ON RINGS WITH FINITE SELF-INJECTIVE DIMENSION II

(Dedicated to Professor Goro Azumaya on his 60th birthday)

By

Yasuo IWANAGA

For a module M over a ring R (with an identity), pd(M) and id(M) denote the projective and injective dimension of M, respectively. In the previous paper [5] and [6], we called a (left and right) noether ring R *n*-Gorenstein if $id(_R R) \leq n$ and $id(R_R) \leq n$ for an $n \geq 0$, and Gorenstein if R is *n*-Gorenstein for some n. This note is concerned with two subjects on Gorenstein rings. In §1, we consider the modules of finite projective or injective dimension over a Gorenstein ring and, first, show that the finiteness of projective dimension coincides with one of injective dimension. Then it follows that the highest finite projective (or injective) dimension is n for modules over an *n*-Gorenstein ring and, next, such modules over an artinian Gorenstein ring are investigated. Finally, we present some example to compare with Auslander's definition of an *n*-Gorenstein ring.

In §2, for a Gorenstein ring R, we consider a quasi-Frobenius extension of R and show it also is a Gorenstein ring. Further we generalize [3, Corollary 8 and 8'] to the case of a quasi-Frobenius extension. Also an example concerning with a maximal quotient ring of a Gorenstein ring is presented.

1. Modules of finite projective or injective dimension

We start with the next proposition which states [4, Korollar 1.12] and [7, Corollary 5] more precisely:

PROPOSITION 1. For a noether ring R,

id (R_R) =sup {flat dim (E); $_RE$ is an injective left R-module.}.

PROOF. By [2, Chap. VI, Proposition 5.3],

(*) $\operatorname{Tor}_{i}^{R}(A_{R}, {}_{R}E) \cong \operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{i}(A_{R}, {}_{R}R_{R}), {}_{R}E)$

for any finitely generated right *R*-module A_R , injective left *R*-module $_RE$ and i>0. First assume id $(R_R)=n<\infty$, then $\operatorname{Ext}_R^{n+1}(A, R)=0$ for any finitely generated

Received May 17, 1979. Revised December 11, 1979.

 A_R and so $\operatorname{Tor}_{n+1}^R(A, E)=0$ for any injective $_RE$. Further, for any X_R , we can represent $X=\lim A_\alpha$ such that each A_α is finitely generated and hence

 $\operatorname{Tor}_{n+1}^{R}(X_{R}, {}_{R}E) \cong \lim_{\longrightarrow} \operatorname{Tor}_{n+1}^{R}(A_{\alpha}, E) = 0.$

Therefore flat dim $(E) \leq n$.

Conversely, if flat dim $(E) \leq n < \infty$ for any injective _RE, (*) induces

 $\operatorname{Hom}_{R}(\operatorname{Ext}_{R}^{n+1}(A, R), E) \cong \operatorname{Tor}_{n+1}^{R}(A, E) = 0$

for any finitely generated A_R . Now then, by taking $_RE$ as an injective cogenerator, it holds that $\operatorname{Ext}_R^{n+1}(A, R)=0$ for any finitely generated A_R and hence id $(R_R) \leq n$.

The following was shown in [5] and [6] under certain assumption on the dominant dimension, but now we can release this assumption and include completely the commutative case.

THEOREM 2. For an n-Gorenstein ring R and an R-module M, the following are equivalent:

(1) $\operatorname{pd}(M) < \infty$, (2) $\operatorname{pd}(M) \le n$, (3) $\operatorname{id}(M) < \infty$, (4) $\operatorname{id}(M) \le n$.

PROOF. Since the implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (4)$ are proved in [1] and [5], respectively, we prove only $(3) \Rightarrow (2)$.

Let

$$0 \longrightarrow M \xrightarrow{f_0} E_0 \xrightarrow{f_1} E_1 \longrightarrow \cdots \xrightarrow{f_m} E_m \longrightarrow 0$$

be an injective resolution of M and $K_{i-1} = \ker(f_1)$ $(i=1, \dots, m)$, then in the exact sequence

 $0 \longrightarrow K_{m-1} \longrightarrow E_{m-1} \longrightarrow E_m \longrightarrow 0,$

if $pd(E_{m-1})$, $pd(E_m) \leq n$, then $pd(K_{m-1}) \leq n$ by [5, Lemma 4]. For an arbitrary *i*, in the exact sequence

 $0 \longrightarrow K_{i-1} \longrightarrow E_{i-1} \longrightarrow K_i \longrightarrow 0,$

if $pd(K_i)$, $pd(E_{i-1}) \leq n$, then $pd(K_{i-1}) \leq n$ and therefore $pd(M) = pd(K_0) \leq n$ by the induction. Thus, it is enough to show $pd(E) \leq n$ for any injective left module $_RE$.

Now, since flat dim $(E) \leq n$ by Proposition 1, let

$$0 \longrightarrow U_n \xrightarrow{f_n} U_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} U_0 \longrightarrow E \longrightarrow 0$$

be a resolution of $_{R}E$ by flat modules U_{i} $(i=0, 1, \dots, n)$ and $C_{i-1}=\operatorname{cok}(f_{i})$ $(i=1, \dots, n)$, then $\operatorname{pd}(U_{i}) < \infty$ for $i=0, 1, \dots, n$ by [7, Proposition 6]. First,

108

from the exact sequence

$$0 \longrightarrow U_n \longrightarrow U_{n-1} \longrightarrow C_{n-1} \longrightarrow 0$$

with $pd(U_n)$, $pd(U_{n-1}) < \infty$, it follows that $pd(C_{n-1}) < \infty$. For an arbitrary *i*, in the exact sequence

$$0 \longrightarrow C_{i+1} \longrightarrow U_i \longrightarrow C_i \longrightarrow 0,$$

if $pd(C_{i+1})$, $pd(U_i) < \infty$, then it follows that $pd(C_i) < \infty$ and hence $pd(E) = pd(C_0) < \infty$ by the induction, which is equivalent to $pd(E) \le n$ by the implication $(1) \Rightarrow (2)$.

From Theorem 2, we are interested in modules M satisfying pd(M)=n or id(M)=n over an *n*-Gorenstein ring. Thus we next consider such modules.

For a module M, we define $E^{i}(M)$ for $i \ge 0$ as the (i+1)-th term in a minimal injective resolution of M and $E(M) = E^{0}(M)$, i.e.

$$0 \longrightarrow M \longrightarrow E^{0}(M) \longrightarrow \cdots \longrightarrow E^{i}(M) \longrightarrow \cdots$$

is a minimal injective resolution of M. Dually, if M has a minimal projective resolution, we define $P^{i}(M)$ for $i \ge 0$, similarly.

THEOREM 3. Let R be an artinian n-Gorenstein ring, $0 \rightarrow_R R \rightarrow E_0 \rightarrow \cdots \rightarrow E_n \rightarrow 0$ a minimal injective resolution for $_R R$ and $_R M$ a left R-module.

(1) If id (M)=n, then id $(M)=pd(E^n(M))=n$ and, for any direct summand $_{R}E$ of $E^n(M)$, pd(E)=n.

If pd(M)=n, then $id(P^n(M))=pd(M)=n$ and, for any direct summand _RP of $P^n(M)$, id(P)=n.

In particular, $id(P^n(E_n)) = pd(E_n) = n$ provided id(R) = n.

(2) If pd(M)=n, then $E^nP^n(M)$ is isomorphic to a direct summand of a direct sum of copies of E_n .

Especially, $E^n P^n(E_n)$ is isomorphic to a direct summand of E_n .

PROOF. (1) Suppose id (M) = n and $_RE$ an indecomposable summand of $E^n(M)$, then since E is of the form E(S) for some simple module $_RS$, the exact sequence

$$0 \longrightarrow {}_{R}S \longrightarrow {}_{R}E(S) \longrightarrow {}_{R}E(S)/S \longrightarrow 0$$

induces

$$\operatorname{Ext}_{R}^{n}(\operatorname{E}(S), M) \longrightarrow \operatorname{Ext}_{R}^{n}(S, M) \longrightarrow \operatorname{Ext}_{R}^{n+1}(\operatorname{E}(S)/S, M) \quad (\operatorname{exact}).$$

Here, $\operatorname{Ext}_{R}^{n+1}(\operatorname{E}(S)/S, M) = 0$ but $\operatorname{Ext}_{R}^{n}(S, M) \neq 0$ by [6, Lemma 1] since $_{R}S$ is monomorphic to $\operatorname{E}^{n}(M)$, and hence $\operatorname{Ext}_{R}^{n}(\operatorname{E}(S), M) \neq 0$. So $\operatorname{pd}(\operatorname{E}(S)) \ge n$ implies $\operatorname{pd}(\operatorname{E}(S)) = n$ by Theorem 2.

Next, assume pd(M) = n and $_{R}P$ an indecomposable summand of $P^{n}(M)$, then

Yasuo IWANAGA

for any simple homomorphic image $_{R}S$ of P, the exact sequence

$$0 \longrightarrow {}_{R}K \longrightarrow {}_{R}P \longrightarrow {}_{R}S \longrightarrow 0$$

induces

$$\operatorname{Ext}_{R}^{n}(M, P) \longrightarrow \operatorname{Ext}_{R}^{n}(M, S) \longrightarrow \operatorname{Ext}_{R}^{n+1}(M, K) \quad (\operatorname{exact})$$

Now, since $\operatorname{Ext}_{R}^{n+1}(M, K)=0$ but $\operatorname{Ext}_{R}^{n}(M, S)\neq 0$ by the dual of [6, Lemma 1], $\operatorname{Ext}_{R}^{n}(M, P)\neq 0$ and hence $\operatorname{id}(P)=n$ again by Theorem 2.

(2) Decompose $_{R}R$ into projective indecomposables, then for any projective indecomposable $_{R}P$ with id (P)=n, $E^{n}(P)$ is isomorphic to a direct summand of E_{n} . On the other hand, if pd(M)=n, id $(P^{n}(M))=n$ by (1) and hence $E^{n}P^{n}(M)$ is isomorphic to a summand of a direct sum of copies of E_{n} .

COROLLARY 4. Let R be an n-Gorenstein ring with dom $\dim_R R \ge n$ and assume $_RM$ a left R-module with id (M)=n, then $E^n(M)$ is isomorphic to a direct summand of a direct sum of copies of E_n .

Now we present an example which seems itself interesting.

EXAMPLE. Let R be an artinian Gorenstein ring with $\operatorname{id}(_{R}R)=n$ and $0 \to _{R}R \to E_{0} \to \cdots \to E_{n} \to 0$ a minimal injective resolution of $_{R}R$, then we see from Theorem 3 that E_{n} has the largest projective dimension n. Here, we give an example of n-Gorenstein ring R with $\operatorname{pd}(E_{0})=\cdots=\operatorname{pd}(E_{n})=n$, which shows that our definition of an n-Gorenstein ring is different from Auslander's one.

Let k be a field and R a subalgebra of $(k)_8$, all 8×8 matrices over k, having $\{c_{11}+c_{88}, c_{22}+c_{55}, c_{33}+c_{44}, c_{66}, c_{77}, c_{21}, c_{31}, c_{32}, c_{54}, c_{86}, c_{87}\}$ as a k-basis where c_{ij} is a matrix unit in $(k)_8$. Then id $(_RR)=id(R_R)=2$, i. e. R is 2-Gorenstein, gl·dim $R = \infty$ and pd $(E_0)=pd(E_1)=pd(E_2)=2$. Further any left R-module of projective dimension=2 is a summand in a direct sum of copies of $E_0 \oplus E_1 \oplus E_2$.

2. A quasi-Frobenius extension of a Gorenstein ring

For rings $R \subseteq T$, T/R is called a *left quasi-Frobenius* (=QF) extension if $_{R}T$ is finitely generated projective and $_{T}T_{R}$ is isomorphic to a direct summand in a direct sum of copies of $_{T}\operatorname{Hom}_{R}(_{R}T_{T}, _{R}R_{R})_{R}$. A quasi-Frobenius extension is a left and right quasi-Frobenius extension. See [9] for details.

In this section we show a QF extension of a Gorenstein ring is also a Gorenstein ring. First we observe the following.

Let R, T be rings and $F: {}_{R}M \rightarrow {}_{T}M$ a functor of the category of left R-modules to one of left T-modules, which satisfies the condition:

1) F is exact,

2) if $_{R}E$ is injective, so is $_{T}F(E)$,

then id $({}_{T}F(M)) \leq id({}_{R}M)$ for any left *R*-module ${}_{R}M$. Further if

3) F preserves an essential monomorphism

is satisfied, $id(_TF(M)) = id(_RM)$ for any $_RM$.

The next is a generalization of [3, Corollary 8] to a quasi-Frobenius extension and concerns with the case of a Gorenstein order [10, Lemma 5].

PROPOSITION 5. Let T be a left quasi-Frobenius extension of a ring R and $_{R}M$ a left R-module, then

$$\operatorname{id}(_T T \otimes_R M) \leq \operatorname{id}(_R M).$$

PROOF. By [2, VI Proposition 5.2],

 $_{T}T \otimes_{R} M \cong_{T}T \otimes_{R} \operatorname{Hom}_{R}(_{R}R_{R}, _{R}M)$

 $\cong_T \operatorname{Hom}_R(_R \operatorname{Hom}_R(_T T_R, _R R_R)_T, _R M).$

Here, T_R is projective by [9, Satz 2] and since $\operatorname{Hom}_R({}_TT_R, R_R)_T$ is projective ([9, Satz 2]), ${}_TT \otimes_R E$ is injective for any injective left *R*-module ${}_RE$. Therefore the functor ${}_TT \otimes_R - : {}_RM \to {}_TM$ satisfies the conditions 1)-2) and so

 $\operatorname{id}(_{T}T \otimes_{R} M) \leq \operatorname{id}(_{R} M).$

The following should be compared with [9, satz 3].

COROLLARY 6. A quasi-Frobenius extension of an n-Gorenstein ring also is an n-Gorenstein ring.

In connection with [1, Example (2)] and [3, Corollary 8'], we state the following.

PROPOSITION 7. (1) Let T be a left quasi-Frobenius extension of a ring R and suppose T_R a generator, then

$$\operatorname{id}\left({}_{T}T \otimes_{R} M\right) = \operatorname{id}\left({}_{R} M\right)$$

for any left R-module M and especially $id(_TT) = id(_RR)$.

Moreover, for a finite group G and a ring R,

$$\operatorname{id}\left(_{R \subseteq G} R \subseteq G\right) = \operatorname{id}\left(_{R} R\right).$$

(2) Let T be a quasi-Frobenius extension of a ring R and suppose $_{R}T$ (or T_{R}) a generator, then

$$\operatorname{id}(_{T}T) = \operatorname{id}(_{R}R) \quad and \quad \operatorname{id}(T_{T}) = \operatorname{id}(R_{R}).$$

RROOF. (1) Let $F=T \otimes_R - : {}_R M \to {}_T M$, then F satisfies the conditions 1)-3) for T_R is a progenerator by [9, Satz 2].

Yasuo IWANAGA

(2) Let $F = \operatorname{Hom}_R({}_RT_T, -): {}_RM \to {}_TM$, then ${}_RT$ is a progenerator and so id $({}_T\operatorname{Hom}_R({}_RT_T, {}_RR)) = \operatorname{id}({}_rF({}_RR)) = \operatorname{id}({}_RR)$. Now, since T/R is a left (resp. right) quasi-Frobenius extension, ${}_T\operatorname{Hom}_R({}_RT_T, {}_RR)$ is a generator (resp. finitely generated projective) and therefore id $({}_T\operatorname{Hom}_R({}_RT_T, {}_RR)) = \operatorname{id}({}_TT)$. Also id $(T_T) = \operatorname{id}(R_R)$ follows from (1).

REMARK. In Proposition 7, if we replace a ring T by an R-module and its endomorphism ring, then we obtain the following.

Let R be a ring, $_{R}P$ a projective left R-module, $T = \operatorname{End}_{R}(P)$ and assume P_{T} flat, then the functor $F = \operatorname{Hom}_{R}(_{R}P_{T}, -): _{R}M \to _{T}M$ satisfies 1)-2) by [2, VI Proposition 5.1] and hence id $(_{T}F(P)) \leq \operatorname{id}(_{R}P)$. Observing this fact,

(i) Let R be a left noether ring, $_{R}P$ a projective generator and $T = \operatorname{End}_{R}(P)$, then $\operatorname{id}(_{T}T) \leq \operatorname{id}(_{R}R)$. Therefore it follows immediately that an endomorphism ring of a faithful finitely generated projective module over a quasi-Frobenius ring also is a quasi-Frobenius ring. (Curtis and Morita)

(ii) If rings R and T are Morita equivalent, then $id(_R R) = id(_T T)$ and $id(R_R) = id(T_T)$.

Now, if rings R and T are Morita equivalent, there exists a finitely generated projective generator (i. e. progenerator) $_{R}P$ and $T \cong \operatorname{End}_{R}(P)$. However, if we delete that $_{R}P$ is a generator, it happens that R is Gorenstein but T is not and we see also that faithfulness in Curtis-Morita theorem above is necessary. For example, let R be a self-basic serial ring and $R=Re_{1}\oplus Re_{2}\oplus Re_{3}$ a decomposition into primitive left ideals such that $|Re_{1}|=|Re_{2}|=|Re_{3}|=5$ and Re_{1} (resp. Re_{2}) is epimorphic to Ne_{2} (resp. Ne_{3}) where N is the radical of R. Then R is a quasi-Frobenius ring, but id ($_{eRe}eRe$) is infinite for $e=e_{1}+e_{2}$.

Finally we state an example concerning with a maximal quotient ring of a Gorenstein ring.

EXAMPLE. It is easily seen that a classical quotient ring or more generally a flat epimorphic extension of a Gorenstein ring also is a Gorenstein ring, but it is not known yet that a maximal quotient ring of a Gorenstein ring is also so. (See [11] in the special case.) Here we present an example of a Gorenstein ring R whose left maximal quotient ring Q has id $(_{Q}Q) > id (_{R}R)$.

Let k be a field, R a subalgebra of $(k)_5$ whose k-basis consists of $c_{11}+c_{55}$, $c_{22}+c_{44}$, c_{33} , c_{31} , c_{32} , c_{54} and Q_l (resp. Q_r) a left (resp. right) maximal quotient ring of R. Then R is 1-Gorenstein, $id(q_lQ_l)=2$ and Q_r is a quasi-Frobenius ring.

ACKNOWLEDGEMENT The author wishes to thank the referee for valuable advices and simplification of the proof of Proposition 5.

References

- [1] Bass, H.: Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962) 19-29.
- [2] Cartan, H. and Eilenberg, S.: "Homological Algebra", Princeton Univ. Press, Princeton, N. J., 1956.
- [3] Eilenberg, S. and Nakayama, T.: On the dimension of modules and algebras II, Nagoya Math. J. 9 (1955) 1-16.
- [4] Ischebeck, F.: Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969) 510-531.
- [5] Iwanaga, Y.: On rings with self-injective dimension≤1, Osaka J. Math. 15 (1978) 33-45.
- [6] Iwanaga, Y.: On rings with finite self-injective dimension, Comm. Algebra 7 (1979) 393-414.
- [7] Jensen, C.U.: On the vanishing of $\lim_{i \to i} (i)$, J. Algebra 15 (1970) 151-166.
- [8] Levin, G. and Vasconcelos, W.: Homological dimensions and Macaulay rings, Pac. J. Math. 25 (1968) 315-323.
- [9] Müller, B.J.: Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964) 345-368.
- [10] Roggenkamp, K.W.: Injective modules for group rings and Gorenstein orders, J. Algebra 24 (1973) 465-472.
- [11] Sato, H.: On localizations of a 1-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku
 13 (1977) 188-193.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan