ON THE SUM OF DIGITS OF PRIMES IN IMAGINARY QUADRATIC FIELDS

By

Ryuji KANEIWA and Iekata SHIOKAWA

1. Introduction. Let $r \ge 2$ be a fixed integer. Any positive integer n can be uniquely written in the form

(1)
$$n = \sum_{j=1}^{k} a_j r^{k-j} = a_1 a_2 \cdots a_k ,$$

where each a_j is one of 0, 1, ..., r-1 and

(2)
$$k = k(n) = \left[\frac{\log n}{\log r}\right] + 1,$$

where [u] is the integral part of the real number u. We put

$$s(n) = \sum_{j=1}^{k} a_j.$$

I. Kátai [1] proved, assuming the validity of density hypothesis for the Riemann zeta function, that

$$\sum_{p \le x} s(p) = \frac{r-1}{2 \log r} x + O\left(\frac{x}{(\log \log x)^{1/3}}\right),$$

where in the sum p runs through the prime numbers. The second-named author [6] proved, without any hypothesis, the result of Kátai with an improved remainder term

$$O\left(x\left(\frac{\log\log x}{\log x}\right)^{1/2}\right).$$

His method is to appeal to a simple combinatorial inequality (see Lemma in § 4), and the deepest result on which he depends is the prime number theorem in a weak form

(4)
$$\sum_{p \leq x} 1 = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right).$$

E. Heppner [2] independently proved a more general result by making use of a Chebyshev's inequality to the sum of independent random variables (cf. [5] p. 387, Theorem 2): Let B be a set of positive integers such that

Received May 29, 1978. Revised January 12, 1980.

$$\log \frac{x}{B(x)} = o(\log x),$$

where

$$B(x) = \sum_{\substack{n \leq x \\ n \in B}} 1$$
.

Then

$$\sum_{\substack{n \le x \\ n \in B}} s(n) = \frac{r-1}{2} \frac{\log x}{\log r} B(x) \left(1 + O\left(\left(\frac{\log \log x + \log \frac{x}{B(x)}}{\log x} \right)^{1/2} \right) \right).$$

This together with (4) implies (3).

In the present paper we shall show that the estimate (3) is also valid, in some sense, for primes in each imaginary quadratic field $Q(\sqrt{-m})$, where m is any positive square free integer.

2. Representation of integers in $Q(\sqrt{-m})$ in the scale of r. Let \mathfrak{o} be the ring of all integers in $Q(\sqrt{-m})$. Any $\alpha \in \mathfrak{o}$ can be expressed in a unique way as

$$\alpha = a + b\omega$$
 (a, $b \in \mathbb{Z}$),

where

$$\omega = \begin{cases} \sqrt{-m} & \text{if } -m \equiv 2, 3 \pmod{4}, \\ \frac{1+\sqrt{-m}}{2} & \text{if } -m \equiv 1 \pmod{4}, \end{cases}$$

and Z denotes as usual the set of all rational integers. So by means of the expessions

$$|a| = a_1 a_2 \cdots a_{k(|a|)}, |b| = b_1 b_2 \cdots b_{k(|b|)}$$

given by (1), we can define coordinatewisely the representation of $\alpha \in \mathfrak{o}$ in the scale of r; i.e.

(5)
$$\alpha = \sum_{j=1}^{k} \alpha_j r^{k-j} = \alpha_1 \alpha_2 \cdots \alpha_k,$$

where

(6)
$$k=k(\alpha)=\max \{k(|a|), k(|b|)\}, k(0)=1,$$
$$\alpha_{j}=\operatorname{sgn}(a)a_{j}+\operatorname{sgn}(b)b_{j}\omega,$$

and sgn(c)=c/|c| if $c\neq 0$, =0 otherwise. We define

$$s(\alpha) = \sum_{j=1}^{k} \alpha_j$$
.

We write

$$\mathcal{A}_1 = \{a+b\boldsymbol{\omega} \mid a, b \in \mathbf{Z}; a \geq 0, b \geq 0\}$$

$$\mathcal{A}_2 = \{-a + b\omega | a + b\omega \in \mathcal{A}_1\},$$

$$\mathcal{A}_3 = \{-a - b\omega | a + b\omega \in \mathcal{A}_1\},$$

$$\mathcal{A}_4 = \{a - b\omega | a + b\omega \in \mathcal{A}_1\},$$

so that $\mathfrak{o}=\mathcal{A}_1\cup\mathcal{A}_2\cup\mathcal{A}_3\cup\mathcal{A}_4$. We denote by \mathfrak{B}_i the set of all 'digits' α_j needed for the expressions (5) of all $\alpha\in\mathcal{A}_j$. Then

$$\mathcal{B}_{1} = \{c + d\omega \mid c, d = 0, 1, \dots, r - 1\},$$

$$\mathcal{B}_{2} = \{-c + d\omega \mid c + d\omega \in \mathcal{B}_{1}\},$$

$$\mathcal{B}_{3} = \{-c - d\omega \mid c + d\omega \in \mathcal{B}_{1}\},$$

$$\mathcal{B}_{4} = \{c - d\omega \mid c + d\omega \in \mathcal{B}_{1}\},$$

and card $\mathcal{B}_i = r^2$ ($1 \le i \le 4$). So we may say that the r-adic expression (5) of $\alpha \in \mathfrak{D}$ is a kind of representation in the scale of r^2 . For any fixed $\beta \in \mathcal{B}_i$ we denote by $F(\alpha, \beta)$ the number of β appearing in the expression (5) of an integer $\alpha \in \mathcal{A}_1$. By definition

(7)
$$s(\alpha) = \sum_{\beta \in \mathfrak{B}_i} \beta F(\alpha, \beta) \quad (\alpha \in \mathcal{A}_i)$$

and

(8)
$$F(a+b\boldsymbol{\omega}, c+d\boldsymbol{\omega}) = F(-a+b\boldsymbol{\omega}, -c+d\boldsymbol{\omega})$$
$$= F(-a-b\boldsymbol{\omega}, -c-d\boldsymbol{\omega}) = F(a-b\boldsymbol{\omega}, c-d\boldsymbol{\omega}) \quad (a, b \in \mathbf{Z}).$$

The norm of $\alpha = a + b\omega \in \mathfrak{o}$ is a rational integer

$$N(\alpha) = \begin{cases} a^2 + mb^2 & \text{if } -m \equiv 2, 3 \pmod{4} \\ a^2 + ab + \frac{m+1}{4}b^2 & \text{if } -m \equiv 1 \pmod{4} \end{cases}$$

so that for $\alpha \neq 0$

(9)
$$\left| k(\alpha) - \frac{\log N(\alpha)}{2 \log r} \right| \leq c_1,$$

where c_1 is a constant depending only on m, since by definition

$$\left| k(a) - \frac{\max(\log |a|, \log |b|)}{\log r} \right| \leq 1$$

(we mean that $\max(\log 0, x) = x$) and

$$|2 \max (\log |a|, \log |b|) - \log N(\alpha)|$$

$$\leq \begin{cases} \log (1+m) & \text{if } -m \equiv 2, 3 \pmod{4}, \\ \log \left(2 + \frac{m+1}{4}\right) & \text{if } -m \equiv 1 \pmod{4}. \end{cases}$$

3. A prime number theorem (A. Mitsui [3], [4]). An integer $\alpha \in \mathfrak{o}$ is said to be prime if (α) is an prime ideal in $\mathbb{Q}(\sqrt{-m})$. Let θ_1 , θ_2 be two real numbers such that $0 \leq \theta_1 < \theta_2 \leq 2\pi$. Then

(10)
$$\sum_{\substack{\alpha: \text{ prime} \\ \theta_1 \leq \arg \alpha \leq \theta_2}} 1 = \frac{(\theta_2 - \theta_1)w}{2\pi h} \int_2^x \frac{dt}{\log t} + O(x \exp(-c_2(\log x)^{3/5}(\log\log x)^{-1/5})),$$

where h is the class number of $Q(\sqrt{-m})$ and

$$w = \begin{cases} 4 & \text{if } m = 1, \\ 6 & \text{if } m = 3, \\ 2 & \text{otherwise} \end{cases}$$

We note that a weaker estimate $O(x/(\log x)^2)$ is sufficient for the proof of our theorem.

4. A combinatorial lemma (I. Shiokawa [6]). Let β_1, \dots, β_g be given g symbols and let A^j be the set of all sequences of these symbols of length $j \ge 1$. Denote by $F_j(\alpha, \beta)$ the number of any fixed symbol β appearing in a sequence $\alpha \in A^j$. Then for any ε with $0 < \varepsilon < 1/2$ there exist a positive integer j_0 independent of ε such that the number of sequences $\alpha \in A^j$ satisfying

$$\left|F_{j}(\alpha, \beta) - \frac{j}{g}\right| > j^{1/2+\varepsilon}$$

is less that $jg^j \exp(-c_3j^{2\epsilon})$ for all $j \ge j_0$, where c_3 is an absolute constant.

5. Theorem. Let $\varphi_1=0$, $\varphi_5=2\pi$, $\varphi_2=\arg \omega$, $\varphi_3=\pi$, and $\varphi_4=\varphi_2+\pi$. Then for any θ_1 , θ_2 satisfying $\varphi_j \leq \theta_1 < \theta_2 \leq \varphi_{j+1}$ for some j we have

(11)
$$\sum_{\substack{\alpha: \text{ prime} \\ N(\alpha) \leq x \\ \theta_1 \leq \arg \alpha \leq \theta_2}} s(\alpha) = \frac{(\theta_2 - \theta_1)w}{2\pi h} \frac{(r-1)}{4 \log r} \lambda_j x$$

$$+O\left(x\left(\frac{\log\log x}{\log x}\right)^{1/2}\right),\,$$

where

$$\lambda_{j} =
\begin{cases}
1+\omega & \text{if } j=1, \\
-1+\omega & \text{if } j=2, \\
-1-\omega & \text{if } j=3, \\
1-\omega & \text{if } j=4,
\end{cases}$$

and the O-constant depends at most on r and m.

6. Proof of Theorem. By (7) and (8) we may assume j=1. We define for $\alpha \in \mathcal{A}_1$ and $\beta \in \mathcal{B}_1$

(12)
$$D(\alpha, \beta) = \left| F(\alpha, \beta) - \frac{k(\alpha)}{r^2} \right|.$$

Put for brevity

$$C(x) = \{ \alpha \in \mathfrak{o} \mid \alpha : \text{ prime, } N(\alpha) \leq x, \theta_1 \leq \arg \alpha \leq \theta_2 \}$$
.

Then by (7) and (12)

(13)
$$\sum_{\alpha \in \mathcal{C}(x)} s(\alpha) = \sum_{\beta \in \mathcal{B}_1} \beta \sum_{\alpha \in \mathcal{C}(x)} F(\alpha, \beta)$$
$$= \frac{r-1}{2} \lambda_1 \sum_{\alpha \in \mathcal{C}(x)} k(\alpha) + O\left(\sum_{\beta \in \mathcal{B}_1} \sum_{\alpha \in \mathcal{C}(x)} D(\alpha, \beta)\right).$$

By (9) and (10) we have

(14)
$$\sum_{\alpha \in \mathcal{C}(x)} k(\alpha) = \frac{(\theta_2 - \theta_1)w}{2\pi h} \frac{x}{2 \log r} + O\left(\frac{x}{\log x}\right).$$

Put $D(\alpha)=D(\alpha, \beta_0)$, where β_0 is any fixed integer in \mathcal{B}_1 . We have from (9), (10), and (12)

(15)
$$\sum_{x \in C(\alpha)} D(\alpha) \leq \sum_{\alpha \in C(x)} k(\alpha)^{1/2+\varepsilon} + \sum_{\substack{\alpha \in C(x) \\ D(\alpha) > k(\alpha)^{1/2+\varepsilon}}} D(\alpha)$$

$$= O(\sum_{\alpha \in C(x)} (\log N(\alpha))^{1/2+\varepsilon}) = O(\sum_{\substack{\alpha \in A_1 \\ N(\alpha) \leq x \\ D(\alpha) > k(\alpha)^{1/2+\varepsilon}}} D(\alpha)$$

$$= O(x \log x)^{\varepsilon - 1/2}) + O(\log x \sum_{\substack{\alpha \in A_1 \\ N(\alpha) \leq x \\ D(\alpha) > k(\alpha)^{1/2+\varepsilon}}} 1).$$

Besides, using (9),

$$\sum_{\substack{\alpha \in \mathcal{A}_1 \\ N(\alpha) \leq x \\ D(\alpha) > k(\alpha)^{1/2 + \varepsilon}}} 1 \leq \sum_{j \leq l(x)} \sum_{\substack{\alpha \in \mathcal{A}_1 \\ k(\alpha) = j \\ D(\alpha) > j^{1/2 + \varepsilon}}} 1 ,$$

where

$$l(x) = \frac{\log x}{2\log r} + c_1.$$

Applying now the lemma in § 4 with $g=r^2$ and $A^1=\mathcal{B}_1$, we get

$$\sum_{\substack{\alpha \in \mathcal{A}_1 \\ k(\alpha) = j \\ D(\alpha) > j^{1/2 + \varepsilon}}} 1 < j r^{2j} \exp\left(-c_3 j^{2\varepsilon}\right)$$

for all $j \ge j_0$, which leads to

(16)
$$\sum_{\substack{\alpha \in \mathcal{A}_1 \\ \mathcal{N}(\alpha) \leq x \\ \mathcal{D}(\alpha) > k(\alpha)/2+\varepsilon}} 1 = O(1) + \sum_{j_0 < j \leq l(x)} j r^{2j} \exp\left(-c_3 j^{2\varepsilon}\right)$$

$$= O(1) + \sum_{j_0 < j \le l(x)/2} + \sum_{l(x)/2 < j \le l(x)}$$
$$= O(x(\log x)^2 \exp\left(-\frac{c_3}{4} \left(\frac{\log x}{\log r}\right)^{2\varepsilon}\right)\right).$$

where the O-constant is uniform in ε .

If we take a constant $c_4=c_4(r)$ large enough and choose $\varepsilon=\varepsilon(x,r)$ with $0<\varepsilon<1/2$ in such a way that

$$(\log x)^{2\varepsilon} = c_4 \log \log x$$

we obtain from (15) and (16)

$$\sum_{\alpha \in C(x)} D(\alpha, \beta_0) = O\left(x \left(\frac{\log \log x}{\log x}\right)^{1/2}\right).$$

This together with (13) and (14) yealds the theorem.

References

- [1] Kátai, I., On the sum of digits of prime numbers. Ann. Univ. Sci. Budapest Roland Eötvös nom. Sect. Math., 10 (1967), 89-93.
- [2] Heppner, E., Über die summe der Ziffern naturlicher Zahlen. Ann. Univ. Sci. Budapest Roland Eötvos nom. Sect. Math., 19 (1976), 41-43.
- [3] Mitsui, T., Generalized prime number theorem. Japanese J. Math., 26 (1956), 1-42.
- [4] Mitsui, T., Research Institute for Mathematical Sciences Kyoto Univ., "Kokyuroku" 294 (1977), in Japanese.
- [5] Rényi, A., Probability Theorey, North-Holland, Amsterdam-London, 1970.
- [6] Shiokawa, I., On the sum of digits of prime numbers. Proc. Japan Acad., 50, no. 8 (1974), 551-554.

Ryuji Kaneiwa Institute of Liberal Arts Otaru University of Commerce Otaru, Hokkaido 047 Japan

Iekata Shiokawa
Department of Mathematics
Keio University
Yokohama
223 Japan