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FOLDINGS OF ROOT SYSTEMS AND GABRIEL’S THEOREM

By

Toshiyuki TANISAKI

1. Introduction.

Gabriel’s theorem (cf. below for precise statements) was generalized by
Dlab-Ringel [3], where Dynkin graphs of type B,, C., F., G, also enter in
the classification together with the graphs of type A,, D,, E. in [5]. We give
in this note another generalization of using the fact that B,, C,, F,, G, are
obtained by the so-called folding-operation from A,, D,, E,. Our formulation is
rather similar to the original formulation in [5].

Let I” be a finite graph. We denote its set of vertices by I, and its set of
edges by I (there may be several edges between two vertices and loops joining
a vertex to itself). Let A4 be an orientation of /. For each /=l we denote its
starting-point by a(l/) and its end-point by J(0).

For a fixed field £ we define a category .£(I, A) after Gabriel as follows.

DEFINITION 1. Let (I, A4) be a finite oriented graph. A pair (V, f) is an
object of (I, A) if V={V,|lasl}} is a family of finite-dimensional vector
spaces over k, and f={f,: Vaws—Vsw|l€l}} is a family of k-linear mappings.

©
(V, f)—> (W, g) is a morphism if ¢={p,: V,—W,lacly} is a family of k-
linear mappings such that for each /e[ the following diagram

S
Vaaws =-V,B<z)
Dacld Cpy
Waas ‘;'Wﬁ(l)
&

commutes.

The category £(I, A) is naturally an abelian category and in this category
the theorem of Krull-Remak-Schmidt about the essential uniqueness of direct-
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sum-decomposition of an object into indecomposable objects holds.

DEFINITION 2. For each object (V, f)e £ (I, A) we define an element dim V
of the real vector space Decr R-a by dim V=23lser,dim V,)a.

THEOREM 1 (Gabriel [5]). (i) Let (I, A) be a finite connected oriented graph.
Then there are only finitely many non-isomorphic indecomposable objects if and
only if the graph I' is one of the following graphs.

(A)  O—O—O- - o0—o0 (n=1)
ay (4 &) (4 €% Ap_y Ap
An_y
(Dn) O——O—Ommmmmm e (n=4)
a, a (441 Xp-z Ay,
247
a3
(Ey)
(28] ay ay A5 [ £
A
(E,) O
a; Ay ay a5 o a,
ay
(Ey)
(441 A oy as; A (243 A

(ii) Furthermore if the graph I' coincides with one of the graphs (A,), (D,),
(Eq), (E7), (Ey), then dim gives a bijection from the set of all the classes of iso-
morphic indecomposable objects onto the set of all the positive roots of the root
system of type (An), (Dn), (Ey), (E;), (Ey) respectively.

Since Gabriel established this theorem in by rather individual treatment,
Bernstein-Gelfand-Ponomarev gave a simple unified proof using the theory of
root systems and Weyl groups.

Now our generalization of this theorem is formulated as follows.

For a finite oriented graph (I, A4) we denote by Aut(I', A) the automorphism
group of (I, A). Thus Aut(l, A)={oc={(0,, ¢,)< STox &S| a(a,(1)=0a(a(l),
Bla.(D)=a4B) for all I}, where Si means the symmetric group consisting
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of all permutations of the set I;. Now for each o= Aut (I, A) we define a func-

tor Ke: (', A)—_(I, A) as follows. For an object (V, f), (W, g)=K?-(V, f)

is given by W,=Va'(a) for all a]E{FO and gi1=/oz10 for all /[el}. For a mor-
. ¢ o L

phism (V, /) — (W, @), K?-(V, /) —> K?-(W, g) is given by (K’ @)a=¢@s:1¢a)

for all a1,

DEFINITION 3. Let G be a subgroup of Aut(l, A). We define a category
L6, A) which is a full subcategory of (I, A) as follows. For an object (V, f)
e, A), (V, f) is an object of L%, A) if for each oG K?-(V, f) is iso-
morphic to (V, f) in the category £, A).

Our main theorem is the following.y

THEOREM 2. Let (I, A) be a finite, connected, oriented graph and G be a
subgroup of Aut (I, A).

(1) In the category LI, A), the theorem of Krull-Remak-Schmidt holds.

(ii) There are only finitely many non-isomorphic indecomposable objects in
L4, A) if and only if the triple (I, A, G) is one of the following types.

4 I O——O0——O--=-=--- -O—0 (n=1) G={1}
ay (423 (24} Ap-1 Ap
(B, I’ oO——O0——0O-====- O—0 (n=2) G={l, 7}
(241 a; (2¢ Aap-2 Aap-1
(@) =azn-1
ay,
Cn r oO—O0—O--- )
(Cx) a; a; Ay Wp-y Ap-y a; (=n—1)
Apiy (a)] gy (i=n)
Xi-y (l:n+1)
An-yq
(n=4) G={1}
(D) I o—O0—-O——=
(28] (24 a3 Ap-3 Ap-y
Ap

(24
(Ey T o——o——L—o——o G={1}
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(Epy T’ o—o0 —O-
(¢4

o O o o G={1}
1 Xy ay (243 Qg a,
a,
(Ey I o—o———I——c O O 0 G={1}
¢4 a3 ay 2 &3 U o [2 4
Az G={1, 7}
(a)=ay, t(a)=ay
(F4) r O- O O—O— O T(aa):as, T(a4):a4
o %s s %s %o T(“s):“w T(a6)=a1
as G acts transitively on the
Gy T set {a,, ay, a} and
a; o o fixes as.
4

Furthermore in the graphs above, the pair (A, G) is assumed to have the property
that G is a subgroup of Aut(l, A), i.e., A is G-invariant.

(iii) If the type of the triple (I, A, G) coincides with one of the (An)~(G,)
above, then there is a natural one-to-one correspondence between the set of all the
classes of isomorphic indecomposable objects and the set of all the positive roots
of the root system of the type (A,)~(G,) respectively.

The author wishes to express his hearty gratitude to Professor N. Iwahori
for his valuable advices.

2. Some categorical arguments.

Let C be an abelian category in which each object is isomorphic to a direct
sum of finitely many indecomposable objects and the theorem of Krull-Remak-
Schmidt holds. Let H be a finite set consisting of equivalent functors from C
onto C. We assume that H forms a group with respect to the composition of
functors.

DEFINITION 4. We define a full subcategory C# of C in the following way.
For an object M of C, M is an object of C¥ if for all FeH F-M is isomorphic
to M in the category C.

PROPOSITION 1. (i) In the category C® the theorem of Krull-Remak-Schmidt
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holds.

(i) For an indecomposable object M<C, let H=\J",F;-K be the coset decom-
position of H with respect to the subgroup K={FeH|F-M=M}. Then M=
D Fi- M is an indecomposable object in the category CH.

(iii) Any indecomposable object of C% is isomorphic to M which is obtained
as in (ii) for some indedomposable object M of C.

(iv) There are only finitely many non-isomorphic indecomposable objects in CH
if and only if there are only finitely many non-isomorphic indecomposable objects
mn C.

ProoF. We first note that every M of C¥ is a direct sum of finitely many
indecomposable objects of CZ. In fact this is easily seen by induction on the
‘length’ % of M expressed as a direct sum of k2 indecomposable objects of C.

(ii) It is clear that M is an object of C# by construction. Let us prove
that M is indecomposable in CH#, There exist indecomposable objects A711, e, M &
of C¥ such that M is isomorphic to Mlea--- 691\71 x. By the theorem of Krull-
Remak-Schmidt, M is isomorphic to an indecomposable component of some Mi
in C. Since M,=F -]\7Ii for every FeH and the theorem of Krull-Remak-Schmidt
holds, M is isomorphic to a direct sum component of M;in C. Thus M coincides
with M,

(iii) Let N be an indecomposable object of C#. If M is an indecomposable
component of N in C, F-M is also isomorphic to an indecomposable component
of N in C for all FeH. So there exists N'eC such that N is isomorphic to
M@N’. Because N and M are objects of C2, N’ is an object of CZ, too. On the
other hand N is indecomposable in C#. Thus N is isomorphic to M.

(i) In the category C the theorem of Krull-Remak-Schmidt holds. So by
(ii) and (iii) the same theorem also holds in CZ.

(iv) Let @, (resp. @,) be the set of all the classes of isomorphic indecom-
posable objects in the category C (resp. C?). By (ii) and (iii) there is a natural
mapping from @,; onto @, And the inverse image of one element of @, is a
finite set and its cardinality is less than the order of H. So @, is a finite set
if and only if @, is a finite set.

3. Proof of the main theorem.

Let (I, A) be a finite oriented graph and G be a subgroup of Aut(l, A).
We first remark the following obvious lemma.

LEMMA 1. (i) K9K"=K° for all o, 7EG.
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(ii) For each oG, K°? is an equivalence of the category.
(iii) The set H={K°|o<=G} forms a group with respect to the composition

of functors.

By the lemma above we can apply the arguments in § 2 to our situation. If
we set C=_(I", A) and H={K?°|o<G}, then the category C¥ equals to %1, A).

So [Theorem 2 (i), (ii) is a consequence of (i), (iv) and
1 (i). At the end of this section we prove (iii).

By the (ii), (iii) we can construct all the indecomposable objects
of £ A) from the indecomposable objects of (I, 4). And the indecom-
posable objects of £(I', A) are described in the (ii). So
(iii) is a consequence of the following proposition about the so-called foldings of
the root systems.

PROPOSITION 2. Let 4 be a reduced irreducible root system and Il be a funda-
mental root system of 4 (c¢f. N. Bourbaki [2]). For each root system of the fol-
lowing types we give a subgroup G of Aut(II) as follows. (Note that G=Aut (II)
except the case (iv) and the case (ii) with n=3.)

(1) d=Asn-, o—o0—0-----0——0——0 G={1, 7}
(7122) ay (s &3 a3 (Qap-3 Rap-2 Aap-y
o T(ai)=azn—i
(1=i=2n-1)
an G={l1, 7}
(i) 4d=Dps, o—O0—O0--~ a; (i=n—1)
(7l>3) Ay (40} a3 QAp-3 Ap-y .
= Api T(ai) Ai+1 (l—'——n)
a;-; (=n+1)
(ii)) Ad=E, @, G={1, 7}
(a)=as, t(a:)=a:
X1 Qs 4 *s *s t(as)=as, T(a)=a,

w(as)=ars, v(as)=ay
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(lv) 4d=D, G operates transitively on

s the set {ay, as, a} and

fixes a,. Thus G=Z/3Z

ay

or G=6G,.

In each case of (i)~(iv) above, we define & for each a=d as follows. Let
G=\Uk,0:-G* be the coset decomposition of G relative to. the subgroup G®=
{oeGlo(a)=a}. We define @ by a=Xk,0/a).

Then d={a|lacd} is a root system of type By, C,, F,, G, respectively, and
II={alacz} is a fuudamental root system of 4 respectively. Moreover for a, B
€4, @a=f holds if and only if there exists an element o of G such that ola)=p.

Proor. If we put Il={a;|1=i<k} where k=2n—1, n-+1, 6, 4 for the cases
(i)~(iv) respectively, then @&;=>c;,a; with L;={1<j<Ek|36<G s.t. ala)=a,}.
So the elements of I are linearly independent. And for any a=Xk,ma; =4,
m;=m; if there exists some oG such that o(a;)=a;, because o(@)=a for any
ceG. So each @a=4 can be written as @=2> geanpf with integral coefficients ng
which are all non-negative or all non-positive.

Thus it is enough to show that 4 is a root system of type B,, C,, F,, G,
respectively and that if @a=J for «, Bed, then there exists some o=G such
that o(a)=p. This can be seen by straightforward verifications. For example
we give the verifications for the cases (i), (iii), using the notations of N. Bour-
baki [2]. '

(1) d={e;—e;|1<4, j<2n, i#Jj} and II={a;=e;—e;,|15i<2n—1}. 7 is given
by 7(e;)=—ezn+1-4, SO for each a=e;—e; t(a)=« if and only if i+;=2n--1. Thus

_ { aA—e;—e; (z+]=2n—l—l)
a=
0(+T(a):(ei_ezn+1—i)_(ej_eznﬂ—j) (i+j+#2n+1).

So @=pj implies that there exists an element ¢ of G such that o(a)= B. 1If we
set fi=e;—esni1-s (1<i<n), then d={+f;|1<i<n} U {fi+f;li#j}. So 4 is a
root system of type B.,.

(i) d={xe;te;|1=i<j=5} U {*t(es—er—es+ i (—1)"Pe;) /2| 38.,0(3): even}
and I7={a;|1=:1<6} with

ay=(e;+e5)/2—(eytes+e,+es+es+e,)/2
a,==e;+e,

A;=€;-1—€;-2 3=1<6).
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7 is given by
(e)=—esitx  (1=i=4)
(es)=(y—es)/2
7(y)=(y+3e5)/2
where x=(e,+e,+e;+e,)/2
Yy=es—es—eq.

So it is easily seen that @=j implies the existence of an element ¢ of G with
ola)=0. If we set
fi=x+(es+y)/2

fo=—x+(e;+y)/2
fi=e;—e,
fi=e—ey,

then J={f:|1<i<4}\U{tfitf;|1<Si<j<4\U{(fitfotfatf)/2). So 4 is a
root system of type F,.

4. Some remarks.

REMARK 1. In the the assumption that I” is connected is not
essential.

Indeed if I' is not connected let I,=\UL.[,® be the decomposition into con-
nected components. We can assume that G acts transitively on the set
([ ]1<i<k}. Now let G be the subgroup of Aut(l’®, A?) induced by the
subgroup {c€G|o,([[?)=I,*}. Then by restriction we obtain a natural bijec-
tion from the set of all the classes of isomorphic indecomposable objects of

LS, A) onto the set of all the classes of isomorphic indecomposable objects of
_L-G(i)(["(i)’ A(i)).

REMARK 2. Let I’ be one of the Dynkin graphs A,, D,, Es E; Es. For
the category C=_(I, A) and for any finite group H consisting of equivalent
functors from C onto C, the arguments in §2 also hold. However, if K is an
equivalent functor from C onto C, there exists some o Aut(I, 4) such that
K-M=~K?-M for any MeC. So essentially we can limit the arguments in §2
only for the case H={K°|o=G} where G is a subgroup of Aut (I, A).

We can show the statement above as follows. If M is a simple object, then
K-M is also a simple object of €. So K induces a permutation ¢, of the set [%.
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For each edge /(=] we define an object (V, f) by Var=Vgwr==~k, V,=0 (+a(l),
BD), fi=id and f,,=0 (I’#1). Considering the Jordan-Holder sequences of the
objects (V, f) and K-(V, f), K induces some o< Aut (I, 4). It is enough to show
that for each indecomposable object M, (K° 'oK)-M is isomorphic to M. By the
way dim (K" 'oK)-M)=dim M (If N is simple, (K°'oK)-N=N. So if N appears
n-times in the Jordan-Hélder sequence of M, it appears n-times in the Jordan-
Hodler sequence of (K° 'oK)-M, too). Thus by the (i), (K oK)-M
is isomorphic to M.(This remark is due to Yohei Tanaka.)

Note added in proof.

After the preparation of this paper, the author realized that the notion of
“folding ” has been already given by R. Steinberg: in [6] a theorem similar to
our Proposition 2 is proved in a unified manner.

References

[1] Bernstein, I. N., Gelfand, I. M. and Ponomarev, V. A., Coxeter functors and Gabriel’s
theorem, Uspechi Mat. Nauk 28 (1973), 19-33.

[ 2] Bourbaki, N., “Groupes et algébres de Lie,” Ch. 4-6, Hermann, Paris, 1968.

[3] Dlab, V. and Ringel, C.M., On algebras of finite representation type, J. Algebra
33 (1975), 306-394.

[4] Dlab, V and Ringel, C.M., Indecomposable representations of graphs and algebras,
Memoirs of A.M.S. 173 (1976).

[5] Gabriel, P., Unzerlegbare Darstellungen I, Man. Math. 6 (1972), 71-103.

[6] Steinberg, R., Lectures on Chevalley groups, Yale University, (1967).

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo

113 Japan



	FOLDINGS OF ROOT SYSTEMS ...
	1. Introduction.
	THEOREM 1 ...
	THEOREM 2. ...

	2. Some categorical arguments.
	References


