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ON THE EQUATIONS DEFINING A PROJECTIVE CURVE
EMBEDDED BY A NON-SPECIAL DIVISOR

By
Masaaki HomMmAa

Introduction. Let C be a complete reduced irreducible curve of arithmetic
genus ¢ over an algebraically closed field K. Let L be a very ample invertible
sheaf of degree d on C, and let ¢r: CGP*®&-! he the projective embedding by
means of a basis of I'(L). Then the following results are known:

(A) Assume that C is smooth over K.
(0) (D. Mumford [5]) L is normally generated, if d>2¢+1.
(1) (B. Saint-Donat [7]) The largest homogeneous ideal / defining ¢.(C), i.e.,
I=Ker[SI'(L) -»m@o I’'(L™)], is generated by its elements of deree 2, if

d>2g9+2.
(2) (B. Saint-Donat I is generated by its elements of degree 2 and 3,
if d>2g+1.

(B) (T. Fujita The statements (0) and (1) in (A) are true without the
assumption that C is smooth over K.

The purposes of the present paper are that we improve the second result (2)
of Saint-Donat and that we construct some related examples (corollary 1.4, Exam-
ple 2.4 and Proposition 3.1).

Notation and Terminology. We fix an algebraically closed field K of charac-
teristic p=0 throughout the paper. We use the word “variety” to mean a reduc-
ed irreducible scheme of finite type and proper over K, and “curve” to mean a
variety of dimention 1.

For a finite dimensional vector space V over K, S™V means the m-th sym-
metric power of V and SV means the symmetric algebra of V, i.e.,, SV=® S"V.

m0
Let L be an invertible sheaf on a projective variety X. We denote by L™

the m-th tensor product L®™. For the vector space of global sections I'(L), we
define 7 and I, (m=1), by

I=I(L)=Ker[SI'(L) — C@OF(L’")J ,

and

Received April 13, 1979



32 Masaaki Homma

In=In(L)=Ker(S™['(L) — I'(L™)].

Let L,, ---, L, be invertible sheaves on X. Then R(L;, :--, Ln) means the
kernel of the natural map:

IL)Q: @I (Lm) = ' L1+ @Lm) .

§1. Generality.

Let X be a projective variety, and let L be an ample invertible sheaf on X.
If the canonical map I'(L)®—I"(L™) is surjective for all positive integers m, then
L is called a normally generated ample invertible sheaf.

We will establish a criterion for surjectivity of the natural map I,(L)XI'(L)
—Imi1(L) for a normally generated ample invertible sheaf L.

LemMMmA 1.1. Let V be a finite dimensional vectar space, and let v be a posi-
tive integer greater than 1. Then we have

Ker[ V@r+D S +1V]=Ker[ V& -»S"VIQV+ VRKer[ V& —S"V].

A proof of the lemma is easy, so we omit its proof.

ProrosiTION 1.2. Let L be a normally generated ample invertible sheaf on a
variety X. If m is a positive inleger greater than 1, then the following conditions

are equivalent :

(1) ILQRL™?, L) —» R(L™, L) is surjective,

m+1 m

(2) KL, -, L)=R(L, -+, LIQ(L)+"(LYQR(L, ---, L),
(3) ILAL)YRI(L) -2 In.i(L) is surjective.

PrOOF™®. We consider the following exact diagram
0— R(L, -, DRI(L) —— R(L, N Ly——R(L™, L)—0
& ¢

m
PR S,

I'L)QR(L, T’ L)—» I'DOQKRL™, L)—0
0

m+1

It is easy to check that R(L, -+, L)y=Im(a)+Im(¢’) if and only if ¢ is surjective.

Next, we will prove the equivalence (2)&>(3). Note that the canonical map

—A— . .
.. R(L, -+, L)— I(L) is surjective for any integers »=2. For a given feln,..:(L),

> The proof of the first part (1) <= (2), has been fairly simplified by an idea of Dr. Seki-
guchi,
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m+1

We can find se R(L, ---, L) such that an.:(s)=f. By (2), we have s= 3] fi®si+

m

th@]’j for suitable elements B;, y;eR(L, ---, L) and s;, t;€el'(L), so we have
f q(Z} nm(ﬁl)®sz+2 mn(r)@t;). Hence (2) implies (3). To prove the implication
(3):)(2), it suﬂﬁces to show the inclusion relation

RL, -+ L) RL, -+, DI L)+T'(LQR(L, =+, L).

m+1

Let s be an element of R(L, ---, L). Then by (3), there exist t;e R(L, -+, L)
and s;eI'(L) such that mm,1(s)=¢(X mu{t)s;).
J

Hence
s— ‘jL',‘ t;Qs;eKer(IN(L)®mMm+D — Sm+17(L)).

Since by Lemma 1.1,

Ker(I'(L)®™+D — Sm+1(L))
=Ker(I'(L)® — S™"I'(L))QRI'(L)+I'(LYQKer(I'(L)Y®™ — S™I'(L))

(o Q(L; "ty L)@[KL)-}-[’(L)@Q(L’ "ty L)s

so we have

SeR(L, -+, LYQRI'(L)+1I'(LYQRL, -, L). Q.E.D.

COROLLARY 1.3. Let L be a normally generated ample invertible sheaf on an
n-dimensional variety X. Assume that H(X, L7)=(0) for any integers i, j>1. Then
the homogeneous ideal 1(L) is genevated by I, -+, L,.s.

Proor. By Propostion 1.2, it suffices to prove that the natural map
I'LDYQRL™?, L)— R(L™, L) is surjective for any integer m=»n~+3. It is just the
theorem of Mumford [5, Theorem 5].

COROLLARY 1.4. Let L be a normally generated ample invertible sheaf on a
curve C. Assume that H(C, L)=(0). Then I(L) is generated by I, and I;.

Proor. By Proposition 1.2 and Corollary 1.3, it suffices to show that the
natural map I'(L)YQR(L? L)— R(L? L) is surjective. It is a direct consequence
of the following lemma.

LemmA 1.5. (T. Fujita [1, Lemma 1.8)) Let L, M and N be invertible sheaves
on a curve C. Assume that HNC, ML )=(0) and that I'(L) is base point free
and that the natural map I'(MKQL )R (N)—>I'(MRNRL™?) is surjective. Then lhe
natural map I'(LYQR(M, N)— R(LQM, N) is surjective.
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REMARK 1.6. Let L be an invertible sheaf of degree d on a curve C. If
d=2g+1, then L is a normally generated ample invertible sheaf with HY(C, L)=
(0). Therefore by Corollary 1.4, I(L) is generated by I; and I;,

This is another proof of the second result of Saint-Donat (c.f Introduction (2)).

§2. Example I.

In this section we use the word “curve” to mean a smooth curve over K.
We assume that the characteristic of the ground field K is not 2. The purpose
of this section is to show that the first result of Saint-Donat (see Introduction (1))
is the best possible for each genus g=1, namely, there exists a curve C of genus
g with invertible sheaf L on C of degree 2g+1 such that the homogeneous ideal
I(L) is not generated by L(L). '

REMARK 2.1. Let C be a curve of genus 1 or 2, and let L be an invertible
sheaf of degree 2¢g+1 on C. Then the homogeneous ideal I(L) is not generated
by L(L).

Indeed, C is embedded by I'(L) to P? if the genus is 1 (resp. to P® if the
genus is 2), but the dimension of I (L) is 0 if the genus is 1 (resp. is 1 if the
genus is 2).

From now on, we fix a hyper-elliptic curve C of genus ¢g=3. Let K(C) be
the function field of C. Since the characteristic of the ground field K is not 2,
there exist functions z, yeK(C) such that K(C)=K(x, y) with a relation

Yi=(x—a) (r—as) - (x—asyi1)-

Let P, be the closed point on C such that z(P.)=oco, and let L=¢((29+1)P.)

For any divisor D on C, we regard®¢(D) as a subsheaf of K(C) in the canonical
way. Then we have that the g+2 functions

{1; Ty xa’ y}

forms a basis of I'(L) and that the %(g+2)(g+3) elements

101
10z xOx
) 1@.702 x@xz xz@xz

1(5.1:" x@x” sz:)x” ...... 227
].@y w@y x2®y ...... x!]@y y®y
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forms a basis of S?/°(L), where the symbol © means a symmetric product.
ProposiTION 2.2. The vector space
L(L)=Ker[S*I"(L) — I'(L?]
is generated by {x*Qx’—z~ 'Ot |1=i=j=g—1} over K.

Proor. It is easy to show that the above set is included in I,. Let V be a
subspace of I, generated by the above set, and let W be asubspace of S:I'(L)
generated by the following elements:

101 10z, oo : 100
z@x? 22Oz, e , 2?Ox?
1@3/ x@?/: """ ’ quy
vOy

Then the natural map W — S*I'(L)/V is surjective. Indeed, if i<g—j, then
OQrl =21 Oz = =102 mod. TV,

and if i>¢g—j, then
Qi =t Qx = =202’ mod. V.

Hence we have dim[S*I"(L)]—dim(V)=dim(W), so we have
dim( V);—;—g(g—l)=dim(lz).
Since I,oV, we have L,=V. Q.E.D.

CorOLLARY 2.3. Let {Xo, Xi, -, X, Y} be a homogeneous coordinate of the
projective space P*' corresponding to a basis {1, z, -, 2% y} of I'(L). Then the
vector space of quadrics vanishing on ¢1(C) is generated by the quadrics

{(XiX;— X 1 X5 |1=5i=s5j=9-1}

over K.

ExamrLE 2.4. Let (C, L) be the above curve with invertible sheaf. Then
the degree L is 2g+1, but the homogeneous ideal I(L) is not generated by L(L).
In fact, if the homogeneous ideal I(L) is generated by I;, then

¢L(C)= N V(Xin—X,;_l‘Yj_,_l)

1sisj<Sg-1

by Corollary 2.3, where V(X;X;—X;-,1X;.1) is the set of zeros of XiXi— X1 X544
in P!, Let H be the linear subvariety of P! defined by the equations:

XO_XI) X].—-Xzy 0y Xg—l—Xg-
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Then H=P!, and
Hc f V(X Xj—Xi1Xj11).

15i875¢9-1

Hence we have H=¢.(C), because Hc¢.(C) and ¢.(C) is irreducible. This con-
tradicts g=1.

§3. Example II

We continue assuming that the characteristic of the ground field K is not 2
and that a “curve” means a smooth curve over K.

In this section we will show that there are many examples of curves of
genus ¢ with invertible sheaf of degree 2g on which Corollary 1.4 works effec-
tively. Note that since the degree of L is 2¢, the condition H'(C, L)=(0) in
Corollary 1.4 is automatically satisfied. Therefore our problem is reduced to
constructing many curves of genus ¢ which have a normally generated ample
invertible sheaf of degree 2g.

PrOPOSITION 3.1. Let C be a curve of genus g=5. Suppose that there exists
an invertible sheaf M of degree g—1 on C such that I'(M) is a base point free
pencil. Then almost all invertible sheaves of degree 29 on C are ample with normal
generation.

The following lemma, B. Saint-Donat called it “base point free pencil
trick”, plays an important role in the proof of our proposition.

LemMA 3.2. (Mumford [5, p. 57), Saint-Donat [8, Lemma 2.6]) Let M and N
be invertible sheaves on a curve. Suppose that I'(M) is a base point free pencil.
Then we have an isomorphism

Ker[(MYQI'(N)—T'(MQN)='(NQM-Y).

We will use the following notation.

Picé(C): the connected component of the Picard scheme of C whose member
represents an invertible sheaf of degree d,

G3: the closed subvariety of Pic¥(C) representing the set of invertible sheaves
of degree d and of projective dimension =7,

F7: the closed subvariety of Pic¥(C) defined by the image of the morphism

G5, XC3(L, P)— L(P)ePic¥C)

(if G;-,=¢, then F3; means the void subset).
Note that F;cG; and that if =1, the set G}—F; represents the set of in-
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vertible sheaves free from base points, of degree d and of proejctive dimension 7.

Proor or ProprosiTiOoN 3.1. There exists an invertible sheaf M, of degree
g—1 such that I'(M,) is a base point free pencil and M?:+#w, where w is the ca-
nonical sheaf on C. Indeed, since Gj.,—F}., is non-empty open in Gi_, by our
assumption and since

dim G.,=¢g—4=1 [4, Theorem 1],

9-1—Fj-, has infinitely many elements. So there exists such an invertible sheaf.
We put
V=G}i— F}.,=Pic?+*(C)—~F},,, and
U={NQM,| Ne V}cPic¥(C).

Obviously, ¥ is non-empty open in Pic’*'(C). Hence U is non-empty open in
Pic*(C). We will show that any invertible sheaf in U is ample with normal
generation. Let L be an invertible sheaf in U. By the generalized lemma of
Castelnuvo [5, Theorem 2], we have natural map I'(L™QI'(L)—~I'(L™*) is surjec-
tive for m=2. Therefore it suffices to show that the natural map I'(LYRI(L)
—I'(L?) is surjective. Consider the commutative diagram

IMLOM)RQI (ML)~ LM (MyQL)
[

ILRI'(L) >I'(L*),

where ¢, is the natural map I'(My)QI'(L)-»I'(M,®L). By Lemma 3.2, we have
Ker g2 =I"(LQM;?) and Ker ¢, =I'(M?%). Therefore we have

dim(Ker ¢,) =dim[I"(LQM;")]=2,
dim{I"(Mo)®I'(L)]1=2(g +1),
dim[I"(M,QL)]=2g,
dim(Ker ¢;) =dim[I'(M?]=g—1 (Note that M?2=+ew),
dim[I"(LQMMRQI(MyRQQL)]=4g and
dim[I"(L*)]=3g+1.
Hence ¢, and ¢. are surjective, and hence the natural map I'(L)QI'(L)—~I'(L?» is
surjective. Q.E.D.
Next, we will give a sufficient condition for a curve to have an invertible

sheaf M of degree g—1 such that I'(M) is a base point free pencil. Our result
on it is a direct consequence of the following theorem of Martens and Mumford.

THEOREM OF MARTENS AND MUMFORD [6, Appendix]. Let C be a curve of
genus g=5. Then there exists integer d, 3=d=g—2, such thal dim Gy=d-3 if
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and only if C is hyperelliptic, or trigonal, or double covering of an elliptic curve
(g=6), or non-singular plane quintic.

ProrosITION 3.3. Let C be a curve of genus g=5 mneither hyperelliptic, nor
trigonal, nor double covering of an elliptic curve (9=6), nor non-singular plane
quintic. Then there exists an invertible sheaf M of degree g—1 on C such that
(M) is a base point free pencil.

Proor. We must prove that Gj_,—F}_,#¢ in our case. For this, it suffices
to show that dimGi_,>dimF}_,. By the results of Martens, Kleiman and
Laksov [4, Theorem 1 and 3, Theorem 5], we have

g—3=dimG}_,=¢g—4, and
g—4=dim Gj_,=¢g—6.
Note that if Gj_,#¢, then
dim F}j_,=dim G}_,+1 [4, p. 115]
and that if Gj_,=¢, then Fj_,=¢. Suppose that dim Gj_,=dimF§_,. Then
dimGy_,=g¢g—5. This contradicts the theorem of Martens and Mumford. Q.E.D.
Finally, we state an elementary remark relative to our topic.
REMARK 3.4. If C is a curve of genus g=4, then there exists a non-special

very ample invertible sheaf on C which is not normally generated.
Indeed, for a non-special normally generated ample invertible sheaf L, we have

e = /J

because dim S?'(L)=dim I'(L?). On the other hand, by the theorem of Halphen
[2, Theorem 1.2], there exists a non-special very ample invertible sheaf of degree
d, if d=g+3.
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