ON THE EQUATIONS DEFINING A PROJECTIVE CURVE EMBEDDED BY A NON-SPECIAL DIVISOR

By
Masaaki Homma

Introduction. Let C be a complete reduced irreducible curve of arithmetic genus g over an algebraically closed field K. Let L be a very ample invertible sheaf of degree d on C, and let $\phi_{L}: C \subset \boldsymbol{P}^{h^{0}(L)-1}$ be the projective embedding by means of a basis of $\Gamma(L)$. Then the following results are known:
(A) Assume that C is smooth over K.
(0) (D. Mumford [5]) L is normally generated, if $d \geq 2 g+1$.
(1) (B. Saint-Donat [7]) The largest homogeneous ideal I defining $\phi_{L}(C)$, i.e., $I=\operatorname{Ker}\left[S \Gamma(L) \rightarrow \underset{m \geq 0}{\oplus} \Gamma\left(L^{m}\right)\right]$, is generated by its elements of deree 2 , if $d \geq 2 g+2$.
(2) (B. Saint-Donat [7]) I is generated by its elements of degree 2 and 3, if $d \geq 2 g+1$.
(B) (T. Fujita [1]) The statements (0) and (1) in (A) are true without the assumption that C is smooth over K.

The purposes of the present paper are that we improve the second result (2) of Saint-Donat and that we construct some related examples (corollary 1.4, Example 2.4 and Proposition 3.1).

Notation and Terminology. We fix an algebraically closed field K of characteristic $p \geqq 0$ throughout the paper. We use the word "variety" to mean a reduced irreducible scheme of finite type and proper over K, and "curve" to mean a variety of dimention 1 .

For a finite dimensional vector space V over $K, S^{m} V$ means the m-th symmetric power of V and $S V$ means the symmetric algebra of V, i. e., $S V=\underset{m \geqq 0}{\oplus} S^{m} V$.

Let L be an invertible sheaf on a projective variety X. We denote by L^{m} the m-th tensor product $L^{\otimes m}$. For the vector space of global sections $\Gamma(L)$, we define I and $I_{m}(m \geqq 1)$, by

$$
I=I(L)=\operatorname{Ker}\left[S \Gamma(L) \rightarrow \underset{m \geq 0}{\oplus} \Gamma\left(L^{m}\right)\right],
$$

and

$$
I_{m}=I_{m}(L)=\operatorname{Ker}\left[S^{m} \Gamma(L) \rightarrow \Gamma\left(L^{m}\right)\right] .
$$

Let L_{1}, \cdots, L_{m} be invertible sheaves on X. Then $\mathscr{R}\left(L_{1}, \cdots, L_{m}\right)$ means the kernel of the natural map:

$$
\Gamma\left(L_{1}\right) \otimes \cdots \otimes \Gamma\left(L_{m}\right) \rightarrow \Gamma\left(L_{1} \otimes \cdots \otimes L_{m}\right)
$$

§ 1. Generality.

Let X be a projective variety, and let L be an ample invertible sheaf on X. If the canonical map $\Gamma(L)^{\otimes m} \rightarrow \Gamma\left(L^{m}\right)$ is surjective for all positive integers m, then L is called a normally generated ample invertible sheaf.

We will establish a criterion for surjectivity of the natural map $I_{m}(L) \otimes \Gamma(L)$ $\rightarrow I_{m+1}(L)$ for a normally generated ample invertible sheaf L.

Lemma 1.1. Let V be a finite dimensional vectar space, and let r be a positive integer greater than 1. Then we have

$$
\operatorname{Ker}\left[V \otimes(r+1) \rightarrow S^{r+1} V\right]=\operatorname{Ker}\left[V^{\otimes r} \rightarrow S^{r} V\right] \otimes V+V \otimes \operatorname{Ker}\left[V \otimes r \rightarrow S^{r} V\right]
$$

A proof of the lemma is easy, so we omit its proof.
Proposition 1.2. Let L be a normally generated ample invertible sheaf on a variety X. If m is a positive integer greater than 1 , then the following conditions are equivalent:
(1) $\Gamma(L) \otimes \mathscr{R}\left(L^{m-1}, L\right) \xrightarrow{\xi} \mathscr{R}\left(L^{m}, L\right)$ is surjective,
(2) $\quad \mathcal{R}(\overbrace{L, \cdots, L}^{m+1})=\mathscr{R}(\overbrace{L, \cdots, L}^{m}) \otimes \Gamma(L)+\Gamma(L) \otimes \mathcal{R}(\overbrace{L, \cdots, L}^{m})$,
(3) $\quad I_{m}(L) \otimes \Gamma(L) \xrightarrow{q} I_{m+1}(L)$ is surjective.

Proof ${ }^{(*)}$. We consider the following exact diagram

It is easy to check that $\mathcal{R}(\overbrace{L, \cdots, L}^{m+1})=\operatorname{Im}(\alpha)+\operatorname{Im}\left(\xi^{\prime}\right)$ if and only if ξ is surjective.
Next, we will prove the equivalence $(2) \Leftrightarrow(3)$. Note that the canonical map $\pi_{r}: \mathcal{R}(\overbrace{L, \cdots, L}^{r}) \rightarrow I_{r}(L)$ is surjective for any integers $r \geqq 2$. For a given $f \in I_{m+1}(L)$,
(*) The proof of the first part (1) $\Leftrightarrow(2)$, has been fairly simplified by an idea of Dr. Sekiguchi,

On the Equations Defining a Projective Curve Embedded by a Non-Special Divisor 33
We can find $s \in \mathscr{R}(\overbrace{L, \cdots, L}^{m+1})$ such that $\pi_{m+1}(s)=f$. By (2), we have $s=\sum_{i} \beta_{i} \otimes s_{i}+$ $\sum_{j} t_{j} \otimes \gamma_{j}$ for suitable elements $\beta_{i}, \gamma_{j} \in \mathscr{R}(\overbrace{L, \cdots, L}^{m})$ and $s_{i}, t_{j} \in \Gamma(L)$, so we have $\stackrel{j}{f}=q\left(\sum_{i} \pi_{m}\left(\beta_{i}\right) \otimes s_{i}+\sum_{j} \pi_{m}\left(\gamma_{j}\right) \otimes t_{j}\right)$. Hence (2) implies (3). To prove the implication (3) $\Rightarrow(2)$, it suffices to show the inclusion relation

$$
\mathscr{R}(\overbrace{L, \cdots, L}^{m+1}) \subset \mathscr{R}(\overbrace{L, \cdots, L}^{m}) \otimes \Gamma(L)+\Gamma(L) \otimes \mathcal{R}(\overbrace{L, \cdots, L}^{m}) .
$$

Let s be an element of $\mathbb{R}(\overbrace{L, \cdots, L}^{m+1})$. Then by (3), there exist $t_{j} \in \mathscr{R}(\overbrace{L, \cdots, L}^{m})$ and $s_{j} \in \Gamma(L)$ such that $\pi_{m+1}(s)=q\left(\sum_{j} \pi_{m}\left(t_{j}\right) \otimes s_{j}\right)$.
Hence

$$
s-\sum_{j} t_{j} \otimes s_{j} \in \operatorname{Ker}\left(\Gamma(L)^{\otimes(m+1)} \rightarrow S^{m+1} \Gamma(L)\right) .
$$

Since by Lemma 1.1,

$$
\begin{aligned}
& \operatorname{Ker}\left(\Gamma(L)^{\otimes\left({ }^{(+1)}\right.} \rightarrow S^{m+1} \Gamma(L)\right) \\
& =\operatorname{Ker}\left(\Gamma(L)^{\otimes m} \rightarrow S^{m} \Gamma(L)\right) \otimes \Gamma(L)+\Gamma(L) \otimes \operatorname{Ker}\left(\Gamma(L)^{\otimes^{m}} \rightarrow S^{m} \Gamma(L)\right) \\
& \subset \mathscr{R}(\overbrace{L, \cdots, L}^{m}) \otimes \Gamma(L)+\Gamma(L) \otimes \mathcal{R}(\overbrace{L, \cdots, L}^{m}),
\end{aligned}
$$

so we have

$$
s \in \mathscr{R}(\overbrace{L, \cdots, L}^{m}) \otimes I^{\prime}(L)+\Gamma(L) \otimes \mathscr{R}(\overbrace{L, \cdots, L}^{m})
$$

Corollary 1.3. Let L be a normally generated ample invertible sheaf on an n -dimensional variety X. Assume that $H^{i}\left(X, L^{j}\right)=(0)$ for any integers $i, j \geq 1$. Then the homogeneous ideal $\mathrm{I}(\mathrm{L})$ is generated by $\mathrm{I}_{2}, \cdots, \mathrm{I}_{\mathrm{n}+3}$.

Proof. By Propostion 1.2, it suffices to prove that the natural map $\Gamma(L) \otimes \mathscr{R}\left(L^{m_{-1}}, L\right) \rightarrow \mathscr{R}\left(L^{m}, L\right)$ is surjective for any integer $m \geqq n+3$. It is just the theorem of Mumford [5, Theorem 5].

Corollary 1.4. Let L be a normally generated ample invertible sheaf on a curve C. Assume that $H^{1}(C, L)=(0)$. Then $I(L)$ is generated by I_{2} and I_{3}.

Proof. By Proposition 1.2 and Corollary 1.3, it suffices to show that the natural map $\Gamma(L) \otimes \mathscr{R}\left(L^{2}, L\right) \rightarrow \mathscr{R}\left(L^{3}, L\right)$ is surjective. It is a direct consequence of the following lemma.

Lemma 1.5. (T. Fujita [1, Lemma 1.8]) Let L, M and N be invertible sheaves on a curve C. Assume that $H^{1}\left(C, M \otimes L^{-1}\right)=(0)$ and that $\Gamma(L)$ is base point free and that the natural map $\Gamma\left(M \otimes L^{-1}\right) \otimes \Gamma(N) \rightarrow \Gamma\left(M \otimes N \otimes L^{-1}\right)$ is surjective. Then the natural map $\Gamma(L) \otimes \mathscr{R}(M, N) \rightarrow \mathscr{R}(L \otimes M, N)$ is surjective.

Remark 1.6. Let L be an invertible sheaf of degree d on a curve C. If $d \geqq 2 g+1$, then L is a normally generated ample invertible sheaf with $H^{1}(C, L)=$ (0). Therefore by Corollary $1.4, I(L)$ is generated by I_{2} and I_{3},

This is another proof of the second result of Saint-Donat (c.f Introduction (2)).

§ 2. Example I.

In this section we use the word "curve" to mean a smooth curve over K. We assume that the characteristic of the ground field K is not 2 . The purpose of this section is to show that the first result of Saint-Donat (see Introduction (1)) is the best possible for each genus $g \geqq 1$, namely, there exists a curve C of genus g with invertible sheaf L on C of degree $2 g+1$ such that the homogeneous ideal $I(L)$ is not generated by $I_{2}(L)$.

Remark 2.1. Let C be a curve of genus 1 or 2 , and let L be an invertible sheaf of degree $2 g+1$ on C. Then the homogeneous ideal $I(L)$ is not generated by $I_{2}(L)$.

Indeed, C is embedded by $\Gamma(L)$ to $\boldsymbol{P}^{\mathbf{2}}$ if the genus is 1 (resp. to $\boldsymbol{P}^{\mathbf{8}}$ if the genus is 2), but the dimension of $I_{2}(L)$ is 0 if the genus is 1 (resp. is 1 if the genus is 2).

From now on, we fix a hyper-elliptic curve C of genus $g \geqq 3$. Let $K(C)$ be the function field of C. Since the characteristic of the ground field K is not 2, there exist functions $x, y \in K(C)$ such that $K(C)=K(x, y)$ with a relation

$$
y^{2}=\left(x-a_{1}\right) \cdot\left(x-a_{2}\right) \cdots\left(x-a_{2 g+1}\right) .
$$

Let P_{∞} be the closed point on C such that $x\left(P_{\infty}\right)=\infty$, and let $L=\mathcal{O}_{c}\left((2 g+1) P_{\infty}\right)$ For any divisor D on C, we regard $\mathcal{O}_{C}(D)$ as a subsheaf of $K(C)$ in the canonical way. Then we have that the $g+2$ functions

$$
\left\{1, x, \cdots, x^{g}, y\right\}
$$

forms a basis of $\Gamma(L)$ and that the $\frac{1}{2}(g+2)(g+3)$ elements

$$
\left\{\begin{array}{ccccc}
1 \odot 1 & & & & \\
1 \odot x & x \odot x & & & \\
1 \odot x^{2} & x \odot x^{2} & x^{2} \odot x^{2} & & \\
\vdots & \vdots & \vdots & & \\
1 \odot x^{g} & x \odot x^{g} & x^{2} \odot x^{g} & \cdots \cdots & x^{g} \odot x^{g} \\
1 \odot y & x \odot y & x^{2} \odot y & \cdots \cdots & x^{g} \odot y
\end{array}\right\}
$$

On the Equations Defining a Projective Curve Embedded by a Non-Special Divisor forms a basis of $S^{2} \Gamma(L)$, where the symbol \odot means a symmetric product.

Proposition 2.2. The vector space

$$
I_{2}(L)=\operatorname{Ker}\left[S^{2} \Gamma(L) \rightarrow \Gamma\left(L^{2}\right)\right]
$$

is generated by $\left\{x^{i} \odot x^{j}-x^{i-1} \odot x^{j+1} \mid 1 \leqq i \leqq j \leqq g-1\right\}$ over K.
Proof. It is easy to show that the above set is included in I_{2}. Let V be a subspace of I_{2} generated by the above set, and let W be asubspace of $S^{2} \Gamma(L)$ generated by the following elements:

$$
\left\{\begin{array}{llll}
1 \odot 1 & 1 \odot x, & \cdots \cdots, & 1 \odot x^{g} \\
x \odot x^{g} & x^{2} \odot x^{g}, & \cdots \cdots, & x^{g} \odot x^{g} \\
1 \odot y & x \odot y, & \cdots \cdots, & x^{g} \odot y \\
y \odot y & & &
\end{array}\right\}
$$

Then the natural map $W \rightarrow S^{2} \Gamma(L) / V$ is surjective. Indeed, if $i \leqq g-j$, then

$$
x^{i} \odot x^{j} \equiv x^{i-1} \odot x^{j+1} \equiv \cdots \cdots \equiv 1 \odot x^{j+i} \quad \bmod . \quad V,
$$

and if $i>g-j$, then

$$
x^{i} \odot x^{j} \equiv x^{i+1} \odot x^{j-1} \equiv \cdots \cdots \equiv x^{i+j-q} \odot x^{g} \quad \text { mod. } \quad V .
$$

Hence we have $\operatorname{dim}\left[S^{2} \Gamma(L)\right]-\operatorname{dim}(V) \leqq \operatorname{dim}(W)$, so we have

$$
\operatorname{dim}(V) \geqq \frac{1}{2} g(g-1)=\operatorname{dim}\left(I_{2}\right) .
$$

Since $I_{2} \supset V$, we have $I_{2}=V$. Q.E.D.
Corollary 2.3. Let $\left\{X_{0}, X_{1}, \cdots, X_{g}, Y\right\}$ be a homogeneous coordinate of the projective space $\boldsymbol{P}^{g_{+1}}$ corresponding to a basis $\left\{1, x, \cdots, x^{g}, y\right\}$ of $\Gamma(L)$. Then the vector space of quadrics vanishing on $\phi_{L}(C)$ is generated by the quadrics

$$
\left\{X_{i} X_{j}-X_{i-1} X_{j+1} \mid 1 \leqq i \leqq j \leqq g-1\right\}
$$

over K.
Example 2.4. Let (C, L) be the above curve with invertible sheaf. Then the degree L is $2 g+1$, but the homogeneous ideal $I(L)$ is not generated by $I_{2}(L)$.

In fact, if the homogeneous ideal $I(L)$ is generated by I_{2}, then

$$
\phi_{L}(C)=\bigcap_{1 \leq i \leq j \leq g-1} V\left(X_{i} X_{j}-X_{i-1} X_{j+1}\right)
$$

by Corollary 2.3, where $V\left(X_{i} X_{j}-X_{i-1} X_{j+1}\right)$ is the set of zeros of $X_{i} X_{j}-X_{i-1} X_{j+1}$ in \boldsymbol{P}^{g+1}. Let H be the linear subvariety of \boldsymbol{P}^{g+1} defined by the equations:

$$
X_{0}-X_{1}, X_{1}-X_{2}, \cdots, X_{g-1}-X_{g}
$$

Then $H \cong \boldsymbol{P}^{1}$, and

$$
H \subset \bigcap_{1 \leq i \leq j \leq 0-1} V\left(X_{i} X_{j}-X_{i-1} X_{j+1}\right)
$$

Hence we have $H=\phi_{L}(C)$, because $H \subset \phi_{L}(C)$ and $\phi_{L}(C)$ is irreducible. This contradicts $g \geqq 1$.

§ 3. Example II.

We continue assuming that the characteristic of the ground field K is not 2 and that a "curve" means a smooth curve over K.

In this section we will show that there are many examples of curves of genus g with invertible sheaf of degree $2 g$ on which Corollary 1.4 works effectively. Note that since the degree of L is $2 g$, the condition $H^{1}(C, L)=(0)$ in Corollary 1.4 is automatically satisfied. Therefore our problem is reduced to constructing many curves of genus g which have a normally generated ample invertible sheaf of degree $2 g$.

Proposition 3.1. Let C be a curve of genus $g \geqq 5$. Suppose that there exists an invertible sheaf M of degree $g-1$ on C such that $\Gamma(M)$ is a base point free pencil. Then almost all invertible sheaves of degree $2 g$ on C are ample with normal generation.

The following lemma, B. Saint-Donat [8] called it "base point free pencil trick", plays an important role in the proof of our proposition.

Lemma 3.2. (Mumford [5, p. 57], Saint-Donat [8, Lemma 2.6]) Let M and N be invertible sheaves on a curve. Suppose that $\Gamma(M)$ is a base point free pencil. Then we have an isomorphism

$$
\operatorname{Ker}[\Gamma(M) \otimes \Gamma(N) \rightarrow \Gamma(M \otimes N)] \cong \Gamma\left(N \otimes M^{-1}\right)
$$

We will use the following notation.
$\operatorname{Pic}^{d}(C)$: the connected component of the Picard scheme of C whose member represents an invertible sheaf of degree d,
G_{d}^{r} : the closed subvariety of $\operatorname{Pic}^{d}(C)$ representing the set of invertible sheaves of degree d and of projective dimension $\geqq r$,
F_{d}^{r} : the closed subvariety of $\operatorname{Pic}^{d}(C)$ defined by the image of the morphism

$$
G_{d-1}^{r} \times C \ni(L, P) \longrightarrow L(P) \in \operatorname{Pic}^{d}(C)
$$

(if $G_{d-1}^{r}=\phi$, then F_{d}^{r} means the void subset).
Note that $F_{d}^{r} \subset G_{d}^{r}$ and that if $r \geqq 1$, the set $G_{d}^{r}-F_{d}^{r}$ represents the set of in- vertible sheaves free from base points, of degree d and of proejctive dimension r.

Proof of Proposition 3.1. There exists an invertible sheaf M_{0} of degree $g-1$ such that $\Gamma\left(M_{0}\right)$ is a base point free pencil and $M_{0}^{2} \neq \omega$, where ω is the canonical sheaf on C. Indeed, since $G_{g_{-1}}^{1}-F_{g-1}^{1}$ is non-empty open in $G_{g_{-1}}^{1}$ by our assumption and since

$$
\operatorname{dim} G_{g-1}^{1} \geqq g-4 \geqq 1 \quad[4, \text { Theorem 1], }
$$

$G_{g-1}^{1}-F_{g-1}^{1}$ has infinitely many elements. So there exists such an invertible sheaf. We put

$$
\begin{aligned}
& V=G_{g+1}^{1}-F_{g+1}^{1}=\operatorname{Pic}^{g+1}(C)-F_{g+1}^{1}, \text { and } \\
& U=\left\{N \otimes M_{0} \mid N \epsilon V\right\} \subset \operatorname{Pic}^{2 \sigma}(C) .
\end{aligned}
$$

Obviously, V is non-empty open in $\mathrm{Pic}^{g+1}(C)$. Hence U is non-empty open in $\operatorname{Pic}^{2 g}(C)$. We will show that any invertible sheaf in U is ample with normal generation. Let L be an invertible sheaf in U. By the generalized lemma of Castelnuvo [5, Theorem 2], we have natural map $\Gamma\left(L^{m}\right) \otimes \Gamma(L) \rightarrow \Gamma\left(L^{m+1}\right)$ is surjective for $m \geqq 2$. Therefore it suffices to show that the natural map $\Gamma(L) \otimes \Gamma(L)$ $\rightarrow \Gamma\left(L^{2}\right)$ is surjective. Consider the commutative diagram

where ψ_{1} is the natural map $\Gamma\left(M_{0}\right) \otimes \Gamma(L) \rightarrow \Gamma\left(M_{0} \otimes L\right) . \quad$ By Lemma 3.2, we have $\operatorname{Ker} \psi_{1} \cong \Gamma\left(L \otimes M_{0}^{-1}\right)$ and $\operatorname{Ker} \psi_{2} \cong \Gamma\left(M_{0}^{2}\right)$. Therefore we have

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{Ker} \psi_{1}\right)=\operatorname{dim}\left[\Gamma\left(L \otimes M_{0}^{-1}\right)\right]=2, \\
& \operatorname{dim}\left[\Gamma\left(M_{0}\right) \otimes \Gamma(L)\right]=2(g+1), \\
& \operatorname{dim}\left[\Gamma\left(M_{0} \otimes L\right)\right]=2 g, \\
& \left.\operatorname{dim}\left(\operatorname{Ker} \psi_{2}\right)=\operatorname{dim}\left[\Gamma\left(M_{0}^{2}\right)\right]=g-1 \quad \text { (Note that } M_{0}^{2} \neq \omega\right), \\
& \operatorname{dim}\left[\Gamma\left(L \otimes M_{0}^{-1}\right) \otimes \Gamma\left(M_{0} \otimes L\right)\right]=4 g \quad \text { and } \\
& \operatorname{dim}\left[\Gamma\left(L^{2}\right)\right]=3 g+1 .
\end{aligned}
$$

Hence ψ_{1} and ψ_{2} are surjective, and hence the natural map $\Gamma(L) \otimes \Gamma(L) \rightarrow \Gamma\left(L^{2}\right)$ is surjective. Q.E.D.

Next, we will give a sufficient condition for a curve to have an invertible sheaf M of degree $g-1$ such that $\Gamma(M)$ is a base point free pencil. Our result on it is a direct consequence of the following theorem of Martens and Mumford.

Theorem of Martens and Mumford [6, Appendix]. Let C be a curve of genus $g \geqq 5$. Then there exists integer $d, 3 \leqq d \leqq g-2$, such that $\operatorname{dim} G_{d}^{1} \geqq d-3$ if
and only if C is hyperelliptic, or trigonal, or double covering of an elliptic curve ($g \geqq 6$), or non-singular plane quintic.

Proposition 3.3. Let C be a curve of genus $g \geqq 5$ neither hyperelliptic, nor trigonal, nor double covering of an elliptic curve ($g \geqq 6$), nor non-singular plane quintic. Then there exists an invertible sheaf M of degree $g-1$ on C such that $\Gamma(M)$ is a base point free pencil.

Proof. We must prove that $G_{g-1}^{1}-F_{g-1}^{1} \neq \phi$ in our case. For this, it suffices to show that $\operatorname{dim} G_{g-1}^{1}>\operatorname{dim} F_{g-1}^{1}$. By the results of Martens, Kleiman and Laksov [4, Theorem 1 and 3, Theorem 5], we have

$$
\begin{aligned}
& g-3 \geqq \operatorname{dim} G_{g-1}^{1} \geqq g-4, \text { and } \\
& g-4 \geqq \operatorname{dim} G_{g-2}^{1} \geqq g-6 .
\end{aligned}
$$

Note that if $G_{g-2}^{1} \neq \phi$, then

$$
\operatorname{dim} F_{g-1}^{1}=\operatorname{dim} G_{g-2}^{1}+1 \quad[4, \text { p. 115] }
$$

and that if $G_{g-2}^{1}=\phi$, then $F_{g-1}^{1}=\phi$. Suppose that $\operatorname{dim} G_{g-1}^{1}=\operatorname{dim} F_{g-1}^{1}$. Then $\operatorname{dim} G_{g-2}^{1} \geqq g-5$. This contradicts the theorem of Martens and Mumford. Q.E.D.

Finally, we state an elementary remark relative to our topic.
Remark 3.4. If C is a curve of genus $g \geqq 4$, then there exists a non-special very ample invertible sheaf on C which is not normally generated.

Indeed, for a non-special normally generated ample invertible sheaf L, we have

$$
\operatorname{deg} L \geqq g+\frac{1}{2}+\sqrt{2 g+\frac{1}{4}}
$$

because $\operatorname{dim} S^{2} \Gamma(L) \geqq \operatorname{dim} \Gamma\left(L^{2}\right)$. On the other hand, by the theorem of Halphen [2, Theorem 1.2], there exists a non-special very ample invertible sheaf of degree d, if $d \geqq g+3$.

References

[1] Fujita, T., Defining equations for certein types of polarized varieties, Complex analysis and algebraic geometry, Iwanami-Shoten and Cambridge Univ. press, Tokyo-Cambridge (1977), 165-173.
[2] Hartshorne, R., Classification of curves in \boldsymbol{P}^{3} and related topics (in Japanese), Lecture note at Kyoto Univ. (1977).
[3] Kleiman, S.L. and Laksov, D., Another proof of the existence of special divisors, Acta Math. 132 (1974), 163-176.
[4] Martens, H. H., On the varieties of special divisors on a curve, J. Reine Angew. Math. 227 (1967), 111-120.

On the Equations Defining a Projective Curve Embedded by a Non-Special Divisor 39
[5] Mumford, D., Varieties defind by quadratic equations, Questioni sulle varieta algebriche, Corsi dal C.I. M.E., Cremonse, Rome (1969), 29-100.
[6] , Prym varieties I, Contributions to analysis, Academic Press, New York (1974), 325-350.
[7] Saint-Donat, B., Sur les équation définissant une courbe algebrique, C. R. Acad. Sci. Paris 274 (1972), 324-327 and 487-489.
[8] - On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157-175.

Institute of Mathematics
University of Tsukuba

