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A classical theorem of A. Hurwitz concerning rational approximations to

irrational numbers states that for any real irrational number $\xi$ there are infinitely
many pairs of integers $p,$ $q$ with $q>0$ satisfying the inequality

(1) $|\xi-\frac{p}{q}|<\frac{1}{\sqrt{5}q^{2}}$ ,

where the constant $\sqrt{5}$ on the right-hand side of (1) is the best possible number.
S. Hartman [1], imposing congruential conditions on the denominator and the
numerator of approximating fractions, has proved that if $\xi$ is an irrational
number and if $a,$

$b$ and $s$ are fixed integers with $s>0$ , then there exists an
infinity of pairs of integers $u,$ $v$ with $v>0$ satisfying the conditions

(2) $|\xi-\frac{u}{v}|<\frac{2s^{2}}{v^{2}}$

and

(3) $u\equiv a(mod s)$ , $v\equiv b(mod s)$ .
As is noticed by Hartman, the exponent 2 of $s$ in the right side of (2) cannot

be reduced in general; this will readily be seen by putting $a=b=0$ .
This result of Hartman has been improved in two ways by J. F. Koksma

[2], who proved that if $\xi$ is an irrational number, then for any fixed real
number $\epsilon>0$ and for any integers $s>0,$ $a,$

$b$ there exist infinitely many pairs of
integers $u,$ $v$ with $v>0$ such that

(4) $|\xi-\frac{u}{v}|<\frac{(1+\epsilon}{\sqrt{5}}\frac{)s^{2}}{v^{2}}$ ,

$u\equiv a(mod s)$ , $v\equiv b(mod s)$ ,

and that if $\xi$ is an irrational number and if $s>0,$ $a,$
$b$ are integers such that we

have not simultaneously $a\equiv 0(mod s)$ and $b\equiv 0(mod s)$ , then there are infinitely

many pairs of integers $u,$ $v$ with $v\neq 0$ satisfying
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(5) $|\xi-\frac{u}{v}|<\frac{s^{2}}{4|v(v-b)|}$ ,

$u\equiv a(mod s)$ , $v\equiv b(mod s)$ .
Here, in (4) the constant $\sqrt{5}$ is the best possible number in view of the theorem
of Hurwitz quoted above, and in (5) the right-hand side is less than

$\frac{(1+\epsilon)s^{2}}{4v^{2}}$

for any fixed real number $\epsilon>0$ and all sufficiently large values of $|v|$ .
Now, the purpose of the present note is to slightly improve this latter result

of Koksma’s, by establishing the following

THEOREM. Let $\xi$ be a real irrational number and let $a,$
$b$ and $s$ be fixed

integers with $s>0$ , Then there exist infinitely many pairs of integers $u,$ $v$ with
$v\neq 0$ satisfying the conditions

$|\xi-\frac{u}{v}|<\frac{s^{2}}{4v^{2}}$

and
$u\equiv a(mod s)$ , $v\equiv b(mod s)$ ,

provided that we have not simultaneously $a\equiv 0(mod s)$ and $b\equiv 0(mod s)$ .

It is obvious again by Hurwitz’s theorem that our theorem cannot hold in
general without the proviso that the congruences $a\equiv b\equiv 0(mod s)$ are not satisfied
simultaneously, which implies $s\geqq 2$ .

1. Let $\xi$ be a real irrational number. There is no loss in generality in
assuming that $0<\xi<1$ ; in doing so, we replace, if necessary, the value of the
integer $a$ by another suitable one. Being thus assumed, the number $\xi$ can be
represented by an infinite simple continued fraction

$\xi=[a_{0} ; a_{1}, a_{2}, \cdots]$ ,

where $a_{0}=0,$ $a_{m}>0(m=1,2, \cdots)$ are integers. We define as usual

$p_{0}=a_{0}=0$ , $p_{1}=a_{1}a_{0}+1=1$ , $p_{m}=a_{m}p_{m-1}+p_{m-2}(m\geqq 2)$ ,

$q_{0}=1$ , $q_{1}=a_{1}$ , $q_{m}=a_{m}q_{m-1}+q_{m-2}$ $(m\geqq 2)$ ;

it is well known and is in fact easily proved by induction on $m$ that

(6) $p_{m}q_{m-1}-p_{m- 1}q_{m}=(-1)^{m- 1}(m=1,2, \cdots)$ .
Now, following Hartman [1], we consider for $n\geqq 1$ the system of congruences
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$p_{n^{X}}+p_{n- 1}y\equiv a(mod s)$

$q_{n}x+q_{n-1}y\equiv b(mod s)$ .
It will readily be verified in view of (6) that a solution $x,$ $y$ of this system is
provided by

$x=t_{n- 1}$ , $y=t_{n}$ ,

where $t_{m}$ is the integer with

(7) $-\frac{s}{2}<t_{m}\leqq\frac{s}{2}$

and determined by the congruence

$t_{m}\equiv(-1)^{m}(aq_{m}-bp_{m})$ $(mod s)$ ,

or equivalently by the conditions

$t_{0}\equiv a(mod s)$ , $t_{1}\equiv-aa_{1}+b(mod s)$ , $t_{m}\equiv-a_{m}t_{m-1}+t_{m- 2}(mod s)(m\geqq 2)$ .
Put

$u_{n}=p_{n}t_{n-1}+p_{n-1}t_{n}$ , $v_{n}=q_{n}t_{n- 1}+q_{n- 1}t_{n}$ .

Then $u=u_{n},$ $v=v_{n}$ satisfy the condition (3).

For brevity’s sake we set

$u_{n}(x,, y)=p_{n}x+p_{n- 1}y$ , $v_{n}(x, y)=q_{n}x+q_{n- 1}y$ .

2. Throughout in what follows we shall suppose that $n$ be even, or more
exactly that $n$ increases through the sequence of even integers (alternatively,
we may suppose of course that $n$ be odd, without any substantial change in the
argument; as a matter of fact, we need only to consider either one of the cases
of $n$ even and of $n$ odd).

We begin by observing that one at least of $t_{n}$ and $t_{n-1}$ is not zero, since
otherwise we would have $a\equiv b\equiv 0(mod s)$ , which is the case we have excluded
by assumption. Thus, if $t_{n}=0$ then $t_{n-1}\neq 0$ , and so we have, by (7),

$|\xi\frac{u_{n}}{v_{n}}|<\frac{1}{q_{n}^{2}}=\frac{t_{n-1}^{2}}{v_{n}^{2}}\leqq\frac{s^{2}}{4v_{n}^{2}}$ ,

since there holds the inequality

$|\xi-\frac{p_{m}}{q_{m}}|<\frac{1}{q_{m}^{2}}$

for all $m$ . Similarly, if $t_{n-1}=0$ then $t_{n}\neq 0$ and

$|\xi-\frac{u_{n}}{v_{n}}|<\frac{1}{q_{n-1}^{2}}\leqq\frac{s^{2}}{4v_{n}^{2}}$ .
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Therefore, we may assume in the following that $t_{n}\neq 0$ and $t_{n-1}\neq 0$ .
We now distinguish several cases according to the signs of $t_{n}$ and $t_{n-1}$ .

Case 1. $t_{n}t_{n-1}>0$ . We have for all even $n\geqq 2$

$\frac{p_{n}}{q_{n}}<\xi<\frac{p_{n-1}}{q_{n-1}}$

and

$\frac{p_{n}}{q_{n}}<\frac{u_{n}}{v_{n}}<\frac{p_{n-1}}{q_{n-1}}$ .

We consider two subcases according as

$\frac{p_{n}}{q_{n}}<\xi<\frac{u_{n}}{v_{n}}$ or $\frac{u_{n}}{v_{n}}<\xi<\frac{p_{n-1}}{q_{n-1}}$ .

Case 1.1. $p_{n}/q_{n}<\xi<u_{n}/v_{n}$ . In this case we define for integral $j\geqq 0$

$u_{n.j}=u_{n}(t_{n- 1}\pm js, t_{n})$ , $v_{n.j}=v_{n}(t_{n-1}\pm js, t_{n})$ ,

where the sign of $j$ in the parentheses is fixed by $\pm=sgnt_{n}(=sgnt_{n- 1})$ . Since
the fraction $u_{n,j}/v_{n,j}$ ( $n$ being fixed) monotonically decreases as $j$ increases and
since

$\lim_{j\rightarrow+\infty}\frac{u_{n.j}}{v_{n.j}}=\frac{p_{n}}{q_{n}}$ ,

there is a unique integer $k\geqq 1$ such that

$\frac{u_{n.k}}{v_{n.k}}<\xi<\frac{u_{n.k-1}}{v_{n.k-1}}$ .

Here, it will readily be verified that

$|\xi-\frac{u_{n.k}}{v_{n.k}}|+|\xi-\frac{u_{n.k-1}}{v_{n.k-1}}|=_{\overline{v}_{n.k}}^{u_{n_{\underline{\prime}}k}}\frac{u_{n.k- 1}}{v_{n.k-1}}--$

$=\frac{|st_{n}|}{|v_{n.k-1}v_{n.k}|}$

$\leqq\frac{1}{2}(\frac{|st_{n}|}{v_{n.k}^{2}}+\frac{|st_{n}|}{v_{n,k-1}^{2}})$ .

It follows that one at least of the two fractions $u_{n,k}/v_{n,k},$ $u_{n.k- 1}/v_{n.k-1}$ , say
$u/v$ , satisfies the inequality

(8) $|\xi-\frac{u}{v}|<\frac{|st_{n}|}{2v^{2}}\leqq\frac{s^{2}}{4v^{2}}$ ,

where
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$u\equiv u_{n}\equiv a(mod s)$ , $v\equiv v_{n}\equiv b(mod s)$

and the condition (3) is fulfilled.

Case 1.2. $u_{n}/v_{n}<\xi<p_{n-1}/q_{n-1}$ . In this case we define for integral $j\geqq 0$

$u_{n,j}=u_{n}(t_{n-1}, t_{n}\pm js)$ , $v_{n,j}=v_{n}(t_{n-1}, t_{n}\pm js)$ ,

where we take as before $\pm=sgnt_{n}(=sgnt_{n-1})$ . Since the fraction $u_{n,j}/v_{n,j}$

( $n$ being fixed) monotonously increases with $j$ and since

$\lim_{j\rightarrow+\infty}\frac{u_{n,j}}{v_{n,j}}=\frac{p_{n-1}}{q_{n- 1}}$ ,

there is a unique integer $k\geqq 1$ such that

$\frac{u_{n.k-1}}{v_{n.k-1}}<\xi<\frac{u_{n.k}}{v_{n.k}}$ .

where

$\frac{u_{n.k}}{v_{n,k}}-\frac{u_{n,k- 1}}{v_{n,k- 1}}=\frac{|st_{n- 1}|}{|v_{n,k}v_{n,k-1}|}$ .

Hence, just as in Case 1.1, we may conclude that at least one (call this $u/v$ ) of
the two fractions $u_{n.k-1}/v_{n.k-1},$ $u_{n,k}/v_{n.k}$ satisfies the inequality

(9) $|\xi-\frac{u}{v}|<\frac{|st_{n-1}|}{2v^{2}}\leqq\frac{s^{2}}{4v^{2}}$ ,

where
$u\equiv u_{n}\equiv a(mod s)$ , $v\equiv v_{n}\equiv b(mod s)$ .

Case 2. $t_{n}>0,$ $t_{n-1}<0$ . It is obvious that $v_{n}\neq 0$ for all sufficiently large $n$ ,

since $g$ . $c$ . $d$ . $(q_{n}, q_{n-1})=1$ and since $q_{m}$ indefinitely increases with $m$ . We dis-
tinguish two subcases according as

$v_{n}>0$ or $v_{n}<0$ ,

assuming that $n$ be sufficiently large.

Case 2.1 $v_{n}>0$ . In this case we have

$\frac{p_{n}}{q_{n}}<\xi<\frac{p_{n-1}}{q_{n- 1}}<\frac{u_{n}}{v_{n}}$ .

We define for integral $j\geqq 0$

$u_{n.j}=u_{n}(t_{n- 1}+js, t_{n})$ , $v_{n.j}=v_{n}(t_{n-1}+js, t_{n- 1})$ .
Since the fraction $u_{n.j}/v_{n.j}$ ( $n$ being fixed large enough) monotonically decreases
as $j$ increases and since



6 Sabur\^o UCHIYAMA

$\lim_{j\rightarrow+\infty}\frac{u_{n.j}}{v_{n.f}}=\frac{p_{n}}{q_{n}}$ ,

there exists a unique integer $k\geqq 1$ such that

$-\frac{u_{n.k}}{v_{n.k}}<\xi<-\frac{u}{v}n.\frac{k-1}{k-1}n$.
where

$\frac{u_{n.k-1}}{v_{n.k-1}}-\frac{u}{v}n.\underline{k}n.k=\overline{v}\frac{st_{n}}{n.k-1vn.k}$ .

It follows that one at least of the two fractions $u_{n.k}/v_{n.k},$ $u_{n.k-1}/v_{n.k- 1}$ , say
$u/v$ , satisfies the inequality (8), where we have

$u\equiv u_{n}\equiv a(mod s)$ , $v\equiv v_{n}\equiv b(mod s)$ .

Case 2.2. $v_{n}<0$ . In this case we have

$\frac{u_{n}}{v_{n}}<\frac{p_{n}}{q_{n}}<\xi<p_{n- 1}q_{n-1}$

We define for integral $j\geqq 0$

$u_{n.j}=u_{n}(t_{n-1}, t_{n}-js)$ , $v_{n.j}=v_{n}(t_{n-1}, t_{n}-js)$ .
Since the fraction $u_{n,j}/v_{n,j}$ ( $n$ being fixed large enough) monotonously increases
with $j$ and since

$\lim_{j\rightarrow+\infty}\frac{u_{n.j}}{v_{n.j}}=\frac{p_{n-1}}{q_{n-1}}$ ,

there is a unique integer $k\geqq 1$ such that

$\frac{u_{n.k-1}}{v_{n.k-1}}<\xi<\frac{u_{n.k}}{v_{n,k}}$ ,

where

$-\frac{u_{n.k}}{v_{n,k}}-\frac{u_{n,k-1}}{v_{n.k-1}}=-\frac{|st_{n-1}|}{|v_{n,k}v_{n,k-1}|}$ .
Hence, we have again the inequality (9) with $u/v=u_{n.k}/v_{n.k}$ or $n_{n.k-1}/u_{n.k-1}$ ,

where
$u\equiv u_{n}\equiv a(mod s)$ , $v\equiv v_{n}\equiv b(mod s)$ .

Case 3. $t_{n}<0,$ $t_{n-1}>0$ . We can deal with this case just as in Case 2, by
considering two subcases according as $v_{n}>0$ or $v_{n}<0$ and suitably defining $u_{n.j}$

and $v_{n.j}$ . Namely:

Case 3.1. $v_{n}>0$ . In this case we have
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$\frac{u_{n}}{v_{n}}<\frac{p_{n}}{q_{n}}<\xi<\frac{p_{n-1}}{q_{n-1}}$

and define for $j\geqq 0$

$u_{n.j}=u_{n}(t_{n-1}, t_{n}+js)$ , $v_{n.j}=v_{n}(t_{n- 1}, t_{n}+js)$ .

Case 3.2. $v_{n}<0$ . In this case we have

$\frac{p_{n}}{q_{n}}<\xi<\frac{p_{n- 1}}{q_{n-1}}<\frac{u_{n}}{v_{n}}$

and define for $j\geqq 0$

$u_{n.j}=u_{n}(t_{n- 1}-js, t_{n})$ , $v_{n.j}=v_{n}(t_{n-1}-js, t_{n})$ .
We omit the details which can be easily filled out.

This concludes the proof of our theorem.

3. We note that it can also be proved by the present method that if $\xi$ is a
real irrational number and if $a,$

$b$ and $s$ are arbitrary but fixed integers with
$s>0$ , then there are infinitely many pairs of integers $u,$ $v$ with $v>0$ satisfying
the conditions

(10) $|\xi-\frac{u}{v}|<\frac{s^{2}}{2v^{2}}$

and
$u\equiv a(mod s)$ , $v\equiv b(mod s)$ .

However, the inequality (10) is apparently weaker than Koksma’s (4).
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