E \times \{0\} = g^{-1}(f \times id)$. Then $gh(f^{-1} \times id): f(U \times E) \times [0, 1) \to X$ is a B-preserving open embedding such that

$$gh(f^{-1}\times \mathrm{id})(x,0) = x$$
 for each $x \in f(U \times E)$.

Hence Y is locally B-preservingly collared in X. \Box

From Bundle Embedding Theorem 3-3 and Collaring Theorem 4-2, it follows

4-3 COROLLARY: Let $p: X \rightarrow B$ be an E-manifold bundle. Then there exists an open embedding $g: X \times [0, 1) \rightarrow B \times E$ such that $\pi_B g = p \pi_X$ and $g(X \times \{0\})$ is B-preservingly E-deficient closed in $B \times E$. Note $E \times [0, 1) \cong E$, then each *E*-manifold bundle $p: X \to B$ is bundle isomorphic to $p\pi_X: X \times [0, 1) \to B$ by Bundle Stability Theorem 4-2 in [Sa₂]. Hence we have a bundle version of Henderson Open Embedding Theorem [H₁].

4-4 BUNDLE OPEN EMBEDDING THEOREM: Let $p: X \rightarrow B$ be an E-manifold bundle and K a B-preservingly E-deficient closed set in X. Then there exists a bundle embedding $g: X \rightarrow B \times E$ such that g(X) is open in $B \times E$ and g(K) is Bpreservingly E-deficient closed in $B \times E$.

PROOF: By 2-1, there is a bundle homeomorphism $h: X \to X \times [0, 1)$ such that $h(K) \subset X \times \{0\}$. The result follows from above 4-3.

5. Approximation Theorems

In this section, we will show that any bundle map of an E-manifold bundle to another is approximated by bundle embeddings. We prove two Approximation Theorems. The first (5-1) is an approximation by closed embeddings and the second (5-2) is one by open embeddings.

5-1 FIRST APPROXIMATION THEOREM: Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be E-manifold bundles. If $f: Y \rightarrow X$ is a bundle map such that f|Z is a closed embedding and f(Z) is B-preservingly E-deficient in X for a closed set Z in Y, then for each open cover U of X, there exists a bundle U-homotopy $f^*: Y \times I \rightarrow X$ such that

- i) $f_{0}^{*}=f$,
- ii) $f_t^*|Z=f|Z$ for each $t \in I$,
- iii) $f_1^*: Y \rightarrow X$ is a bundle embedding, and
- iv) $f_1^*(Y)$ is B-preservingly E-deficient closed in X.

PROOF: By Bundle Embedding Theorem 3-3, we can assume that $Y \supset Z$ are closed subsets of $B \times E$ and $q = \pi_B | Y$. Then the result follows from Mapping Replacement Theorem 6-2 in [Sa₂].

5-2 SECOND APPROXIMATION THEOREM: Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be Emanifold bundles and Z a B-preservingly E-deficient closed set in Y. If $f: Y \rightarrow X$ is a bundle map such that f|Z is a closed embedding and f(Z) is B-preservingly E-deficient in X, then for each open cover U of X, there exists a bundle U-homotopy $f^{**}: Y \times I \rightarrow X$ such that

- i) $f_{0}^{**}=f$,
- ii) $f_t^{**}|Z=f|Z$ for each $t \in I$,
- iii) $f_1^{**}: Y \rightarrow X$ is a bundle embedding and
- iv) $f_1^{**}(Y)$ is open in X.

PROOF: Let \mathcal{U} be an open cover of X such that $\operatorname{st}(\mathcal{C}\mathcal{V}) < \mathcal{U}$ and let $f^* \colon Y \times I$ $\to X$ be the bundle $\mathcal{C}\mathcal{V}$ -homotopy obtained by the above first theorem. Using Collaring Theorem 4-2, there is an open embedding $g \colon Y \times [0,1) \to X$ such that $pg = q\pi_Y$ and $gi = f_1^*$, where $i \colon Y \to Y \times [0,1)$ is the injection defined by i(y) = (y,0). We can assume that each $g(\{y\} \times [0,1))$ is contained in some member of $\mathcal{C}\mathcal{V}$.

Recall $E \times [0, 1) \cong E$. Using Bundle Stability Theorem 4-2 (and 5-1) in $[Sa_2]$, we have a $(gi)^{-1}(^{C}U)$ -homotopy $h: Y \times [0, 1) \times I \to Y$ such that $h_0 = \pi_Y$, h_1 is a homeomorphism, $qh_t = q\pi_Y$ and $h_t i | Z = id$ for each $t \in I$. Then $h_1^{-1} | Z = i$ and $gh_1^{-1}: Y \to X$ is an open embedding. Define a homotopy $k: Y \times [0, 1) \times I \to Y \times [0, 1)$ by

$$k(y, s, t) = (y, st).$$

Then $k_0 = i\pi_Y$, $k_1 = id$ and $k_i i = i$ for each $t \in I$. It is easy to see that a homotopy $f^{**}: Y \times I \to X$ defined by

$$f_{\iota}^{**}(y) = \begin{cases} f_{\mathfrak{s}\iota}^{*}(y) & \text{if } 0 \leq t \leq 1/3 \\ gih_{2-\mathfrak{s}\iota}h_{1}^{-1}(y) & \text{if } 1/3 \leq t \leq 2/3 \\ gk_{\mathfrak{s}\iota-2}h_{1}^{-1}(y) & \text{if } 2/3 \leq t \leq 1 \end{cases}$$

fulfills our requirements.

6. Bundle Homeomorphism Extension

In this section, we establish a bundle version of Homeomorphism Extension Theorem due to R. D. Anderson and J. D. McCharen [A-M]. In the case of polyhedral base spaces, it has been proved by T. A. Chapman and R. Y. T. Wong [C-W].

6-1 BUNDLE HOMEOMORPHISM EXTENSION THEOREM: Let $p: X \rightarrow B$ be an *E*manifold bundle, K a B-preservingly *E*-deficient closed set in X and U an open cover of X. If $h: K \times I \rightarrow X$ is a U-homotopy such that $ph = p\pi_K$, $h_0 = id$, h_1 is an embedding and $h_1(K)$ is B-preservingly *E*-deficient closed in X, then for each open cover $\subseteq V$ of X, there exists an ambient invertible bundle $st(\bigcup; \subseteq V)$ -isotopy $h^*: X \times I \rightarrow X$ such that $h_0^* = id$ and $h_1^*|K = h_1$.

PROOF: Let \mathcal{W} be a star-refinement of \mathcal{O} . Note that $K \cup h_1(K)$ is *B*-preservingly *E*-deficient in *X* by Theorem 5-6 in [Sa₂]. By the same arguments in the proof of HET in [Sa₁], there is an ambient invertible bundle \mathcal{W} -isotopy $f: X \times I \to X$ such that $f_0 = \text{id}$ and

$f_1(K \cup h_1(K)) \cap (K \cup h_1(K)) = \emptyset.$

Next, using Anderson-McCharen's trick, we will construct an ambient invertible bundle $st(st(\mathcal{U}; \mathcal{W}); \mathcal{W})$ -isotopy $g: X \times I \rightarrow X$ such that $g_0 = id$ and $g_1|K = f_1h_1$. Then a bundle isotopy $h^*: X \times I \to X$ defined by $h_t^* = f_t^{-1}g_t$ $(t \in I)$ is a desired isotopy.

Construction of g: Using Mapping Replacement Theorem 6-2 in $[Sa_2]$, we have an embedding $k: K \times I \to X$ such that $pk = p\pi_K$, $k_i = f_i h_i$ (i=0,1), (i. e. $k_0 = id$ and $k_1 = f_1 h_1$), $k(K \times I)$ is *B*-preservingly *E*-deficient closed in *X* and k_t is *W*-near to $f_t h_t$ (hence *k* is a st(st($\mathcal{U}; \mathcal{W}$); \mathcal{W})-isotopy). From Bundle Open Embedding Theorem 4-4, we can assume that *X* is an open subset of $B \times E$, $p = \pi_B | X$ and $k(K \times I)$ is *B*-preservingly *E*-deficient closed in $B \times E$ (hence so is *K*). Note that $E \times \mathbf{R} \cong E$. Then using Theorem 3-1, construct a bundle embedding $j: X \to B \times E \times \mathbf{R}$ such that j(X) is open in $B \times E \times \mathbf{R}$ and jk = id.

Let $\mathcal{U}^* = \operatorname{st}(\operatorname{st}(\mathcal{U}; \mathcal{W}); \mathcal{W})$. For each $x \in K$, $\{x\} \times I = jk(\{x\} \times I)$ is contained in some member of $j(\mathcal{U}^*)$. Then there is a closed neighbourhood N of K in $B \times E$ such that for each $x \in N$, $\{x\} \times I$ is contained in some member of $j(\mathcal{U}^*)$. From Dowker's Theorem ([Du] p. 171), there is a continuous map $a: N \rightarrow (0, 1)$ such that

 $a(x) < \sup\{s \in (0,1] | \{x\} \times [-s, 1+s] \subset j(U) \text{ for some } U \in \mathcal{U}^*\}.$

Take a continuous map $b: N \times \mathbf{R} \rightarrow \mathbf{I}$ such that $b(bd N \times \mathbf{R}) = 0$ and b(K) = 1.

Now define an ambient invertible N-preserving $j(U^*)$ -isotopy $g': N \times \mathbb{R} \times \mathbb{I} \rightarrow N \times \mathbb{R}$ by

$$g'(x, s, t) = \begin{cases} (x, \frac{a(x) + tb(x)}{a(x)}s + tb(x)) & \text{if } -a(x) \leq s \leq 0 \\ (x, \frac{1 + a(x) - tb(x)}{1 + a(x)}s + tb(x)) & \text{if } 0 \leq s \leq 1 + a(x) \\ (x, s) & \text{otherwise.} \end{cases}$$

Then $g_0' = \operatorname{id}$ and $g_1'(x, 0) = (x, 1)$ for each $x \in K$. Since $g_t' | \operatorname{bd} N \times \mathbf{R} = \operatorname{id}$ for each $t \in \mathbf{I}$, g' has the extension $g'': B \times E \times \mathbf{R} \times \mathbf{I} \to B \times E \times \mathbf{R}$ such that $g_t''|B \times E \setminus N = \operatorname{id}$ for each $t \in \mathbf{I}$. Observe that $g_t''(j(X)) = j(X)$ for each $t \in \mathbf{I}$. Finally, define an ambient invertible bundle \mathcal{U}^* -isotopy $g: X \times \mathbf{I} \to X$ by $g_t = j^{-1}g_t''j$ for each $t \in \mathbf{I}$. Then $g_0 = \operatorname{id}$ and each $x \in K$,

$$g_{1}(x) = j^{-1}g_{1}''j(k(x,0)) = j^{-1}g_{1}''(x,0)$$
$$= j^{-1}(x,1) = k(x,1) = f_{1}h_{1}(x).$$

7. Classification of Bundles

D. W. Henderson $[H_3]$ (Henderson and Schori [H-S]) shows that each homotopy equivalence between *E*-manifolds is homotopic to a homeomorphism. Now we can prove its bundle version.

7-1 BUNDLE CLASSIFICATION THEOREM: Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be E-

manifold bundles. If $f: X \rightarrow Y$ is a bundle homotopy equivalence, then there exists a bundle homeomorphism $h: X \rightarrow Y$ such that h is bundle homotopic to f.

Using the previous results and the following bundle version of Lemma 5.1 in $[H_2]$, we can prove the theorem as same as Theorem 4 in $[H_2]$ and Theorem C in [H-S].

7-2 LEMMA: Let $p: X \to B$ be an E-manifold bundle and for each $n \in \mathbb{N}$, let $g_n: X \times [0, \infty) \to X \times [0, \infty)$ is a bundle embedding such that $g_n(X \times [0, \infty)) = X \times [0, 1)$, $g_n|X \times \{0\} = \text{id}$ and for each t > 0, $g_n(X \times [0, t])$ is open and $g_n(X \times [0, t])$ is closed in $X \times [0, \infty)$. Then there exists a bundle homeomorphism h of $X \times [0, \infty)$ onto the direct limit of

$$X \times [0, \infty) \xrightarrow{g_1} X \times [0, \infty) \xrightarrow{g_2} X \times [0, \infty) \xrightarrow{g_3} \cdots$$

such that h is bundle isotopic to the inclusion of the first $X \times [0, \infty)$ into the direct limit.

To make sure, we write proofs of 7-1 and 7-2 after Henderson.

PROOF of THEOREM 7-1: Let $g: Y \to X$ be a bundle homotopy inverse of f. From Approximation Theorem 5-1, f is bundle homotopic to a bundle closed embedding $f': X \to Y$. By Collaring Theorem 4-2, there is an open embedding $f^*: X \times [0, \infty) \to Y \times [0, 1)$ such that $f^*(x, 0) = (f'(x), 0)$ for each $x \in X$. Observe for each $t \in [0, \infty)$, $f^*(X \times [0, t])$ is closed in $Y \times [0, \infty)$ and f^* is bundle homotopic to $f \times id$.

Similarly, there exists an open embedding $g^*: Y \times [0, \infty) \to X \times [0, \infty)$ such that $g^*(Y \times \{0\}) \subset X \times \{0\}, g^*(Y \times [0, \infty)) \subset X \times [0, 1), g^*(Y \times [0, t])$ is closed in $X \times [0, \infty)$ for each $t \in [0, \infty)$ and g^* is bundle homotopic to $g \times id$.

Note that g^*f^* is bundle homotopic to id and $g^*f^*(X \times \{0\})$ is a closed subset of $X \times \{0\}$ hence *B*-preservingly *E*-deficient closed in $X \times [0, \infty)$. Using Bundle Homeomorphism Extension Theorem 6-1, for each $n \in \mathbb{N}$, construct a bundle homeomorphism $k_n: X \times [0, \infty) \to X \times [0, \infty)$ such that k_n is bundle isotopic to id, $k_n (g^*f^*)^n |$ $X \times \{0\} = \text{id}$ and $k_n |X \times [1, \infty) = \text{id}$. Then note that $g^*f^*k_n^{-1}|X \times \{0\} = (g^*f^*)^{n+1}|X \times \{0\}$. Lemma 7-2 applies to the direct system

$$X \times [0,\infty) \xrightarrow{k_1 g^* f^*} X \times [0,\infty) \xrightarrow{k_2 g^* f^* k_1^{-1}} X \times [0,\infty) \xrightarrow{k_3 g^* f^* k_2^{-1}} \dots$$

which is isomorphic by $\{id, k_1^{-1}, k_2^{-1}, \cdots\}$ to the direct system

$$X \times [0,\infty) \xrightarrow{g^*f^*} X \times [0,\infty) \xrightarrow{g^*f^*} X \times [0,\infty) \xrightarrow{g^*f^*} \cdots \cdots$$

Thus there exists a bundle homeomorphism h_1 of $X \times [0, \infty)$ onto the direct limit

of

$$(*) X \times [0,\infty) \xrightarrow{f^*} Y \times [0,\infty) \xrightarrow{g^*} X \times [0,\infty) \xrightarrow{f^*} Y \times [0,\infty) \xrightarrow{g^*} \cdots$$

such that h_1 is bundle homotopic to the inclusion i_1 of the first $X \times [0, \infty)$ into the limit.

By similar reasoning, there exists a bundle homeomorphism h_2 of $Y \times [0, \infty)$ onto the direct limit of (*) such that h_2 is bundle homotopic to the inclusion i_2 of the second $Y \times [0, \infty)$ into the limit.

Then $h' = h_2^{-1}h_1: X \times [0, \infty) \to Y \times [0, \infty)$ is a bundle homeomorphism which is bundle homotopic to $h_2^{-1}i_1 = h_2^{-1}i_2f^*$, hence bundle homotopic to f^* , so to $f \times id$. By Strong Bundle Stability Theorem, the projections $\pi_X: X \times [0, \infty) \to X$ and $\pi_Y: Y \times [0, \infty) \to Y$ are bundle homotopic to bundle homeomorphisms. Then the result follows. \square

PROOF of LEMMA 7-2: For each continuous map $r: X \rightarrow [0, \infty)$, briefly denote by X_r the variable product of $[0, \infty)$ by X, that is,

$$X_r = X \times_r [0, \infty) = \{(x, t) \in X \times [0, \infty) | t \leq r(x) \}.$$

For $t \in [0, \infty)$, $X_t = X \times [0, t]$. And $X \times [0, \infty)$ is denoted by X_{∞} .

If $a, b, c, d: X \rightarrow (0, \infty)$ are continuous maps such that a < b < d and a < c < d, then define the X-preserving homeomorphism $s(a, b, c, d): X_{\infty} \rightarrow X_{\infty}$ by

$$s(a, b, c, d)(x, t) = \begin{cases} (x, \frac{c(x) - a(x)}{b(x) - a(x)}(t - a(x)) + a(x)) & \text{if } a(x) \leq t \leq b(x) \\ (x, \frac{d(x) - c(x)}{d(x) - b(x)}(t - d(x)) + d(x)) & \text{if } b(x) \leq t \leq d(x) \\ (x, t) & \text{otherwise.} \end{cases}$$

Observe that $s(a, b, c, d)^{-1} = s(a, c, b, d)$, $s(a, b, c, d) (X_b) = X_c$ and $s(a, b, c, d) | X_a \cup (X_{\infty} \setminus X_d) = id$.

Using Dowker's Theorem ([Du] p. 171), construct continuous maps $a, b: X \rightarrow (0, \infty)$ such that

$$X_0 \subset g_1(X_b) \subset X_{a/2} \subset X_a \subset g_1(X_1) \subset X_1.$$

Define an open bundle embedding $h_1: X_{\infty} \rightarrow X_{\infty}$ by

$$h_1 | s\left(\frac{b}{2}, b, 1, 2\right) \circ g_1^{-1} \circ s\left(\frac{a}{2}, 1, a, 2\right) \circ g_1(X_2)$$

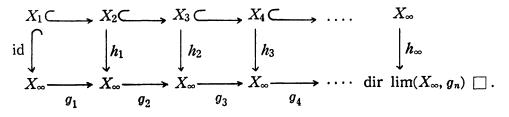
= $g_1 \circ s\left(\frac{b}{2}, b, 1, 2\right) \circ g_1^{-1} \circ s\left(\frac{a}{2}, a, 1, 2\right) \circ g_1 \circ s\left(\frac{b}{2}, 1, b, 2\right)$

and

$$h_{1}|s\left(\frac{b}{2}, b, 1, 2\right) \circ g_{1}^{-1} \circ s\left(\frac{a}{2}, 1, a, 2\right) \circ g_{1}(X_{\infty} \setminus X_{2})$$
$$= s\left(\frac{a}{2}, a, 1, 2\right) \circ g_{1} \circ s\left(\frac{b}{2}, 1, b, 2\right).$$

It is easy to check that $h_1|X_1=g_1|X_1$ and $g_1(X_{\infty}) \subset X_1 \subset h_1(X_2)$. Similarly define an open embedding $h_2: X_{\infty} \to X_{\infty}$ such that $h_2|X_2=g_2h_1$ and $g_2(X_{\infty}) \subset h_2(X_3)$; and continue likewise constructing at the *n*-th stage an open embedding $h_n: X_{\infty} \to X_{\infty}$ such that $h_n|X_n=g_nh_{n-1}$ and $g_n(X_{\infty}) \subset h_n(X_{n+1})$.

Let j_n be the inclusion of the *n*-th stage into the direct limit dir $\lim(X_{\infty}, g_n)$. Then $h_{\infty}: X_{\infty} \rightarrow \dim(X_{\infty}, g_n)$ defined by $h_{\infty}|X_{n+1}=j_{n+1}h_n|X_{n+1}$ is a bundle homeomorphism whose inverse is the limit of $h_n^{-1}g_n$. Since X deforms into X_1 by a bundle isotopy, h_{∞} is bundle isotopic to j_1 .



Finally we remark that a bundle version of Theorem 1 in [Ch₂] is valid.

7-3 THEOREM: Let $p: X \rightarrow B$ and $q: Y \rightarrow B$ be E-manifold bundles. If $f, g: X \rightarrow Y$ are bundle homotopic bundle homeomorphism, then they are ambiently invertibly bundle isotopic.

PROOF (after Chapman): It is sufficient to prove that a bundle homeomorphism $f: X \times (0, 1] \rightarrow X \times (0, 1]$ bundle homotopic to id is ambiently invertibly bundle isotopic to id. (By Bundle Stability Theorem in $[Sa_2], p: X \rightarrow B$ is bnudle isomorphic to $p\pi_X: X \times (0, 1] \rightarrow B$.)

Note that $X \times \{1\}$ is a *B*-preservingly *E*-deficient closed set in $X \times (0, 1]$ and $f|X \times \{1\}$ is a *B*-preserving homeomorphism of $X \times \{1\}$ onto a *B*-preservingly *E*-deficient closed set in $X \times (0, 1]$ which is *B*-preservingly homotopic to id. Using Bundle Homeomorphism Extension Theorem 6-1, f is ambiently invertibly bundle isotopic to a bundle homeomorphism $f': X \times (0, 1] \rightarrow X \times (0, 1]$ such that $f'|X \times \{1\} = id$.

Using the Alexander trick, let $f^*: X \times (0, 1] \times I \rightarrow X \times (0, 1]$ be defined by

$$f_t^*(x,s) = \begin{cases} (x,s) & \text{if } t \leq s \\ t \cdot f'(x,s/t) & \text{if } s < t \end{cases}$$

where $t \cdot (x, u) = (x, tu)$. Then f^* is an ambient invertible bundle isotopy satisfying

 $f_0^* = \text{id and } f_1^* = f'.$

References

- [A-M] Anderson, R.D. and McCharen, J.D., On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970) 283-289.
- [B-P] Bessaga, C. and Pełczyński, A., Selected topics in infinite-dimensional topology, PWN MM 58, Warszawa 1975.
- [Br] Brown, M., Locally flat embeddings of manifolds, Ann. of Math. 75 (1962), 331-342.
- [Ch₁] Chapman, T. A., Deficiency in infinite-dimensional manifolds, Gen. Top. and Appl. **1** (1971), 263–272.
- [Ch₂] Chapman, T.A., Homotopic homeomorphisms of infinite-dimensional manifolds, Comp. Math. 27 (1973), 135-140.
- [Ch₃] Chapman, T. A., Locally trivial bundles and microbundles with infinite-dimensional fibers, Proc. Amer. Math. Soc. **37** (1973), 595-602.
- [C-F] Chapman, T. A. and Ferry, S., Hurewicz fiber maps with ANR fibers, Topology 16 (1977), 131-143.
- [C-W] Chapman, T.A. and Wong, R.Y.T., On homeomorphisms of infinite-dimensional Bundles II, Trans. Amer. Math. Soc. 191 (1974), 261-268.
- [Co] Connelly, R., A new proof of Brown's collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180-182.
- [Cu] Cutler, W.H., Negligible subsets of infinite-dimensional manifolds, Proc. Amer. Math. Soc. 23 (1969), 668-675.
- [Du] Dugundji, J., Topology, Allyn and Bacon, Boston, 1965.
- [Fe] Ferry, S., The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. 106 (1977), 101-119.
- [H₁] Henderson, D. W., Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25-33.
- [H₂] Henderson, D. W., Stable classification of infinite-dimensional manifolds by homotopy-type, Invent. Math. **12** (1971), 48-56.
- [H₃] Henderson, D. W., Corrections and extensions of two papers about infinite-dimensional manifolds, Gen. Top. and Appl. 1 (1971), 321-327.
- [H-S] Henderson, D. W. and Schori, R. M., Topological classification of infinite-dimensional manifolds by homotopy-type, Bull. Amer. Soc. 76 (1970), 121-124.
- [K1] Klee, V. L. Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- [Mi] Micheal, E., Local properties of topological spaces, Duke Math. J. 21 (1954), 163-171.
- [Sa₁] Sakai, K., Embeddings of infinite-dimensional manifold pairs and remarks stability and deficiency, J. Math. Soc. Japan 29 (1977), 261-280.
- [Sa₂] Sakai, K., Stability for infinite-dimensional fibre bundles, Tsukuba J. Math. 5 (1981), 85-99.

Institute of Mathematics University of Tsukuba Ibaraki, JAPAN