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ON THE EQUATIONS DEFINING A PROJECTIVE CURVE
EMBEDDED BY A NON-SPECIAL DIVISOR

By
Masaaki HOMMA

Introduction. Let $C$ be a complete reduced irreducible curve of arithmetic
genus $g$ over an algebraically closed field $K$ Let $L$ be a very ample invertible
sheaf of degree $d$ on $C$, and let $\phi_{L}$ : $C\subset P^{h^{0}(L)-1}$ be the projective embedding by
means of a basis of $\Gamma(L)$ . Then the following results are known:

(A) Assume that $C$ is smooth over $K$

(0) (D. Mumford [5]) $L$ is normally generated, if $d\geq 2g+1$ .
(1) (B. Saint-Donat [7]) The largest homogeneous ideal $I$ defining $\phi_{L}(C)$ , i.e.,

$I=Ker[S\Gamma(L)\rightarrow\bigoplus_{m\geq 0}\Gamma(L^{m})]$ , is generated by its elements of deree 2, if
$d\geq 2g+2$ .

(2) (B. Saint-Donat [7]) $I$ is generated by its elements of degree 2 and 3,
if $d\geq 2g+1$ .

(B) (T. Fujita [1]) The statements (0) and (1) in (A) are true without the
assumption that $C$ is smooth over $K$

The purposes of the present paper are that we improve the second result (2)

of Saint-Donat and that we construct some related examples (corollary 1.4, Exam-
ple 2.4 and Proposition 3.1).

Notation and Terminology. We fix an algebraically closed field $K$ of charac-
teristic $p\geqq 0$ throughout the paper. We use the word “variety” to mean a reduc-
ed irreducible scheme of finite type and proper over $K$, and ”curve” to mean a
variety of dimention 1.

For a finite dimensional vector space $V$ over $K,$ $S^{m}V$ means the m-th sym-
metric power of $V$ and $SV$ means the symmetric algebra of $V,$ $i.e.,$

$SV=\bigoplus_{m\geq 0}S^{m}V$ .
Let $L$ be an invertible sheaf on a projective variety $X$ We denote by $L^{m}$

the m-th tensor product $L^{\otimes m}$ . For the vector space of global sections $\Gamma(L)$ , we
define $I$ and $I_{m}(m\geqq 1)$ , by

$I=I(L)=Ker[S\Gamma(L)\rightarrow\bigoplus_{m\geqq 0}\Gamma(L^{m})]$ ,

and
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$I_{m}=I_{m}(L)=Ker[S^{m}\Gamma(L)\rightarrow\Gamma(L^{m})]$ .
Let $L_{1}$ , $\cdot$ .., $L_{m}$ be invertible sheaves on $X$ Then $9\mathfrak{i}(L_{1}, \cdots L_{m})$ means the

kernel of the natural map:

$\Gamma(L_{1})\otimes\cdots\otimes\Gamma(L_{m})\rightarrow\Gamma(L_{1}\otimes\cdots\otimes L_{m})$ .

\S 1. Generality.

Let $X$ be a projective variety, and let $L$ be an ample invertible sheaf on $X$

If the canonical map $\Gamma(L)^{\otimes m}\rightarrow\Gamma(L^{m})$ is surjective for all positive integers $m$ , then
$L$ is called a normally generated ample invertible sheaf.

We will establish a criterion for surjectivity of the natural map $I_{m}(L)\otimes\Gamma(L)$

$\rightarrow I_{m+1}(L)$ for a normally generated ample invertible sheaf $L$ .

LEMMA 1.1. Let $V$ be a finite dimensional vectar space, and let $r$ be a posi-
live integer greater than 1. Then we have

$Ker[V^{\otimes(r+\iota)}\rightarrow S^{r+1}T\eta=Ker[V^{\otimes r}\rightarrow S^{r}V]\otimes V+V\otimes Ker[V\otimes r\rightarrow S^{r}V]$ .
A proof of the lemma is easy, so we omit its proof.

PROPOSITION 1.2. Let $L$ be a normalfy generated ample invertible sheaf on a
variety X If $m$ is a positive inleger greater than 1, then the following conditions
are equivalent:

(1) $\Gamma(L)\otimes\Re(L^{m-1}, L)\rightarrow^{\epsilon}\Re(L^{m}, L)$ is surjective,
$\underline{m+1}$ $\underline{m}$ $\underline{m}$

(2) $\Re(L, \cdots, L)=R(L, \cdots, L)\otimes\Gamma(L)+\Gamma(L)\otimes\Re(L, \cdots, L)$ ,

(3) $I_{m}(L)\otimes\Gamma(L)\rightarrow^{q}I_{m+1}(L)$ is surjective.

PROOF. We consider the following exact diagram

$0\rightarrow R(\frac{m}{L}L)\otimes\Gamma(L)\rightarrow\alpha 9\mathfrak{i}(\cdot.\cdot.\cdot,L)-R(,L)\rightarrow()\Gamma(L)\otimes\Re(\cdot,L)\rightarrow\Gamma(L)\otimes\Re^{L_{(L^{\xi},L)\rightarrow 0}^{m_{\dagger_{m-1}}}}\frac{\frac{m+1}{L,m\uparrow\xi^{\prime}}}{L,0\uparrow}$

It is easy to check that
$\Re(\frac{m+1}{L,\cdots,L})=Im(\alpha)+Im(\xi^{\prime})$ if and only if $\xi$ is surjective.

Next, we will prove the equivalence (2) $\Leftrightarrow(3)$ . Note that the canonical map

$\pi_{r}$ ; $9t()\frac{r}{L,\cdots,L}\rightarrow I_{r}(L)$ is surjective for any integers $r\geqq 2$ . For a given $f\in I_{m+1}(L)$ ,

(*) The proof of the first part (1) $\Leftarrow\Rightarrow(2)$ , has been fairly simplified by an idea of Dr. Seki-
guchi,
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We can find $s\in 9\mathfrak{i}(\frac{m+1}{L,\cdots,L})$

such that $\pi_{m+1}(s)=f$ . By (2), we have $s=\sum_{i}\beta_{i}\otimes s_{t}+$

$\sum_{j}t_{J}\otimes\gamma j$ for suitable elements $\beta_{i},$

$\gamma j\in R(\frac{m}{L,\cdots,L})$ and $s_{i},$ $t_{j}\in\Gamma(L)$ , so we have
$f=q(\sum_{i}\pi_{m}(\beta_{i})\otimes s_{i}+\sum_{j}\pi_{m}(\gamma J)\otimes t_{j})$ . Hence (2) implies (3). To prove the implication

(3) $\Rightarrow(2)$ , it suffices to show the inclusion relation

$9(\frac{m+1}{L,\cdots,L})\subset 9\iota(\frac{m}{L}L)\otimes\Gamma(L)+\Gamma(L)\otimes 9\mathfrak{i}(\frac{m}{L}L)$ .

Let $s$ be an element of $9t(\frac{m+1}{L,\cdots,L})$ . Then by (3), there exist $t_{j}\in 9\mathfrak{i}(\frac{m}{L,\cdots,L})$

and $s_{j}\in\Gamma(L)$ such that $\pi_{m+1}(s)=q(\sum_{j}\pi_{m}(t_{j})\otimes s_{J})$ .
Hence

$s-\sum_{j}t_{j}\otimes s_{j}\in Ker(\Gamma(L)^{\otimes(m+1)}\rightarrow S^{m+1}\Gamma(L))$ .

Since by Lemma 1.1,

$Ker(\Gamma(L)^{\otimes(+1)}m\rightarrow S^{m+I}\Gamma(L))$

$=Ker(\Gamma(L)^{\otimes m}\rightarrow S^{m}\Gamma(L))\otimes\Gamma(L)+\Gamma(L)\otimes Ker(\Gamma(L)^{\otimes^{m}}\rightarrow S^{m}\Gamma(L))$

$\subset 9i(\frac{m}{L,\cdots,L})\otimes\Gamma(L)+\Gamma(L)\otimes 9\mathfrak{i}(\frac{m}{L,\cdots,L})$ ,

so we have

$s\in\Re(\frac{m}{L}L)\otimes l’(L)+I’(L)\otimes \mathfrak{R}(\frac{m}{L}L)$ . Q.E.D.

COROLLARY 1.3. Let $L$ be a normally generated ample invertible sheaf on an
n-dimensional variety X Assume that $H^{i}(X, L^{j})=(0)$ for any integers $i,$ $j\geq 1$ . Then
the homogeneous ideal I(L) is generated by $I_{2},$

$\cdots,$
$I_{n+3}$ .

PROOF. By Propostion 1.2, it suffices to prove that the natural map
$\Gamma(L)\otimes 9\mathfrak{i}(L^{m-1}, L)\rightarrow R(L^{m}, L)$ is surjective for any integer $m\geqq n+3$ . It is just the
theorem of Mumford [5, Theorem 5].

COROLLARY 1.4. Let $L$ be a normally generated ample invertible sheaf on a
curve C. Assume that $H^{1}(C, L)=(0)$ . Then $I(L)$ is generated by $I_{2}$ and $I_{3}$ .

PROOF. By Proposition 1.2 and Corollary 1.3, it suffices to show that the
natural map $\Gamma(L)\otimes\Re(L^{2}, L)\rightarrow\Re(L^{3}, L)$ is surjective. It is a direct consequence
of the following lemma.

LEMMA 1.5. (T. Fujita [1, Lemma 1.8]) Let $L,$ $M$ and $N$ be invertible sheaves
on a curve C. Assume that $H^{1}(C, M\otimes L^{-1})=(0)$ and that $\Gamma(L)$ is base point free
and that the natural map $\Gamma(M\otimes L^{-1})\otimes\Gamma(N)\rightarrow\Gamma(M\otimes N\otimes L^{-1})$ is surjective. Then $lhe$

natural map $\Gamma(L)\otimes\Re(M, N)\rightarrow\Re(L\otimes M, N)$ is surjective.
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REMARK 1.6. Let $L$ be an invertible sheaf of degree $d$ on a curve $C$. If
$d\geqq 2g+1$ , then $L$ is a normally generated ample invertible sheaf with $H^{1}(C, L)=$

(0). Therefore by Corollary 1.4, $I(L)$ is generated by $I_{2}$ and $I_{3}$ ,

This is another proof of the second result of Saint-Donat (c.f Introduction (2)).

\S 2. Example I.

In this section we use the word “curve” to mean a smooth curve over $K$

We assume that the characteristic of the ground field $K$ is not: 2. The purpose
of this section is to show that the first result of Saint-Donat (see Introduction (1))

is the best possible for each genus $g\geqq 1$ , namely, there exists a curve $C$ of genus
$g$ with invertible sheaf $L$ on $C$ of degree $2g+1$ such that the homogeneous ideal
$I(L)$ is not generated by $I_{2}(L)$ .

REMARK 2.1. Let $C$ be a curve of genus 1 or 2, and let $L$ be an invertible
sheaf of degree $2g+1$ on $C$. Then the homogeneous ideal $I(L^{\backslash },|$ is not generated
by $I_{2}(L)$ .

Indeed, $C$ is embedded by $\Gamma(L)$ to $P^{2}$ if the genus is 1 (resp. to $P^{3}$ if the
genus is 2), but the dimension of $I_{2}(L)$ is $0$ if the genus is 1 (resp. is 1 if the
genus is 2).

From now on, we fix a hyper-elliptic curve $C$ of genus $g\geqq 3$ . Let $K(C)$ be
the function field of $C$ . Since the characteristic of the ground field $K$ is not 2,

there exist functions $x,$ $y\in K(C)$ such that $K(C)=K(x, y)$ with a relation

$y^{2}=(x-a_{1})\cdot(x-a_{2})\cdots(x-a_{2q+1})$ .

Let $P_{\infty}$ be the closed point on $C$ such that $ x(P_{\infty})=\infty$ , and let $L=\mathcal{O}_{C}((2g+1)P_{\infty})$

For any divisor $D$ on $C$, we regard $\mathcal{O}_{C}(D)$ as a subsheaf of $K(C)$ in the canonical
way. Then we have that the $g+2$ functions

$\{1, x, \cdots, x^{\sigma}, y\}$

forms a basis of $\Gamma(L)$ and that the $\frac{1}{2}(g+2)(g+3)$ elements

$\{1^{X}1_{x_{q}^{2}}111\dot{}x1y$

$xx_{q}^{2}xxx\dot{}xxy$

$x_{2}\dot{}xxyx_{2^{2}}x_{q^{2}}.\cdot.\cdot..\cdot.\cdot.\cdot x^{q}^{X}x^{q}_{y^{q}}yy$

$\ovalbox{\tt\small REJECT}$
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forms a basis of $S^{2}\Gamma(L)$ , where the symbol $ $ means a symmetric product.

PROPOSITION 2.2. The vector space
$I_{2}(L)=Ker[S^{2}\Gamma(L)\rightarrow\Gamma(L^{2})]$

is generated by $\{x^{i}x^{j}-x^{i-1}x^{j+1}|1\leqq i\leqq j\leqq g-1\}$ over $K$

PROOF. It is easy to show that the above set is included in $I_{2}$ . Let $V$ be a
subspace of $I_{2}$ generated by the above set, and let $W$ be asubspace of $S^{2}\Gamma(L)$

generated by the following elements:

$\{yy1yxx^{g}11$

$x^{2}x^{q}xy1x$

,

. $\ldots..$ ,
$x^{\sigma}y^{g}x^{q}x^{q}1x\}$

Then the natural map $W\rightarrow S^{2}\Gamma(L)/V$ is surjective. Indeed, if $i\leqq g-j$ , then

$x^{i}x^{j}\equiv x^{i-1}x^{j+1}\equiv\cdots\cdots\equiv 1x^{j+i}$ $mod$ . $V$,

and if $i>g-j$ , then

$x^{i}x^{j}\equiv x^{i+1}x^{j-1}\equiv\cdots\cdots\equiv x^{i+j-q}x^{q}$ $mod$ . $V$.
Hence we have $\dim[S^{2}\Gamma(L)]-\dim(V)\leqq\dim(W)$ , so we have

$\dim(V)\geqq\frac{1}{2}g(g-1)=\dim(I_{2})$ .
Since $I_{2}\supset V$, we have $I_{2}=V$. Q.E.D.

COROLLARY 2.3. Let $\{X_{0}, X_{1}, \cdots, X_{q}, Y\}$ be a homogeneous coordinate of the
projective space $P^{g+1}$ corresponding to a basis $\{1, x, \cdots, x^{g}, y\}$ of $\Gamma(L)$ . Then the
vector space of quadrics vanishing on $\phi_{L}(C)$ is generated by the quadrics

$\{X_{i}X_{j}-X_{i-1}X_{j+1}|1\leqq i\leqq j\leqq g-1\}$

over $K$

EXAMPLE 2.4. Let $(C, L)$ be the above curve with invertible sheaf. Then
the degree $L$ is $2g+1$ , but the homogeneous ideal $I(L)$ is not generated by $I_{2}(L)$ .

In fact, if the homogeneous ideal $I(L)$ is generated by $I_{2}$ , then

$\phi_{L}(C)=$ $\cap$ $V(X_{i}X_{j}-X_{i-1}X_{j+1})$

$1\xi i\leq j\leq q-1$

by Corollary 2.3, where $V(X_{i}X_{j}-X_{i-1}X_{j+1})$ is the set of zeros of $X_{i}X_{j}-X_{i-1}X_{j+1}$

in $P^{g+1}$ . Let $H$ be the linear subvariety of $P^{g+1}$ defined by the equations:

$X_{0}-X_{1},$ $X_{1}-X_{2}$ , $\cdot$ .., $X_{q-1}-X_{q}$ .
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Then $H\cong P^{1}$ , and

$H\subset\bigcap_{1\leq\iota\leq J\leq q-1}V(X_{i}X_{j}-X_{i-1}X_{j+1})$ .

Hence we have $H=\phi_{L}(C)$ , because $H\subset\phi_{L}(C)$ and $\phi_{L}(C)$ is irreducible. This con-
tradicts $g\geqq 1$ .

\S 3. Example II.

We continue assuming that the characteristic of the ground field $K$ is not 2
and that a ”curve” means a smooth curve over $K$

In this section we will show that there are many examples of curves of
genus $g$ with invertible sheaf of degree $2g$ on which Corollary 1.4 works effec-
tively. Note that since the degree of $L$ is $2g$ , the condition $H^{1}(C, L)=(O)$ in
Corollary 1.4 is automatically satisfied. Therefore our problem is reduced to
constructing many curves of genus $g$ which have a normally generated ample

invertible sheaf of degree $2g$ .

PROPOSITION 3.1. Let $C$ be a curve of genus $g\geqq 5$ . Suppose that there exists
an invertible sheaf $M$ of degree $g-1$ on $C$ such lhat $\Gamma(M)$ is a base point free
pencil. Then almost all invertible sheaves of degree $2g$ on $C$ are ample with normal
generation.

The following lemma, B. Saint-Donat [8] called it “base point free pencil

trick”, plays an important role in the proof of our proposition.

LEMMA 3.2. (Mumford [5, p. 57], Saint-Donat [8, Lemma 2.6]) Let $M$ and $N$

be invertible sheaves on a curve. Suppose that $\Gamma(M)$ is a base point free pencil.

Then we have an isomorphism

$Ker[\Gamma(M)\otimes\Gamma(N\gamma\rightarrow\Gamma(M\otimes N)1\cong\Gamma(N\otimes M^{-1})$ .

We will use the following notation.
Pic $(C)$ : the connected component of the Picard scheme of $(^{\neg}$ whose member

represents an invertible sheaf of degree $d$,
$G_{d}^{r}$ : the closed subvariety of Pic $(C)$ representing the set of invertible sheaves

of degree $d$ and of projective dimension $\geqq r$,
$F_{d}^{r}$ : the closed subvariety of Pic $(C)$ defined by the image of the morphism

$G_{d-1}^{r}\times C\ni(L, P)\rightarrow L(P)\in Pic^{d}(C)$

(if $ G_{d-1}^{r}=\phi$ , then $F_{d}^{r}$ means the void subset).

Note that $F_{d}^{r}\subset G_{d}^{r}$ and that if $r\geqq 1$ , the set $G_{d}^{r}-F_{d}^{r}$ represents the set of in-
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vertible sheaves free from base points, of degree $d$ and of proejctive dimension $r$.

PROOF OF PROPOSITION 3.1. There exists an invertible sheaf $M_{0}$ of degree
$g-1$ such that $\Gamma(M_{0})$ is a base point free pencil and $ M_{0}^{2}\neq\omega$ , where $\omega$ is the ca-
nonical sheaf on $C$. Indeed, since $G_{g-1}^{1}-F_{l-1}^{1}$ is non-empty open in $G_{q-1}^{1}$ by our
assumption and since

$\dim G_{\sigma-1}^{1}\geqq g-4\geqq 1$ [4, Theorem 1],

$G_{g-1}^{1}-F_{g^{1}-1}$ has infinitely many elements. So there exists such an invertible sheaf.
We put

$V=G_{q+1}^{1}-F_{q^{1}+1}=Pic^{q+1}(C)-F_{q+1}^{1}$ , and
$U=\{N\otimes M_{0}|N\in V\}\subset Pic^{2q}(C)$ .

Obviously, $V$ is non-empty open in $Pic^{q+1}(C)$ . Hence $U$ is non-empty open in
$Pic^{2g}(C)$ . We will show that any invertible sheaf in $U$ is ample with normal
generation. Let $L$ be an invertible sheaf in $U$. By the generalized lemma of
Castelnuvo [5, Theorem 2], we have natural map $\Gamma(L^{m})\otimes\Gamma(L)\rightarrow\Gamma(L^{m+1})$ is surjec-
tive for $m\geqq 2$ . Therefore it suffices to show that the natural map $\Gamma(L)\otimes\Gamma(L)$

$\rightarrow\Gamma(L^{2})$ is surjective. Consider the commutative diagram

$\Gamma(L\otimes M_{0}^{-1})\otimes\Gamma(M_{0})\otimes\Gamma(L)\rightarrow\Gamma(L\otimes M_{0^{-1}})\otimes\Gamma(M_{0}\otimes L)1\emptyset 1$

$\downarrow$ $\downarrow\phi_{2}$

$\Gamma(L)\otimes\Gamma(L)$ $\rightarrow\Gamma(L^{2})$ ,

where $\psi_{1}$ is the natural map $\Gamma(M_{0})\otimes\Gamma(L)\rightarrow\Gamma(M_{0}\otimes L)$ . By Lemma 3.2, we have
$Ker\psi_{1}\cong\Gamma(L\otimes M_{0}^{-1})$ and $Ker\psi_{2}\cong\Gamma(M_{0}^{2})$ . Therefore we have

$\dim(Ker\psi_{1})=\dim[\Gamma(L\otimes M_{0}^{-1})]=2$ ,
$\dim[\Gamma(M_{0})\otimes\Gamma(L)]=2(g+1)$ ,
$\dim[\Gamma(M_{0}\otimes L)]=2g$ ,
$\dim(Ker\psi_{2})=\dim[\Gamma(M_{0}^{2})]=g-1$ (Note that $ M_{0}^{2}\neq\omega$),
$\dim[\Gamma(L\otimes M_{0}^{-1})\otimes\Gamma(M_{0}\otimes L)]=4g$ and
$\dim[\Gamma(L^{2})]=3g+1$ .

Hence $\psi_{1}$ and $\psi_{2}$ are surjective, and hence the natural map $\Gamma(L)\otimes\Gamma(L)\rightarrow\Gamma(L^{2})$ is
surjective. Q.E.D.

Next, we will give a sufficient condition for a curve to have an invertible
sheaf $M$ of degree $g-1$ such that $\Gamma(M)$ is a base point free pencil. Our result
on it is a direct consequence of the following theorem of Martens and Mumford.

THEOREM OF MARTENS AND MUMFORD [6, Appendix]. Let $C$ be a curve of
genus $g\geqq 5$ . Then there exists integer $d,$ $3\leqq d\leqq g-2$ , such thal $\dim G_{d}^{1}$ lil $d-3$ if



38 Masaaki HOMMA

and only if $C$ is hyperelliptic, or trigonal, or double covering of an elliptic curve
$(q\geqq 6)$ , or non-singular plane quintic.

PROPOSITION 3.3. Let $C$ be a curve of genus $g\geqq 5$ neither hyperelliptic, nor
trigonal, nor double covering of an elliptic curve $(q\geqq 6)$ , nor non-singular plane

quintic. Then there exists an invertible sheaf $M$ of degree $g-1$ on $C$ such that
$\Gamma(M)$ is a base point free pencil.

PROOF. We must prove that $ G_{q-1}^{1}-F_{q-1}^{1}\neq\phi$ in our case. For this, it suffices
to show that $\dim G_{q-\iota}^{1}>\dim F_{q^{1}-1}$ . By the results of Martens, Kleiman and
Laksov [4, Theorem 1 and 3, Theorem 5], we have

$g-3\geqq\dim G_{q-1}^{1}\geqq g-4$ , and
$g-4\geqq\dim G_{q-2}^{1}\geqq g-6$ .

Note that if $ G_{q-2}^{1}\neq\phi$ , then

$\dim F_{g-1}^{1}=\dim G_{q-2}^{1}+1$ [4, p. 115]

and that if $ G_{q-2}^{1}=\phi$ , then $ F_{q-1}^{1}=\phi$ . Suppose that $\dim G_{q-1}^{1}=\dim F_{g-1}^{1}$ . Then
$\dim G_{q-2}^{1}\geqq q-5$ . This contradicts the theorem of Martens and Mumford. Q.E.D.

Finally, we state an elementary remark relative to our topic.

REMARK 3.4. If $C$ is a curve of genus $g\geqq 4$ , then there exists a non-special

very ample invertible sheaf on $C$ which is not normally generated.
Indeed, for a non-special normally generated ample invertible sheaf $L$ , we have

$\deg L\geqq g+\frac{1}{2}+\sqrt{2g+\frac{1}{4}}$

because $\dim \mathscr{S}\Gamma(L)\geqq\dim\Gamma(L^{2})$ . On the other hand, by the theorem of Halphen
[2, Theorem 1.2], there exists a non-special very ample invertible sheaf of degree
$d$, if $d\geqq g+3$ .
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