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FOLDINGS OF ROOT SYSTEMS AND GABRIEL’S THEOREM

By

Toshiyuki TANISAKI

1. Introduction.

Gabriel’s theorem [5] (cf. below for precise statements) was generalized by

Dlab-Ringel [3], [4] where Dynkin graphs of type $B_{n},$ $C_{n},$ $F_{4},$ $G_{2}$ also enter in
the classification together with the graphs of type $A_{n},$ $D_{n},$ $E_{n}$ in [5]. We give
in this note another generalization of [5] using the fact that $B_{n},$ $C_{n},$ $F_{4},$ $G_{2}$ are
obtained by the so-called folding-operation from $A_{n},$ $D_{n},$ $E_{6}$ . Our formulation is
rather similar to the original formulation in [5].

Let $\Gamma$ be a finite graph. We denote its set of vertices by $\Gamma_{0}$ and its set of
edges by $\Gamma_{1}$ (there may be several edges between two vertices and loops joining

a vertex to itself). Let $\Lambda$ be an orientation of $\Gamma$ For each $l\in\Gamma_{1}$ we denote its
starting-point by $\alpha(1)$ and its end-point by $\beta(1)$ .

For a fixed field $k$ we define a category $\mathcal{L}(\Gamma, \Lambda)$ after Gabriel [5] as follows.

DEFINITION 1. Let $(\Gamma, \Lambda)$ be a finite oriented graph. A pair (V, f) is an
object of $\mathcal{L}(\Gamma, \Lambda)$ if $V=\{V_{\alpha}|\alpha\in\Gamma_{0}\}$ is a family of finite-dimensional vector
spaces over $k$ , and $f=\{f_{l} : V_{\alpha(l)}\rightarrow V_{\beta^{(l)}}|l\in\Gamma_{1}\}$ is a family of k-linear mappings.

$(\rho$

(V, $f$ ) $-(W, g)$ is a morphism if $\varphi=\{\varphi_{\alpha} : V_{\alpha}\rightarrow W_{\alpha}|\alpha\in\Gamma_{0}\}$ is a family of k-

linear mappings such that for each $l\in\Gamma_{1}$ the following diagram

$V_{\alpha(l)}V_{\beta^{(l)}}\underline{f_{l}}$

$\varphi_{\alpha(l)}$ $\varphi_{\beta(l)}$

$W_{\alpha(l)}-W_{\beta(l)}$
$g_{l}$

commutes.

The category $-L^{\cdot}(\Gamma, \Lambda)$ is naturally an abelian category and in this category

the theorem of Krull-Remak-Schmidt about the essential uniqueness of direct-
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sum-decomposition of an object into indecomposable objects holds.

DEFINITION 2. For each object (V, $f$) $\in \mathcal{L}(\Gamma, \Lambda)$ we define an element $\dim V$

of the real vector space $\oplus_{\alpha\in\Gamma_{0}}R\cdot\alpha$ by $\dim V=\sum_{\alpha\in\Gamma_{0}}(\dim V_{a})\alpha$ .
THEOREM 1 (Gabriel [5]). (i) Let $(\Gamma, \Lambda)$ be a fnite connected oriented graph.

Then there are only finitely many non-isomorphic indecomposable objects if and
only if the graph $\Gamma$ is one of the following graphs.

$(A_{n})$
$(n\geqq 1)$

$(D_{n})$
$(n\geqq 4)$

$(h_{;}^{\tau})$

$(E_{7})$

$(E_{8})$

(ii) Furthermore if the graph $\Gamma$ coincides with one of the graphs $(A_{n}),$ $(D_{n})$ ,
$(E_{6}),$ $(E_{7}),$ $(E_{8})$ , then $\dim$ gives a bijection from the set of all the classes of iso-
morphic indecomposable objects onto the set of all the positive roots of the root
system of $type(A_{n}),$ $(D_{n}),$ $(E_{6}),$ $(E_{7}),$ $(E_{8})$ respectively.

Since Gabriel established this theorem in [5] by rather individual treatment,
Bernstein-Gelfand-Ponomarev [1] gave a simple unified proof using the theory of
root systems and Weyl groups.

Now our generalization of this theorem is formulated as follows.
For a finite oriented graph $(\Gamma, \Lambda)$ we denote by $Aut(\Gamma, \Lambda)$ the automorphism

group of $(\Gamma, \Lambda)$ . Thus $Aut(\Gamma, \Lambda)=\{\sigma=(\sigma_{0}, \sigma_{1})\in \mathfrak{S}^{\Gamma_{0}}\times \mathfrak{S}^{\Gamma_{1}}|\alpha(\sigma_{1}(l))=\sigma_{0}(\alpha(l))$ ,
$\beta(\sigma_{1}(l))=\sigma_{0}(\beta(l))$ for all $l\in\Gamma_{1}$ }, where $\mathfrak{S}^{\Gamma_{i}}$ means the symmetric group consisting
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of all permutations of the set $\Gamma_{i}$ . Now for each $\sigma\in Aut(\Gamma, \Lambda)$ we define a func-
tor $K^{\sigma}$ : $\mathcal{L}(\Gamma, \Lambda)\rightarrow \mathcal{L}(\Gamma, \Lambda)$ as follows. For an object (V, $f$), $(W, g)=K^{\sigma}\cdot(V, f)$

is given by $W_{\alpha}=V\sigma_{0}^{-1}(\alpha)$ for all $\alpha\in\Gamma_{0}$ and $g_{l}=f_{o_{1}^{-1}(l)}$ for all $l\in\Gamma_{1}$ . For a mor-
$\varphi$

$ K^{\sigma}\cdot\varphi$

phism (V, $f$ ) $\rightarrow(W, g),$ $K^{\sigma}\cdot(V, f)-K^{\sigma}\cdot(W, g)$ is given by $(K^{\sigma}\cdot\varphi)_{\alpha}=\varphi_{\sigma_{0^{-1(\alpha)}}}$

for all $\alpha\in\Gamma_{0}$ .

DEFINITION 3. Let $G$ be a subgroup of $Aut(\Gamma, \Lambda)$ . We define a category
$\mathcal{L}^{G}(\Gamma, \Lambda)$ which is a full subcategory of $\mathcal{L}(\Gamma, \Lambda)$ as follows. For an object (V, f)
$\in \mathcal{L}(\Gamma, \Lambda),$ $(V, f)$ is an object of $\mathcal{L}^{G}(\Gamma, \Lambda)$ if for each $\sigma\in GK^{\sigma}\cdot(V, f)$ is iso-
morphic to (V, f) in the category $\mathcal{L}(\Gamma, \Lambda)$ .

Our main theorem is the following.

THEOREM 2. Let $(\Gamma, \Lambda)$ be a finite, connected, oriented graph and $G$ be a
subgroup of $Aut(\Gamma, \Lambda)$ .

(i) In the category $\mathcal{L}^{G}(\Gamma, \Lambda)$ , the theorem of Krull-Remak-Schmidt holds.
(ii) There are only finitely many non-isomorphic indecomposable objects in

$\mathcal{L}^{G}(\Gamma, \Lambda)$ if and only if the triple $(\Gamma, \Lambda, G)$ is one of the following types.

$(A_{n})$ $\Gamma$ $(n\geqq 1)$ $G=\{1\}$

$(B_{n})$ $\Gamma$ $(n\geqq 2)$ $G=\{1, \tau\}$

$\tau(\alpha_{i})=\alpha_{2n-i}$

$(n\geqq 3)$ $G=\{1, \tau\}$

$(C_{n})$
$\Gamma$

$\tau(\alpha_{i})\left\{\begin{array}{l}\alpha_{i} (i\leqq n-1)\\\alpha_{i+l}(i=n)\\\alpha_{i- 1}(i=n+1)\end{array}\right.$

$(n\geqq 4)$ $G=\{1\}$

$(D_{n})$ $\Gamma$

$(E_{6})$ $\Gamma$

$G=\{1\}$
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$(E_{7})$
$l^{\tau}$

$G=\{1\}$

$(E_{8})$ $\Gamma$ $G=\{1\}$

$G=\{1, \tau\}$

$\tau(\alpha_{1})=\alpha_{()},$ $\tau(\alpha_{2})=\alpha_{z}$

$(F_{4})$
$\Gamma$

$\tau(\alpha_{s})=\alpha_{6},$ $\tau(\alpha_{4})=\alpha_{4}$

$\tau(\alpha_{O}’)=\alpha_{3},$ $\tau(\alpha_{6})=\alpha_{1}$

$G$ acts transitively on the
set $\{\alpha_{1}, \alpha_{3}, \alpha_{4}\}$ and

$(G_{2})$ $\Gamma$

fixes $\alpha_{2}$ .

Furthermore in the graphs above, the pair $(\Lambda, G)$ is assumed to have the property
that $G$ is a subgroup of $Aut(\Gamma, \Lambda),$ $i$ . $e.,$

$\Lambda$ is G-invariant.
(iii) If the type of the triple $(\Gamma, \Lambda, G)$ coincides with one of the $(A_{n})\sim(G_{2})$

above, then there is a natural one-to-one correspondence between the set of all the
classes of isomorphic indecomposable objects and the set of all the positive roots
of the root system of the type $(A_{n})\sim(G_{2})$ respectively.

The author wishes to express his hearty gratitude to Professor N. Iwahori
for his valuable advices.

2. Some categorical arguments.

Let $C$ be an abelian category in which each object is isomorphic to a direct
sum of finitely many indecomposable objects and the theorem of Krull-Remak-
Schmidt holds. Let $H$ be a finite set consisting of equivalent functors from $C$

onto $C$. We assume that $H$ forms a group with respect to the composition of
functors.

DEFINITION 4. We define a full subcategory $C^{H}$ of $C$ in the following way.

For an object $M$ of $C,$ $M$ is an object of $C^{H}$ if for all $F\in HF\cdot M$ is isomorphic

to $M$ in the category $C$.

PROPOSITION 1. (i) In the category $C^{H}$ the theorem of Krull-Remak-Schmidt
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holds.
(ii) For an indecomposable object $M\in C$, let $H=\bigcup_{i=1}^{m}F_{i}\cdot K$ be the coset decom-

position of $H$ with respect to the subgroup $K=\{F\in H|F\cdot M\cong M\}$ . Then $\tilde{M}=$

$\oplus_{i=1}^{m}F_{i}\cdot M$ is an indecomposable object in the category $C^{H}$ .
(iii) Any indecomposable object of $C^{H}$ is isomorphic to $\tilde{M}$ which is obtained

as in (ii) for some indedomposable object $M$ of $C$.
(iv) There are only finitely many non-isomorphic indecomposable objects in $C^{H}$

if and only if there are only finitely many non-isomorphic indecomposable objects
in $C$.

PROOF. We first note that every $\tilde{M}$ of $C^{H}$ is a direct sum of finitely many
indecomposable objects of $C^{H}$ . In fact this is easily seen by induction on the
’length’ $k$ of $\tilde{M}$ expressed as a direct sum of $k$ indecomposable objects of $C$.

(ii) It is clear that $\tilde{M}$ is an object of $C^{H}$ by construction. Let us prove
that $\tilde{M}$ is indecomposable in $C^{H}$ . There exist indecomposable objects $\tilde{M}_{1},$

$\cdots$ , $\tilde{M}_{k}$

of $C^{H}$ such that $\tilde{M}$ is isomorphic to $\tilde{M}_{1}\oplus\cdots\oplus\tilde{M}_{k}$ . By the theorem of Krull-
Remak-Schmidt, $M$ is isomorphic to an indecomposable component of some $\tilde{M}_{i}$

in $C$. Since $M_{i}\cong F\cdot\tilde{M}_{i}$ for every $F\in H$ and the theorem of Krull-Remak-Schmidt
holds, $\tilde{M}$ is isomorphic to a direct sum component of $\tilde{M}_{i}$ in $C$. Thus $\tilde{M}$ coincides
with $\tilde{M}_{i}$ .

(iii) Let $N$ be an indecomposable object of $C^{H}$ . If $M$ is an indecomposable
component of $N$ in $C,$ $F\cdot M$ is also isomorphic to an indecomposable component
of $N$ in $C$ for all $F\in H$. So there exists $N^{\prime}\in C$ such that $N$ is isomorphic to
$\tilde{M}\oplus N^{\prime}$ . Because $N$ and $\tilde{M}$ are objects of $C^{H},$ $N^{\prime}$ is an object of $C^{H}$ , too. On the
other hand $N$ is indecomposable in $C^{H}$ . Thus $N$ is isomorphic to $\tilde{M}$ .

(i) In the category $C$ the theorem of Krull-Remak-Schmidt holds. So by
(ii) and (iii) the same theorem also holds in $C^{H}$ .

(iv) Let $\Phi_{1}$ (resp. $\Phi_{2}$ ) be the set of all the classes of isomorphic indecom-
posable objects in the category $C$ (resp. $C^{H}$). By (ii) and (iii) there is a natural
mapping from $\Phi_{1}$ onto $\Phi_{2}$ . And the inverse image of one element of $\Phi_{2}$ is a
finite set and its cardinality is less than the order of $H$. So $\Phi_{1}$ is a finite set
if and only if $\Phi_{2}$ is a finite set.

3. Proof of the main theorem.

Let $(\Gamma, \Lambda)$ be a finite oriented graph and $G$ be a subgroup of $Aut(\Gamma, \Lambda)$ .
We first remark the following obvious lemma.

LEMMA 1. (i) $K^{\sigma}\circ K^{\tau}=K^{\sigma\tau}$ for all $\sigma,$
$\tau\in G$ .
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(ii) For each $\sigma\in G,$ $K^{\sigma}$ is an equivalence of the category.
(iii) The set $H=\{K^{\sigma}|\sigma\in G\}$ forms a group with respect to the composition

of functors.

By the lemma above we can apply the arguments in \S 2 to our situation. If

we set $c=\mathcal{L}(\Gamma, \Lambda)$ and $H=\{K^{\sigma}|\sigma\in G\}$ , then the category $C^{H}$ equals to $\mathcal{L}^{G}(\Gamma, \Lambda)$ .
So Theorem 2 (i), (ii) is a consequence of Proposition 1 (i), (iv) and Theorem

1 (i). At the end of this section we prove Theorem 2 (iii).

By the Proposition 1 (ii), (iii) we can construct all the indecomposable objects

of $\mathcal{L}^{G}(\Gamma, \Lambda)$ from the indecomposable obiects of $\mathcal{L}(\Gamma, \Lambda)$ . And the indecom-
posable objects of $\mathcal{L}(\Gamma, \Lambda)$ are described in the Theorem 1 (ii). So Theorem 2
(iii) is a consequence of the following proposition about the so-called foldings of
the root systems.

PROPOSITION 2. Let $\Delta$ be a reduced irreducible root system and $\Pi$ be a funda-
mental root system of $\Delta$ (cf. N. Bourbaki [2]). For each root system of the fol-
lowing types we give a subgroup $G$ of $Aut(\Pi)$ as follows. (Note that $G=Aut(\Pi)$

except the case (iv) and the case (ii) with $n=3.$)

(i) $\Delta=A_{2n-1}$ ——- $G=\{1, \tau\}$

$\alpha_{1}$
$\alpha_{2}$ $\alpha_{3}$ $\alpha_{2n- 3}$ $\alpha_{2n-2}\alpha_{2n-1}$

$(n\geqq 2)$
$\tau(\alpha_{i})=\alpha_{2n-i}$

$(1\leqq i\leqq 2n-1)$

$\alpha_{i}$

$G=\{1,\tau\}(i\leqq n-1)$

$(\uparrow\iota\geqq 3)$

(ii) $\Delta=D_{n+1}$

$\tau(\alpha_{i})\left\{\begin{array}{l}\alpha_{i+l}(i=n)\\\alpha_{i-1}(i=n+1)\end{array}\right.$

(iii) $\Delta=E_{6}$
$G=\{1, \tau\}$

$\tau(\alpha_{1})=\alpha_{6},$ $\tau(\alpha_{2})=\alpha_{2}$

$\tau(\alpha_{3})=\alpha_{5},$ $\tau(\alpha_{4})=\alpha_{4}$

$\tau(\alpha_{5})=\alpha_{3}/,$ $\tau(\alpha_{6})=\alpha_{1}$
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(iv) $\Delta=D_{4}$
$G$ operates transitively on

the set $\{\alpha_{1}, \alpha_{3}, \alpha_{4}\}$ and

fixes $\alpha_{2}$ . Thus $G\cong Z/3Z$

or $G\cong \mathfrak{S}_{3}$ .
In each case of $(i)\sim(iv)$ above, we define $\tilde{\alpha}$ for each $\alpha\in\Delta$ as follows. Let

$G=\bigcup_{i=1}^{k}\sigma_{i}\cdot G^{\alpha}$ be the coset decomposition of $G$ relative to. the subgroup $G^{\alpha}=$

$\{\sigma\in G|\sigma(\alpha)=\alpha\}$ . We define $\tilde{\alpha}$ by $\tilde{\alpha}=\sum_{i=1}^{k}\sigma_{i}(\alpha)$ .
Then $\tilde{\Delta}=\{\tilde{\alpha}|\alpha\in\Delta\}$ is a root system of type $B_{n},$ $C_{n},$ $F_{4},$ $G_{2}$ respectively, and

$\tilde{\Pi}=\{\tilde{\alpha}|\alpha\in\pi\}$ is a fuudamental root system of $\tilde{\Delta}$ respectively. Moreover for $\alpha,$ $\beta$

$\in\Delta,\tilde{\alpha}=\tilde{\beta}$ holds if and only if there exists an element $\sigma$ of $G$ such that $\sigma(\alpha)=\beta$ .

PROOF. If we put $\Pi=\{\alpha_{i}|1\leqq i\leqq k\}$ where $k=2n-1,$ $n+1,6,4$ for the cases
$(i)\sim(iv)$ respectively, then $\tilde{\alpha}_{i}=\Sigma_{j\in I_{i}}\alpha_{j}$ with $I_{i}=\{1\leqq j\leqq k|^{\exists}\sigma\in Gs. t. \sigma(\alpha_{i})=\alpha_{j}\}$ .
So the elements of $\tilde{\Pi}$ are linearly independent. And for any $\tilde{\alpha}=\sum_{i=1}^{k}m_{i}\alpha_{i}\in\tilde{\Delta}$ ,
$m_{i}=m_{j}$ if there exists some $\sigma\in G$ such that $\sigma(\alpha_{i})=\alpha_{j}$ , because $\sigma(\tilde{\alpha})=\tilde{\alpha}$ for any
$\sigma\in G$ . So each $\tilde{\alpha}\in\tilde{\Delta}$ can be written as $\tilde{\alpha}=\sum_{\beta\in\Pi^{-}}n_{\beta}\beta$ with integral coefficients $n_{\beta}$

which are all non-negative or all non-positive.
Thus it is enough to show that $\tilde{\Delta}$ is a root system of type $B_{n},$ $C_{n},$ $F_{4},$ $G_{2}$

respectively and that if $\tilde{\alpha}=\tilde{\beta}$ for $\alpha,$ $\beta\in\Delta$ , then there exists some $\sigma\in G$ such
that $\sigma(\alpha)=\beta$ . This can be seen by straightforward verifications. For example
we give the verifications for the cases (i), (iii), using the notations of N. Bour-
baki [2].

(i) $\Delta=\{e_{i}-e_{j}|1\leqq i, j\leqq 2n, i\neq j\}$ and $\Pi=\{\alpha_{i}=e_{i}-e_{i+1}|1\leqq i\leqq 2n-1\}$ . $\tau$ is given
by $\tau(e_{i})=-e_{2n+1-i}$ , so for each $\alpha=e_{i}-e_{j}\tau(\alpha)=\alpha$ if and only if $i+j=2n+1$ . Thus

$\tilde{\alpha}=\left\{\begin{array}{l}\alpha=e_{i}-e_{j} (i+j=2n+1)\\\alpha+\tau(\alpha)=(e_{i}-e_{2n+1-t})-(e_{j}-e_{2n+1- j}) (i+j\neq 2n+1).\end{array}\right.$

So $\tilde{\alpha}=\tilde{\beta}$ implies that there exists an element $\sigma$ of $G$ such that $\sigma(\alpha)=\beta$ . If we
set $f_{i}=e_{i}-e_{2n+1-i}(1\leqq i\leqq n)$ , then $\tilde{\Delta}=\{\pm f_{i}|1\leqq i\leqq n\}\cup\{\pm f_{i}\pm f_{j}|i\neq j\}$ . So $\tilde{\Delta}$ is a
root system of type $B_{n}$ .

(iii) $\Delta=\{\pm e_{i}\pm e_{j}|1\leqq i<j\leqq 5\}\cup$ { $\pm(e_{8}-e_{7}-e_{6}+\Sigma_{i=1}^{5}(-1)^{\nu(i)}e_{i})/2|\Sigma_{i=1}^{5}\nu(i)$ : even}
and $\Pi=\{\alpha_{i}|1\leqq i\leqq 6\}$ with

$\alpha_{1}=(e_{1}+e_{8})/2-(e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7})/2$

$\alpha_{1}=e_{1}+e_{2}$

$\alpha_{i}=e_{i-1}-e_{i- 2}$ $(3\leqq i\leqq 6)$ .
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$\tau$ is given by

$\tau(e_{i})=-e_{5\cdot i}+x$ $(l\leqq i\leqq 4)$

$\tau(e_{5})=(y-e_{5})/2$

$\tau(y)=(y+3e_{5})/2$

where $x=(e_{1}+e_{2}+e_{3}+e_{4})/2$

$y=e_{8}-e_{6}-e_{7}$ .
So it is easily seen that $\tilde{\alpha}=\tilde{\beta}$ implies the existence of an element $\sigma$ of $G$ with
$\sigma(\alpha)=\beta$ . If we set

$f_{1}=x+(e_{5}+y)/2$

$f_{2}=-x+(e_{5}+y)/2$

$f_{\$}=e_{3}-e_{2}$

$f_{4}=e_{4}-e_{1}$ ,

then $\tilde{\Delta}=\{\pm f_{i}|1\leqq i\leqq 4\}\cup\{\pm f_{i}\pm f_{j}|1\leqq i<j\leqq 4\}\cup\{(\pm fi\pm f_{2}\pm f_{3}\pm f_{4})/2\}$ . So $\tilde{\Delta}$ is a
root system of type $F_{4}$ .

4. Some remarks.

REMARK 1. In the Theorem 2 the assumption that $\Gamma$ is connected is not

essential.
Indeed if $\Gamma$ is not connected let $\Gamma_{0}=\bigcup_{i=1}^{k}\Gamma_{0}^{(i)}$ be the decomposition into con-

nected components. We can assume that $G$ acts transitively on the set
$\{\Gamma_{0^{(i)}}|1\leqq i\leqq k\}$ . Now let $G^{(i)}$ be the subgroup of $Aut(\Gamma^{(i)}, \Lambda^{(i)})$ induced by the
subgroup $\{\sigma\in G|\sigma_{0}(\Gamma_{0}^{(i)})=\Gamma_{0}^{(i)}\}$ . Then by restriction we obtain a natural bijec-

tion from the set of all the classes of isomorphic indecomposable objects of
$\mathcal{L}^{G}(\Gamma, \Lambda)$ onto the set of all the classes of isomorphic indecomposable objects of
$\mathcal{L}^{G(i)}(\Gamma^{(i)}, \Lambda^{(i)})$ .

REMARK 2. Let $\Gamma$ be one of the Dynkin graphs $A_{n},$ $D_{n},$ $E_{6},$ $E_{7},$ $E_{8}$ . For

the category $C=\mathcal{L}(\Gamma, \Lambda)$ and for any finite group $H$ consisting of equivalent

functors from $C$ onto $C$, the arguments in \S 2 also hold. However, if $K$ is an
equivalent functor from $C$ onto $C$, there exists some $\sigma\in Aut(\Gamma, \Lambda)$ such that
$K\cdot M\cong K^{\sigma}\cdot M$ for any $M\in C$. So essentially we can limit the arguments in \S 2

only for the case $H=\{K^{\sigma}|\sigma\in G\}$ where $G$ is a subgroup of $Aut(\Gamma, \Lambda)$ .
We can show the statement above as follows. If $M$ is a simple object, then

$K\cdot M$ is also a simple object of $C$. So $K$ induces a permutation $\sigma_{0}$ of the set $\Gamma_{0}$ .
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For each edge $l\in\Gamma_{1}$ we define an object (V, f) by $V_{\alpha(l)}=V_{\beta(l)}=k,$ $V_{\gamma}=0(\gamma\neq\alpha(1)$ ,
$\beta(l)),$ $f_{l}=id$ and $f_{l},$ $=0(l^{\prime}\neq l)$ . Considering the Jordan-Holder sequences of the
objects (V, f) and $K\cdot(V, f),$ $K$ induces some $\sigma\in Aut(\Gamma, \Lambda)$ . It is enough to show
that for each indecomposable object $M,$ $(K^{\sigma}-1\circ K)\cdot M$ is isomorphic to $M$. By the
way $\dim((K^{\sigma^{-1}}\circ K)\cdot M)=\dim M$ (If $N$ is simple, $(K^{\sigma^{-1}}\circ K)\cdot N\cong N$. So if $N$ appears
n-times in the Jordan-Holder sequence of $M$, it appears n-times in the Jordan-
Hodler sequence of $(K^{\sigma^{-1}}\circ K)\cdot M$, too). Thus by the Theorem 1 (ii), $(K^{\sigma^{-1}}\circ K)\cdot M$

is isomorphic to $M.$ ($This$ remark is due to Yohei Tanaka.)

Note added in proof.
After the preparation of this paper, the author realized that the notion of

“ folding” has been already given by R. Steinberg: in [6] a theorem similar to
our Proposition 2 is proved in a unified manner.
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