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NON-STANDARD REAL NUMBER SYSTEMS WITH
REGULAR GAPS

By

Shizuo KAMO

The purpose of this paper is to show that if an enlargement $*M$ of the

universe $M$ is saturated, then the non-standard real number system $*R$ has a
regular gap and the uniform space $(^{*}R, E[L(1)])$ is not complete.

Our notions and terminologies follow the usual use in the model theory. Let
$ G=\langle G, +, <\rangle$ be a first order structure which satisfies

(a) the axioms of ordered abelian groups,
(b) the axioms of dense linear order.

($i.e$ . $\langle G,$ $+,$ $<\rangle$ is an ordered abelian group and $\langle G,$ $<\rangle$ is a densely ordered set.)

A Dedekind cut (X, $Y$ ) in $G$ is said to be a gap if $sup(X)(\inf(Y))$ does not

exist. A gap (X, $Y$ ) is said to be regular if, for all $e$ in $G_{+}(=\{g\in G;g>0\})$ ,

$X+e\neq X$.

THEOREM. Suppose that $G$ is saturated. Then, $G$ has a regular gap. More-
over, $G$ has $2^{\kappa}$-th regular gaps, where $\kappa$ is the cardinality of $G$ .

PROOF. Since $G$ is saturated, the coinitiality of $G_{+}$ is $\kappa$ . Let $\langle g_{\alpha}|\alpha<\kappa\rangle$ be

an enumeration of $G$ and let $\langle e_{\alpha}|\alpha<\kappa\rangle$ be a strictly decreasing coinitial sequence

in $G_{+}$ . By the induction on $\alpha<\kappa$ , we shall define a set $\{I(x_{u}, y_{u});u\in^{\alpha}2\}$ of

open intervals in $G$ such that
(1) $ I(x_{u}, y_{u})\neq\emptyset$ for all $u$ in $\alpha 2$ ,

(2) $y_{u}-x_{u}<e_{\alpha}$ for all $u$ in $a2$,

(3) $g_{\alpha}\not\in I(x_{u}, y_{u})$ for all $u$ in $\alpha 2$,

(4) $ I(x_{u}, y_{u})\cap I(x_{v}, y_{v})=\emptyset$ for all distinct elements $u,$ $v$ in $\alpha 2$ ,

(5) for all $\beta<\alpha$ , for all $v\in\beta 2$ and for all $u\in^{\alpha}2$, if $v\subset u$ , then $ I(x_{v}, y_{v})\supset$

$I(x_{u}, y_{u})$ .
The construction is as follows:
(Case 1) $\alpha=0$ .

This case is obvious.
(Case 2) $\alpha=\theta+1$ for some $\beta$ .
Received June 3, 1980.



22 Shizuo KAMO

Suppose that $\{I(x_{v}, y_{v});v\in\beta 2\}$ has been defined and satisfies (1) $\sim(5)$ . For
each $v$ in $\beta 2$ , choose $z_{v},$

$z_{v}^{\prime},$

$w_{v}$ and $w_{v}^{\prime}$ in $I(x_{v}, y_{v})$ such that

$ I(z_{v}, w_{v})\neq\emptyset$ , $ I(z_{v}^{\prime}, w_{v}^{\prime})\neq\emptyset$ ,

$ I(z_{v}, w_{v})\cap I(z_{v}^{\prime}, w_{v}^{\prime})=\emptyset$ ,

$w_{v}-z_{v}<e_{\alpha}$ , $w_{v}^{\prime}-z_{v}^{\prime}<e_{\alpha}$ ,

$g_{\alpha}\not\in I(z_{v}, w_{v})\cup I(z_{v}^{\prime}, w_{v}^{\prime})$ .
Set

$x_{v\langle 0\rangle}^{\wedge}=z_{v}$ ,

$y_{v\hat{\langle}0\rangle}=w_{v}$ ,

$x_{v\hat{\langle}1\rangle}=z_{v}^{\prime}$ ,

$y_{v\hat{\langle}1\rangle}=w_{v}^{\prime}$ .
Then,

$\iota^{I(x_{v\hat{\langle}i\rangle}}y_{v\hat{\langle}i\rangle});v\in\beta 2andi=0,1\}$

satisfies (1) $\sim(5)$ .
(Case 3) $\alpha$ is limit.

Suppose that, for all $\beta<\alpha,$ $\{I(x_{v}, y_{v});v\in\beta 2\}$ has been defined and satisfies
(1) $\sim(5)$ . Let $u$ be in $\alpha 2$ . For each $\beta<\alpha$ , put

$x_{\beta}=x_{u1\beta}$ and $y_{\beta}=y_{u1\beta}$

(where $ u1\beta$ denotes the restriction of $u$ to $\beta$ ).

The sequence $\langle I(x_{\beta}, y_{\beta})|\beta<\alpha\rangle$ satisfies that

$ I(x_{\beta}, y_{\beta})\neq\emptyset$ for all $\beta<\alpha$ ,

$I(x_{\beta}, y_{\beta})\subset I(x_{\gamma}, y_{\gamma})$ for all $\gamma<\beta<\alpha$ .
Since $G$ is saturated,

$\bigcap_{\beta<\alpha}I(x_{\beta}, y_{\beta})$ contains elements $x$ and $y$ such that $x<y$ .
Since $I(x, y)\subset\bigcap_{\beta<\alpha}I(x_{\beta}, y_{\beta})$

, we can choose $x_{u},$ $y_{u}$ in $I(x, y)$ such that

$x_{u}<y_{u}<x_{u}+e_{\alpha}$ and $g_{\alpha}\not\in I(x_{u}, y_{u})$ .
Then, $\{I(x_{u}, y_{u});u\in^{\alpha}2\}$ satisfies (1) $\sim(5)$ .

Now, $\{I(x_{u}, y_{u});u\in\bigcup_{a<\kappa}\alpha 2\}$ is a set which satisfies (1) $\sim(5)$ . For each $f$ in
$\iota 2$ , define subsets $X_{f}$ and $Y_{f}$ of $G$ by

$X_{f}=\{g\in G;\exists\alpha<\kappa(g<x_{f1\alpha})\}$ ,

$Y_{f}=\{g\in G;\exists\alpha<\kappa(y_{f1\alpha}<g)\}$ .
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By (3) and (5), $(X_{f}, Y_{J})$ is a cut in $G$ . By (4), if $f,$ $h$ are distinct elements in
$\kappa 2$ , then $(X_{f}, Y_{f})\neq(X_{h}, Y_{h})$ . To complete the proof of our theorem, it suffices to

show that $(X_{f}, Y_{f})$ is regular. Let $e$ be any element in $G_{+}$ . Since $\langle e_{\alpha}|\alpha<\kappa\rangle$ is

coinitial in $G_{+}$ , there exists some $\alpha<\kappa$ such that $e_{\alpha}\leqq e$ . By (2),

$y_{f1\alpha}<x_{f1\alpha}+e_{\alpha}\leqq x_{f1\alpha}+e$ .

Since $y_{f1\alpha}$ is in $Y_{f},$ $x_{f1\alpha}+e$ is in $Y$. Thus $X_{f}+e\neq X_{f}$ . $\#$

Let $R$ be the set of real numbers, let $M$ be a universe with $R\in M$, let $*M$

be an enlargement of $M$ and let $*R$ be the scope of $R$ . We shall regard $*R$ as
an ordered group $\langle^{*}R, +, <\rangle$ . $(^{*}R$ may be of the form $\langle^{*}R, *+, *<\rangle$ . But we
shall omit asterisks in $*+and*<$ , because there is no danger of confusion.)

COROLLARY 1. Suppose that $*M$ is saturated. Then, $*R$ has a regular gap.

PROOF. Since $*M$ is saturated, $*R$ is saturated. So, this follows from The-

orem. $\#$

For each $r$ in $*R_{+}$ , define $E(r)$ by

$E(r)=\{(s, t)\in*R\times*R;|s-t|<r\}$ .

Define $L(1)$ and $E[L(1)]$ by

$L(1)=\{r\in*R;\forall r^{\prime}\in R(r^{\prime}<r)\}$ ,

$E[L(1)]=\{E(r);r\in L(1)\}$ .

$E[L(1)]$ is the base of some uniform topology on $*R$ . This uniform space is

denoted by $(^{*}R, E[L(1)])$ (see [6]). Define $\overline{R}$ by

$\overline{R}=\{r\in*R;\exists r^{\prime}\in R(|r|<r^{\prime})\}$ .
$\overline{R}$ is a convex subgroup of $*R$ . So, the quotient group $R/\overline{R}$ becomes an ordered
group.

LEMMA. $(^{*}R, E[L(1)])$ is complete if and only if $*R/\overline{R}$ does not have a
regular gap.

PROOF. It is easy from simple calculations. $\#$

COROLLARY 2. Suppose that $*M$ is saturated. Then, $(^{*}R, E[L(1)])$ is not

complete.
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PROOF. From Theorem and Lemma. $\#$

Assume GCH. There exists an enlargement $*M$ which is saturated (see
[4, Proposition 5.1.5(ii)]). Therefore, from Corollaries 1 and 2, there exists an
enlargement $*M$ such that

(1) $*R$ has a regular gap,
(2) $(^{*}R, E[L(1)])$ is not complete.

This is another proof of Theorems 4.5 and 4.2 in my paper [6].
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