# ON RINGS WITH FINITE SELF-INJECTIVE DIMENSION II 

(Dedicated to Professor Goro Azumaya on his 60th birthday)

## By

## Yasuo IWANAGA

For a module $M$ over a ring $R$ (with an identity), pd ( $M$ ) and id ( $M$ ) denote the projective and injective dimension of $M$, respectively. In the previous paper [5] and [6], we called a (left and right) noether ring $R$-Gorenstein if id $\left({ }_{R} R\right) \leqq n$ and id $\left(R_{R}\right) \leqq n$ for an $n \geqq 0$, and Gorenstein if $R$ is $n$-Gorenstein for some $n$. This note is concerned with two subjects on Gorenstein rings. In § 1, we consider the modules of finite projective or injective dimension over a Gorenstein ring and, first, show that the finiteness of projective dimension coincides with one of injective dimension. Then it follows that the highest finite projective (or injective) dimension is $n$ for modules over an $n$-Gorenstein ring and, next, such modules over an artinian Gorenstein ring are investigated. Finally, we present some example to compare with Auslander's definition of an $n$-Gorenstein ring.

In $\S 2$, for a Gorenstein ring $R$, we consider a quasi-Frobenius extension of $R$ and show it also is a Gorenstein ring. Further we generalize [3, Corollary 8 and $\left.8^{\prime}\right]$ to the case of a quasi-Frobenius extension. Also an example concerning with a maximal quotient ring of a Gorenstein ring is presented.

## 1. Modules of finite projective or injective dimension

We start with the next proposition which states [4, Korollar 1.12] and [7, Corollary 5] more precisely :

Proposition 1. For a noether ring $R$,

$$
\text { id }\left(R_{R}\right)=\sup \left\{f l a t \operatorname{dim}(E) ;{ }_{R} E \text { is an injective left } R \text {-module. }\right\} .
$$

Proof. By [2, Chap. VI, Proposition 5.3],

$$
\begin{equation*}
\operatorname{Tor}_{i}^{R}\left(A_{R},{ }_{R} E\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Ext}_{R}^{i}\left(A_{R},{ }_{R} R_{R}\right),{ }_{R} E\right) \tag{*}
\end{equation*}
$$

for any finitely generated right $R$-module $A_{R}$, injective left $R$-module ${ }_{R} E$ and $i>0$. First assume id $\left(R_{R}\right)=n<\infty$, then $\operatorname{Ext}_{R}^{n+1}(A, R)=0$ for any finitely generated

[^0]$A_{R}$ and so $\operatorname{Tor}_{n+1}^{R}(A, E)=0$ for any injective ${ }_{R} E$. Further, for any $X_{R}$, we can represent $X=\underset{\longrightarrow}{\lim } A_{\alpha}$ such that each $A_{\alpha}$ is finitely generated and hence
$$
\operatorname{Tor}_{n+1}^{R}\left(X_{R}, R E\right) \cong \underset{\rightarrow}{\lim } \operatorname{Tor}_{n+1}^{R}\left(A_{\alpha}, E\right)=0
$$

Therefore flat $\operatorname{dim}(E) \leqq n$.
Conversely, if flat $\operatorname{dim}(E) \leqq n<\infty$ for any injective ${ }_{R} E$, (*) induces

$$
\operatorname{Hom}_{R}\left(\operatorname{Ext}_{R}^{n+1}(A, R), E\right) \cong \operatorname{Tor}_{n+1}^{R}(A, E)=0
$$

for any finitely generated $A_{R}$. Now then, by taking ${ }_{R} E$ as an injective cogenerator, it holds that $\operatorname{Ext}_{R}^{n+1}(A, R)=0$ for any finitely generated $A_{R}$ and hence id $\left(R_{R}\right) \leqq n$.

The following was shown in [5] and [6] under certain assumption on the dominant dimension, but now we can release this assumption and include completely the commutative case.

Theorem 2. For an $n$-Gorenstein ring $R$ and an $R$-module $M$, the following are equivalent:
(1) $\operatorname{pd}(M)<\infty$,
(2) $\operatorname{pd}(M) \leqq n$,
(3) id $(M)<\infty$,
(4) id $(M) \leqq n$.

Proof. Since the implications $(1) \Rightarrow(2)$ and $(2) \Rightarrow(4)$ are proved in $[1]$ and [5], respectively, we prove only (3) $\Rightarrow(2)$.

Let

$$
0 \longrightarrow M \xrightarrow{f_{0}} E_{0} \xrightarrow{f_{1}} E_{1} \longrightarrow \cdots \xrightarrow{f_{m}} E_{m} \longrightarrow 0
$$

be an injective resolution of $M$ and $K_{i-1}=\operatorname{ker}\left(f_{1}\right)(i=1, \cdots, m)$, then in the exact sequence

$$
0 \longrightarrow K_{m-1} \longrightarrow E_{m-1} \longrightarrow E_{m} \longrightarrow 0,
$$

if $\operatorname{pd}\left(E_{m-1}\right), \operatorname{pd}\left(E_{m}\right) \leqq n$, then $\operatorname{pd}\left(K_{m-1}\right) \leqq n$ by [5, Lemma 4]. For an arbitrary $i$, in the exact sequence

$$
0 \longrightarrow K_{i-1} \longrightarrow E_{i-1} \longrightarrow K_{i} \longrightarrow 0
$$

if $\mathrm{pd}\left(K_{i}\right)$, $\mathrm{pd}\left(E_{i-1}\right) \leqq n$, then $\mathrm{pd}\left(K_{i-1}\right) \leqq n$ and therefore $\mathrm{pd}(M)=\mathrm{pd}\left(K_{0}\right) \leqq n$ by the induction. Thus, it is enough to show $\mathrm{pd}(E) \leqq n$ for any injective left module ${ }_{R} E$.

Now, since flat $\operatorname{dim}(E) \leqq n$ by Proposition 1, let

$$
0 \longrightarrow U_{n} \xrightarrow{f_{n}} U_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{1}} U_{0} \longrightarrow E \longrightarrow 0
$$

be a resolution of ${ }_{R} E$ by flat modules $U_{i}(i=0,1, \cdots, n)$ and $C_{i-1}=\operatorname{cok}\left(f_{i}\right)$ ( $i=1, \cdots, n$ ), then $\operatorname{pd}\left(U_{i}\right)<\infty$ for $i=0,1, \cdots, n$ by [7, Proposition 6]. First,
from the exact sequence

$$
0 \longrightarrow U_{n} \longrightarrow U_{n-1} \longrightarrow C_{n-1} \longrightarrow 0
$$

with $\operatorname{pd}\left(U_{n}\right), \operatorname{pd}\left(U_{n-1}\right)<\infty$, it follows that $\operatorname{pd}\left(C_{n-1}\right)<\infty$. For an arbitrary $i$, in the exact sequence

$$
0 \longrightarrow C_{i+1} \longrightarrow U_{i} \longrightarrow C_{i} \longrightarrow 0
$$

if $\operatorname{pd}\left(C_{i+1}\right), \operatorname{pd}\left(U_{i}\right)<\infty$, then it follows that $\operatorname{pd}\left(C_{i}\right)<\infty$ and hence $\operatorname{pd}(E)$ $=\mathrm{pd}\left(C_{0}\right)<\infty$ by the induction, which is equivalent to $\mathrm{pd}(E) \leqq n$ by the implication (1) $\Rightarrow$ (2).

From Theorem 2, we are interested in modules $M$ satisfying $\mathrm{pd}(M)=n$ or $\operatorname{id}(M)=n$ over an $n$-Gorenstein ring. Thus we next consider such modules.

For a module $M$, we define $\mathrm{E}^{i}(M)$ for $i \geqq 0$ as the ( $i+1$ )-th term in a minimal injective resolution of $M$ and $\mathrm{E}(M)=\mathrm{E}^{0}(M)$, i. e.

$$
0 \longrightarrow M \longrightarrow \mathrm{E}^{0}(M) \longrightarrow \cdots \longrightarrow \mathrm{E}^{i}(M) \longrightarrow \cdots
$$

is a minimal injective resolution of $M$. Dually, if $M$ has a minimal projective resolution, we define $\mathrm{P}^{i}(M)$ for $i \geqq 0$, similarly.

Theorem 3. Let $R$ be an artinian $n$-Gorenstein ring, $0 \rightarrow{ }_{R} R \rightarrow E_{0} \rightarrow \cdots \rightarrow E_{n} \rightarrow 0$ a minimal injective resolution for ${ }_{R} R$ and ${ }_{R} M$ a left $R$-module.
(1) If $\operatorname{id}(M)=n$, then $\operatorname{id}(M)=\operatorname{pd}\left(\mathrm{E}^{n}(M)\right)=n$ and, for any direct summand ${ }_{R} E$ of $\mathrm{E}^{n}(M), \operatorname{pd}(E)=n$.

If $\mathrm{pd}(M)=n$, then $\operatorname{id}\left(\mathrm{P}^{n}(M)\right)=\operatorname{pd}(M)=n$ and, for any direct summand ${ }_{R} P$ of $\mathrm{P}^{n}(M), \operatorname{id}(P)=n$.

In particular, $\operatorname{id}\left(\mathrm{P}^{n}\left(E_{n}\right)\right)=\operatorname{pd}\left(E_{n}\right)=n$ provided $\mathrm{id}\left({ }_{R} R\right)=n$.
(2) If $\operatorname{pd}(M)=n$, then $\mathrm{E}^{n} \mathrm{P}^{n}(M)$ is isomorphic to a direct summand of a direct sum of copies of $E_{n}$.

Especially, $\mathrm{E}^{n} \mathrm{P}^{n}\left(E_{n}\right)$ is isomorphic to a direct summand of $E_{n}$.
Proof. (1) Suppose id ( $M$ ) $=n$ and ${ }_{R} E$ an indecomposable summand of $\mathrm{E}^{n}(M)$, then since $E$ is of the form $\mathrm{E}(S)$ for some simple module ${ }_{R} S$, the exact sequence

$$
0 \longrightarrow{ }_{R} S \longrightarrow{ }_{R} \mathrm{E}(S) \longrightarrow{ }_{R} \mathrm{E}(S) / S \longrightarrow 0
$$

induces

$$
\operatorname{Ext}_{R}^{n}(\mathrm{E}(S), M) \longrightarrow \operatorname{Ext}_{R}^{n}(S, M) \longrightarrow \operatorname{Ext}_{R}^{n+1}(\mathrm{E}(S) / S, M) \quad \text { (exact). }
$$

Here, $\operatorname{Ext}_{R}^{n+1}(\mathrm{E}(S) / S, M)=0$ but $\operatorname{Ext}_{R}^{n}(S, M) \neq 0$ by [6, Lemma 1] since ${ }_{R} S$ is monomorphic to $\mathrm{E}^{n}(M)$, and hence $\operatorname{Ext}_{R}^{n}(\mathrm{E}(S), M) \neq 0$. So $\mathrm{pd}(\mathrm{E}(S)) \geqq n$ implies $\operatorname{pd}(\mathrm{E}(S))=n$ by Theorem 2.

Next, assume $\operatorname{pd}(M)=n$ and ${ }_{R} P$ an indecomposable summand of $\mathrm{P}^{n}(M)$, then
for any simple homomorphic image ${ }_{R} S$ of $P$, the exact sequence

$$
0 \longrightarrow{ }_{R} K \longrightarrow{ }_{R} P \longrightarrow{ }_{R} S \longrightarrow 0
$$

induces

$$
\operatorname{Ext}_{R}^{n}(M, P) \longrightarrow \operatorname{Ext}_{R}^{n}(M, S) \longrightarrow \operatorname{Ext}_{R}^{n+1}(M, K) \quad \text { (exact). }
$$

Now, since $\operatorname{Ext}_{R}^{\eta+1}(M, K)=0$ but $\operatorname{Ext}_{R}^{n}(M, S) \neq 0$ by the dual of [6, Lemma 1], $\operatorname{Ext}_{R}^{n}(M, P) \neq 0$ and hence $\operatorname{id}(P)=n$ again by Theorem 2.
(2) Decompose ${ }_{R} R$ into projective indecomposables, then for any projective indecomposable ${ }_{R} P$ with id $(P)=n, \mathrm{E}^{n}(P)$ is isomorphic to a direct summand of $E_{n}$. On the other hand, if $\operatorname{pd}(M)=n$, id $\left(\mathrm{P}^{n}(M)\right)=n$ by (1) and hence $\mathrm{E}^{n} \mathrm{P}^{n}(M)$ is isomorphic to a summand of a direct sum of copies of $E_{n}$.

Corollary 4. Let $R$ be an $n$-Gorenstein ring with $\operatorname{dom} \cdot \operatorname{dim}_{R} R \geqq n$ and assume ${ }_{R} M$ a left $R$-module with $\operatorname{id}(M)=n$, then $\mathrm{E}^{n}(M)$ is isomorphic to a direct summand of a direct sum of copies of $E_{n}$.

Now we present an example which seems itself interesting.
Example. Let $R$ be an artinian Gorenstein ring with $\operatorname{id}\left({ }_{R} R\right)=n$ and $0 \rightarrow{ }_{R} R \rightarrow E_{0} \rightarrow \cdots \rightarrow E_{n} \rightarrow 0$ a minimal injective resolution of ${ }_{R} R$, then we see from Theorem 3 that $E_{n}$ has the largest projective dimension $n$. Here, we give an example of $n$-Gorenstein ring $R$ with $\operatorname{pd}\left(E_{0}\right)=\cdots=\operatorname{pd}\left(E_{n}\right)=n$, which shows that our definition of an $n$-Gorenstein ring is different from Auslander's one.

Let $k$ be a field and $R$ a subalgebra of $(k)_{8}$, all $8 \times 8$ matrices over $k$, having $\left\{c_{11}+c_{88}, c_{22}+c_{55}, c_{33}+c_{44}, c_{66}, c_{77}, c_{21}, c_{31}, c_{32}, c_{54}, c_{86}, c_{87}\right\}$ as a $k$-basis where $c_{i j}$ is a matrix unit in $(k)_{8}$. Then $\operatorname{id}\left({ }_{R} R\right)=\mathrm{id}\left(R_{R}\right)=2$, i. e. $R$ is 2 -Gorenstein, $\mathrm{gl} \cdot \operatorname{dim} R$ $=\infty$ and $\operatorname{pd}\left(E_{0}\right)=\operatorname{pd}\left(E_{1}\right)=\operatorname{pd}\left(E_{2}\right)=2$. Further any left $R$-module of projective dimension $=2$ is a summand in a direct sum of copies of $E_{0} \oplus E_{1} \oplus E_{2}$.

## 2. A quasi-Frobenius extension of a Gorenstein ring

For rings $R \subseteq T, T / R$ is called a left quasi-Frobenius $(=\mathrm{QF})$ extension if ${ }_{R} T$ is finitely generated projective and ${ }_{T} T_{R}$ is isomorphic to a direct summand in a direct sum of copies of ${ }_{T} \operatorname{Hom}_{R}\left({ }_{R} T_{T},{ }_{R} R_{R}\right)_{R}$. A quasi-Frobenius extension is a left and right quasi-Frobenius extension. See [9] for details.

In this section we show a QF extension of a Gorenstein ring is also a Gorenstein ring. First we observe the following.

Let $R, T$ be rings and $F:{ }_{R} M \rightarrow_{T} \boldsymbol{M}$ a functor of the category of left $R$ modules to one of left $T$-modules, which satisfies the condition:

1) $F$ is exact,
2) if ${ }_{R} E$ is injective, so is ${ }_{T} F(E)$, then $\operatorname{id}\left({ }_{T} F(M)\right) \leqq \operatorname{id}\left({ }_{R} M\right)$ for any left $R$-module ${ }_{R} M$. Further if
3) $F$ preserves an essential monomorphism is satisfied, $\operatorname{id}\left({ }_{T} F(M)\right)=\operatorname{id}\left({ }_{R} M\right)$ for any ${ }_{R} M$.

The next is a generalization of [3, Corollary 8] to a quasi-Frobenius extension and concerns with the case of a Gorenstein order [10, Lemma 5].

Proposition 5. Let $T$ be a left quasi-Frobenius extension of a ring $R$ and ${ }_{R} M$ a left $R$-module, then

$$
\operatorname{id}\left({ }_{T} T \otimes_{R} M\right) \leqq \operatorname{id}\left({ }_{R} M\right)
$$

Proof. By [2, VI Proposition 5.2],

$$
\begin{aligned}
{ }_{T} T \otimes_{R} M & \cong{ }_{T} T \otimes_{R} \operatorname{Hom}_{R}\left({ }_{R} R_{R},{ }_{R} M\right) \\
& \cong_{T} \operatorname{Hom}_{R}\left({ }_{R} \operatorname{Hom}_{R}\left({ }_{T} T{ }_{R},{ }_{R} R_{R}\right)_{T},{ }_{R} M\right)
\end{aligned}
$$

Here, $T_{R}$ is projective by [9, Satz 2] and since $\operatorname{Hom}_{R}\left({ }_{T} T_{R}, R_{R}\right)_{T}$ is projective ([9, Satz 2]), $T_{T} T \otimes_{R} E$ is injective for any injective left $R$-module ${ }_{R} E$. Therefore the functor ${ }_{T} T \otimes_{R}-:{ }_{R} M \rightarrow_{T} M$ satisfies the conditions 1)-2) and so

$$
\mathrm{id}\left({ }_{T} T \otimes_{R} M\right) \leqq \mathrm{id}\left({ }_{R} M\right)
$$

The following should be compared with [9, satz 3].

Corollary 6. A quasi-Frobenius extension of an $n$-Gorenstein ring also is an $n$-Gorenstein ring.

In connection with $\left[1\right.$, Example (2)] and [3, Corollary $\left.8^{\prime}\right]$, we state the following.

PROPOSITION 7. (1) Let $T$ be a left quasi-Frobenius extension of $a$ ring $R$ and suppose $T_{R}$ a generator, then

$$
\operatorname{id}\left({ }_{T} T \bigotimes_{R} M\right)=\mathrm{id}\left({ }_{R} M\right)
$$

for any left $R$-module $M$ and especially $\operatorname{id}\left({ }_{T} T\right)=\operatorname{id}\left({ }_{R} R\right)$.
Moreover, for a finite group $G$ and a ring $R$,

$$
\operatorname{id}\left(_{R[G]} R[G]\right)=\operatorname{id}\left({ }_{R} R\right)
$$

(2) Let $T$ be a quasi-Frobenius extension of $a$ ring $R$ and suppose ${ }_{R} T\left(\right.$ or $\left.T_{R}\right)$ a generator, then

$$
\mathrm{id}\left({ }_{T} T\right)=\mathrm{id}\left({ }_{R} R\right) \quad \text { and } \mathrm{id}\left(T_{T}\right)=\mathrm{id}\left(R_{R}\right)
$$

RROOF. (1) Let $F=T \otimes_{R}-:{ }_{R} M \rightarrow_{T} M$, then $F$ satisfies the conditions 1)-3) for $T_{R}$ is a progenerator by [9, Satz 2].
(2) Let $F=\operatorname{Hom}_{R}\left({ }_{R} T_{T},-\right):{ }_{R} \boldsymbol{M} \rightarrow_{T} \boldsymbol{M}$, then ${ }_{R} T$ is a progenerator and so $\operatorname{id}\left({ }_{T} \operatorname{Hom}_{R}\left({ }_{R} T_{T},{ }_{R} R\right)\right)=\operatorname{id}\left({ }_{T} F\left({ }_{R} R\right)\right)=\operatorname{id}\left({ }_{R} R\right)$. Now, since $T / R$ is a left (resp. right) quasi-Frobenius extension, ${ }_{T} \operatorname{Hom}_{R}\left({ }_{R} T_{T},{ }_{R} R\right.$ ) is a generator (resp. finitely generated projective) and therefore $\operatorname{id}\left({ }_{T} \operatorname{Hom}_{R}\left({ }_{R} T_{T},{ }_{R} R\right)\right)=\operatorname{id}\left({ }_{T} T\right) . \quad$ Also $\quad \operatorname{id}\left(T_{T}\right)=\operatorname{id}\left(R_{R}\right)$ follows from (1).

Remark. In Proposition 7, if we replace a ring $T$ by an $R$-module and its endomorphism ring, then we obtain the following.

Let $R$ be a ring, ${ }_{R} P$ a projective left $R$-module, $T=\operatorname{End}_{R}(P)$ and assume $P_{T}$ flat, then the functor $F=\operatorname{Hom}_{R}\left({ }_{R} P_{T},-\right):{ }_{R} \boldsymbol{M} \rightarrow_{T} \boldsymbol{M}$ satisfies 1)-2) by [2, VI Proposition 5.1] and hence $\operatorname{id}\left({ }_{T} F(P)\right) \leqq \operatorname{id}\left({ }_{R} P\right)$. Observing this fact,
(i) Let $R$ be a left noether ring, ${ }_{R} P$ a projective generator and $T=\operatorname{End}_{R}(P)$, then $\operatorname{id}\left({ }_{T} T\right) \leqq \operatorname{id}\left({ }_{R} R\right)$. Therefore it follows immediately that an endomorphism ring of a faithful finitely generated projective module over a quasi-Frobenius ring also is a quasi-Frobenius ring. (Curtis and Morita)
(ii) If rings $R$ and $T$ are Morita equivalent, then $\operatorname{id}\left({ }_{R} R\right)=\operatorname{id}\left({ }_{T} T\right)$ and $\operatorname{id}\left(R_{R}\right)=\operatorname{id}\left(T_{T}\right)$.

Now, if rings $R$ and $T$ are Morita equivalent, there exists a finitely generated projective generator (i.e. progenerator) ${ }_{R} P$ and $T \cong \operatorname{End}_{R}(P)$. However, if we delete that ${ }_{R} P$ is a generator, it happens that $R$ is Gorenstein but $T$ is not and we see also that faithfulness in Curtis-Morita theorem above is necessary. For example, let $R$ be a self-basic serial ring and $R=R e_{1} \oplus R e_{2} \oplus R e_{3}$ a decomposition into primitive left ideals such that $\left|R e_{1}\right|=\left|R e_{2}\right|=\left|R e_{3}\right|=5$ and $R e_{1}$ (resp. $R e_{2}$ ) is epimorphic to $N e_{2}$ (resp. $N e_{3}$ ) where $N$ is the radical of $R$. Then $R$ is a quasi-Frobenius ring, but $\operatorname{id}\left({ }_{e R e} e R e\right)$ is infinite for $e=e_{1}+e_{2}$.

Finally we state an example concerning with a maximal quotient ring of a Gorenstein ring.

Example. It is easily seen that a classical quotient ring or more generally a flat epimorphic extension of a Gorenstein ring also is a Gorenstein ring, but it is not known yet that a maximal quotient ring of a Gorenstein ring is also so. (See [11] in the special case.) Here we present an example of a Gorenstein ring $R$ whose left maximal quotient ring $Q$ has id $\left({ }_{Q} Q\right)>\operatorname{id}\left({ }_{R} R\right)$.

Let $k$ be a field, $R$ a subalgebra of ( $k)_{5}$ whose $k$-basis consists of $c_{11}+c_{55}$, $c_{22}+c_{44}, c_{33}, c_{31}, c_{32}, c_{54}$ and $Q_{l}$ (resp. $Q_{r}$ ) a left (resp. right) maximal quotient ring of $R$. Then $R$ is 1 -Gorenstein, $\operatorname{id}\left({ }_{Q_{l}} Q_{l}\right)=2$ and $Q_{r}$ is a quasi-Frobenius ring.

Acknowledgement The author wishes to thank the referee for valuable advices and simplification of the proof of Proposition 5.

## References

[1] Bass, H.: Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962) 19-29.
[2] Cartan, H. and Eilenberg, S.: "Homological Algebra", Princeton Univ. Press, Princeton, N. J., 1956.
[3] Eilenberg, S. and Nakayama, T.: On the dimension of modules and algebras II, Nagoya Math. J. 9 (1955) 1-16.
[4] Ischebeck, F.: Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra 11 (1969) 510-531.
[5] Iwanaga, Y.: On rings with self-injective dimension $\leqq 1$, Osaka J. Math. 15 (1978) 33-45.
[6] Iwanaga, Y.: On rings with finite self-injective dimension, Comm. Algebra 7 (1979) 393-414.
[7] Jensen, C. U.: On the vanishing of $\lim _{\leftarrow}{ }^{(i)}$, J. Algebra 15 (1970) 151-166.
[8] Levin, G. and Vasconcelos, W.: Homological dimensions and Macaulay rings, Pac. J. Math. 25 (1968) 315-323.
[9] Müller, B. J.: Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964) 345-368.
[10] Roggenkamp, K. W.: Injective modules for group rings and Gorenstein orders, J. Algebra 24 (1973) 465-472.
[11] Sato, H.: On localizations of a 1-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku 13 (1977) 188-193.

Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan


[^0]:    Received May 17, 1979. Revised December 11, 1979.

