FIXED POINTS OF ELEMENTARY SUBGROUPS OF CHEVALLEY GROUPS ACTING ON TREES

By

Makoto Fukunaga

0. Introduction

Consider the following condition on a group G:

(FA) For any tree X and any action without inversions of G on X, the set X^{G} of fixed points is non-empty.

Jean-Pierre Serre has shown that every group with this property has many interesting group theoretical properties (cf. [5]). He has also shown that the special linear group $SL(2, \mathbb{Z})$ of degree 2 over the ring \mathbb{Z} of rational integers does not satisfy (FA), but $SL(3, \mathbb{Z})$ does. In this paper we shall generalize this result to the elementary subgroup $E_{\rho}(\Phi, R)$ (See Section 2 below.) of a Chevalley group of type Φ over a commutative ring R with an identity under the assumption that Φ is irreducible of rank ≥ 2 and the additive group R^+ of R is finitely generated. For any group G, we use [G, G] to denote the commutator subgroup of G generated by all $[x, y] = xyx^{-1}y^{-1}$, $x, y \in G$.

I would like to express my warm thanks to Professor Eiichi Abe for his valuable advice during the preparation of this paper.

1. The action of a group on a tree

We begin with the definition of graphs. A graph X=(S(X), Ar(X)) consists of a non-empty set S(X) and a subset Ar(X) of $S(X)\times S(X)$ such that $(s,s)\notin Ar(X)$ for any $s\in S(X)$ and $Ar(X)=Ar(X)^t$, where

$$Ar(X)^t = \{(s, s') | (s', s) \in Ar(X)\}.$$

Each element of S(X) (resp. Ar(X)) is called a *vertex* (resp. an *edge*). We shall sometimes identify a graph X with the set S(X) of vertices and an edge (s, s') with (s', s). A series of finitely many edges (s_0, s_1) , (s_1, s_2) ,..., (s_{n-1}, s_n) is called a *path of length n connecting* s_0 and s_n , and we shall denote it by (s_0, s_1, \dots, s_n) . In particular, the path (s_0, s_1, \dots, s_n) is called *geodesic* if the vertices s_0, s_1, \dots, s_n are all distinct. Any path connecting two distinct vertices can be reduced to a geodesic

path. On the other hand, the path (s_0, s_1, \dots, s_n) is said to be a *loop* when $n \ge 3$, $s_0 = s_n$ and the path (s_1, s_2, \dots, s_n) is geodesic. A graph is defined to be *connected* if for any two distinct vertices there is a path connecting these two vertices. A connected graph is called a *tree* when it has no loops. It is easy to see that any two distinct vertices in a tree are connected by one and only one geodesic path.

An automorphism f of a graph X is a set theoretical bijection from S(X) onto itself such that a pair of vertices (s, s') is in Ar(X) if and only if (f(s), f(s')) is in Ar(X). The set of all automorphisms of a graph X forms naturally a group Aut(X) under the composition of maps. We say that a group G acts on a graph G when there is a group homomorphism G of G into G into G into G induces an automorphism of G defined by

$$x \longmapsto \sigma(g)x = gx$$

Now consider an action of a group G on a tree X=(S(X), Ar(X)). It sometimes happens that there exist $(s,s')\in Ar(X)$ and $g\in G$ such that (gs,gs')=(s',s). In this case we say that this action has an *inversion*. It is known that an action with inversions can be reduced to the case without inversions by the following method of barycentric subdivision. Assume that $(s,s')\in Ar(X)$ and $g\in G$ is an inversion. Take a tree X'=(S(X'), Ar(X')) in place of X, where

$$S(X') = S(X) \cup \{s''\}, \ s'' \notin S(X)$$
 and $Ar(X') = (Ar(X) - \{(s, s')\}) \cup \{(s, s''), \ (s'', s')\}.$

The action of G on X can be naturally extended to X' by defining gs''=s'' for all $g \in G$. In this paper we assume that no action of a group on a tree has any inversions.

When a group G acts on a graph X, we denote

$$X^{g} = \{s \in S(X) | gs = s \text{ for all } g \in G\}$$
 and

 $X^{g} = \{s \in S(X) | gs = s\}, \text{ where } g \text{ is a fixed element of } G.$

Proposition 1. Let X be a tree.

- (i) If X^G is non-empty, then X^G is a tree.
- (ii) Let X_i $(1 \le i \le n)$ be subsets of X. If each X_i is a tree and $X_i \cap X_j$ is non-empty for all pairs (i, j), then $\bigcap_{1 \le i \le n} X_i$ is non-empty and connected.

PROOF (i) We shall show that X^G is connected. For distinct vertices $s, s' \in X^G$, there is a unique geodesic path (s, s_1, \dots, s_n, s') in X. So $(gs, gs_1, \dots, gs_n, gs') = (s, gs_1, \dots, gs_n, s')$ is the same path for all $g \in G$. Therefore $s_1, s_2, \dots, s_n \in X^G$.

(ii) Using induction on n, it is enough to show (ii) when n=3. Choose any $s_{ij} \in X_i \cap X_j$ for i, j=1, 2, 3. We may assume $s_{12} \notin X_3$, $s_{23} \notin X_1$ and $s_{13} \notin X_2$, otherwise the proof is completed. So the three vertices s_{12} , s_{23} and s_{13} are all distinct. Since s_{12} and s_{23} (resp. s_{23} and s_{13}) are connected by a path in X_2 (resp. in X_3), there is a path connecting s_{12} and s_{13} . Reducing the path to be geodesic, we get a geodesic path connecting s_{12} and s_{13} which runs through $X_2 \cap X_3$. But by the uniqueness of geodesic paths, this path is contained in X_1 . So we have $X_1 \cap X_2 \cap X_3 \neq \phi$. The connectedness of $X_1 \cap X_2 \cap X_3$ is obvious.

2. Elementary subgroups of Chevalley groups and some of their properties

In this section we recall the definition of elementary subgroups of Chevalley groups and give some of their properties. Let Φ be a (reduced) irreducible root system (cf. [2], Chap. 6), and V be the real Euclidean space spanned by Φ . When we choose a base Δ of the root system Φ , the set of positive (resp. negative) roots with respect to Δ is determined and we shall denote it by Φ^+ (resp. Φ^-). Let Δ' be a non-empty subset of $\Delta = \{\alpha_i\}$. Then

$$\{\Sigma n_i \alpha_i \in \Phi | n_i = 0 \text{ if } \alpha_i \notin \Delta'\}$$

is a (not necessarily irreducible) root system with a base Δ' , and we shall denote it by

$$<\alpha_i|\alpha_i\in\Delta'>$$
.

Each root $\alpha \in \Phi$ defines a reflection r_{α} of the space V, which sends α to $-\alpha$ and leaves pointwise fixed the hyperplane orthogonal to α . All reflections determined by the roots of Φ generate a group W called the Weyl group of Φ .

Each irreducible root system Φ determines uniquely (up to isomorphism) a finite dimensional simple Lie algebra $\mathfrak{g}(\Phi)$ over the field of complex numbers. Let ρ be a faithful representation of the Lie algebra $\mathfrak{g}(\Phi)$ on a finite dimensional vector space over the field of complex numbers, then we can construct the Chevalley-Demazure group scheme $G_{\rho}(\Phi,)$ associated with Φ and ρ (cf. [1], [3] and [7]). Since $G_{\rho}(\Phi,)$ is a covariant functor from the category of commutative rings to the category of groups, we get a group $G_{\rho}(\Phi, R)$ of the points of $G_{\rho}(\Phi,)$ in a commutative ring R with an identity. In particular, if R = C is the field of complex numbers, $G_{\rho}(\Phi, C)$ has the structure of a Lie group. $G_{\rho}(\Phi,)$ is called

simply connected when the Lie group $G_{\rho}(\Phi, C)$ is simply connected, or equivalently when the set of fundamental weights is a base of the lattice generated by the set of all weights of the representation ρ . We shall give an example. Assume that Φ is of type A_l and $G_{\rho}(\Phi, R)$ is isomorphic to the special linear group SL(l+1, R) of degree l+1 over a commutative ring R with an identity. In general, when Φ is of type A_l , $G_{\rho}(\Phi, R)$ is isomorphic to a quotient group of SL(l+1, R) by a central subgroup.

For each root $\alpha \in \Phi$, there is a group isomorphism

$$t \longmapsto x_{\alpha}(t)$$

of the additive group R^+ of R onto a subgroup X_{α} of $G_{\rho}(\Phi, R)$. X_{α} is called the *root subgroup* corresponding to the root α . The *elementary subgroup* $E_{\rho}(\Phi, R)$ is defined to be the subgroup of $G_{\rho}(\Phi, R)$ generated by all X_{α} for $\alpha \in \Phi$. When $G_{\rho}(\Phi, R)$ is simply connected, $E_{\rho}(\Phi, R)$ is equal to $G_{\rho}(\Phi, R)$ if R is a local ring (cf. [1], Proposition 1.6) or R is a Euclidean domain (cf. [7], §8). But, in general, $E_{\rho}(\Phi, R)$ is a proper subgroup of $G_{\rho}(\Phi, R)$. For a base Δ of Φ , let $U_{\rho}(\Phi, R, \Delta)$ be the subgroup of $E_{\rho}(\Phi, R)$ generated by all X_{α} for $\alpha \in \Phi^+$. Then $U_{\rho}(\Phi, R, \Delta)$ is unipotent and hence nilpotent (cf. [7], p. 26).

Now we shall make a list of some relations between generators in the elementary subgroup $E_{\rho}(\Phi, R)$ (cf. [3], [6] and [7]).

(RI) For any $s, t \in R$ and $\alpha \in \Phi$,

$$x_{\alpha}(s)x_{\alpha}(t)=x_{\alpha}(s+t)$$
.

(RII) Let rank $\Phi = l \ge 2$. For any $s, t \in R$ and $\alpha, \beta \in \Phi$ such that $\alpha + \beta \ne 0$,

$$[x_{\alpha}(s), x(t)] = \prod x_{i_{\alpha+j\beta}} (N_{\alpha,\beta,i,j} s^{i} t^{j})$$

where the product on the right is taken over all roots of the form $i\alpha+j\beta$, for positive integers i and j arranged in some fixed order, and $N_{\alpha,\beta,i,j}$ are integers depending only on α, β and the chosen ordering.

(RIII) For any $t \in R$ and α , $\beta \in \Phi$

$$w_{\alpha}x_{\beta}(t)w_{\alpha}^{-1}=x_{r_{\alpha}(\beta)}(\pm t),$$

where $w_{\alpha} = x_{\alpha}(1)x_{-\alpha}(-1)x_{\alpha}(1)$.

PROPOSITION 2. Let R be a commutative ring with an identity and Φ be an irreducible root system of rank ≥ 2 . For each $x_{\alpha}(t) \in E_{\rho}(\Phi, R)$, $\alpha \in \Phi$, $t \in R$, there exist a positive integer n and a base Δ of Φ such that

(i)
$$x_{\alpha}(t) \in U$$

(ii)
$$x_{\alpha}(t)^{n} = x_{\alpha}(nt) \in [U, U], \text{ where } U = U_{\rho}(\Phi, R, \Delta)$$

PROOF. Choosing a suitable base Δ , we may assume that the given root α is positive and not simple. Furthermore we may assume that Φ is an irreducible root system of rank 2, that is, $\Phi = A_2$, or B_2 , or B_2 . Since the proof of the case A_2 or B_2 is easy, we shall prove the most complicated case $\Phi = G_2$. Set $\Delta = \{\alpha_1, \alpha_2\}$ and $\Phi = \{\pm \alpha_1, \pm \alpha_2, \pm (\alpha_1 + \alpha_2), \pm (2\alpha_1 + \alpha_2), \pm (3\alpha_1 + \alpha_2)\}$, then $\alpha = \alpha_1 + \alpha_2$, or $2\alpha_1 + \alpha_2$, or $3\alpha_1 + \alpha_2$, or $3\alpha_1 + 2\alpha_2$. As special relations of (RII), we have

$$\begin{split} &[x_{\alpha_2}(s),\ x_{3\alpha_2+\alpha_2}(t)] = x_{3\alpha_1+2\alpha_2}(\pm st),\\ &[x_{2\alpha_1+\alpha_2}(s),\ x_{\alpha_1}(t)] = x_{3\alpha_1+\alpha_2}(\pm 3st),\\ &[x_{\alpha_1+\alpha_2}(s),\ x_{\alpha_1}(t)] = x_{2\alpha_1+\alpha_2}(\pm 2st)x_{3\alpha_1+\alpha_2}(\pm 3st^2)x_{3\alpha_1+2\alpha_2}(\pm 3s^2t) \quad \text{and}\\ &[x_{\alpha_1}(s),\ x_{\alpha_2}(t)] = x_{\alpha_1+\alpha_2}(\pm st)x_{2\alpha_1+\alpha_2}(\pm s^2t)x_{3\alpha_1+\alpha_2}(\pm s^3t)x_{3\alpha_1+2\alpha_2}(\pm 2s^3t^2). \end{split}$$

So we can choose n=1 (resp. n=2, n=3, n=6), when $\alpha=3\alpha_1+2\alpha_2$ (resp. $\alpha=2\alpha_1+\alpha_2$, $\alpha=3\alpha_1+\alpha_2$, $\alpha=\alpha_1+\alpha_2$).

For an irreducible root system Φ the *highest root* exists uniquely with respect to some fixed base of Φ (cf. [2], Chap. 6).

PROPOSITION 3. Let Φ be an irreducible root system of rank ≥ 3 with a base $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$. Then we can choose α_1 such that the following are satisfied.

- (i) $\Phi' = \langle \alpha_2, \dots, \alpha_l \rangle$ is an irreducible root system of rank l-1 with a base $\Delta' = \{\alpha_2, \dots, \alpha_l\}$.
- (ii) Let α_0 and β_0 be the highest roots of Φ and Φ' with respect to the base Δ and Δ' respectively. If Φ is not of type C_l or F_4 (resp. Φ is of type C_l or F_4), put $\gamma_1 = \alpha_0 \beta_0$ (resp. $2\gamma_1 = \alpha_0 \beta_0$). Then $\gamma_1 \in \Phi^+$ and $\langle \beta_0, \gamma_1 \rangle$ is of type A_2 (resp. of type B_2) with highest root α_0 .
- (iii) Put $\gamma_2 = \gamma_1 \alpha_1$. Then if Φ is of type A_l or C_l , $\gamma_2 = 0$. Otherwise, $\gamma_2 \in \Phi^+$.
- (iv) If Φ is not of type A_l or C_l or F_4 , then $\langle \alpha_1, \gamma_2 \rangle$ is of type A_2 and the highest root is γ_1 .
- (v) If Φ is of type F_4 , then $\langle \alpha_1, \gamma_2 \rangle$ is of type B_2 and the highest root is $\alpha_1 + 2\gamma_2$.

PROOF. The proposition can be proved by the classification of irreducible root systems (cf. [2] Chap. 6). For each system, we give the Dynkin diagram having α_1 as a terminal node, the type of Φ' and the expressions of α_0 , β_0 , γ_1 and γ_2 by the base of Φ .

$$A_l(l \ge 3)$$
 $Q_1 \qquad Q_2 \qquad Q_{l-1} \qquad Q_l \qquad Q_{l-1} \qquad Q_l \qquad Q$

$$\varphi' \text{ is of type } A_{l-1}.$$

$$\alpha_0 = \alpha_1 + \alpha_2 + \cdots + \alpha_l,$$

$$\beta_0 = \alpha_2 + \alpha_3 + \cdots + \alpha_l,$$

$$\gamma_1 = \alpha_1 \qquad \text{and} \qquad \gamma_2 = 0.$$

$$B_l(l \ge 3)$$

$$\varphi' \text{ is of type } B_{l-1}.$$

$$\alpha_0 = \alpha_1 + 2 \quad (\alpha_2 + \alpha_3 + \cdots + \alpha_l),$$

$$\beta_0 = \alpha_2 + 2 \quad (\alpha_3 + \cdots + \alpha_l),$$

$$\gamma_1 = \alpha_1 + \alpha_2 \qquad \text{and} \qquad \gamma_2 = \alpha_2.$$

$$C_l(l \ge 3)$$

$$\varphi' \text{ is of type } C_{l-1}.$$

$$\alpha_0 = 2 \quad (\alpha_1 + \cdots + \alpha_{l-1}) + \alpha_l,$$

$$\beta_0 = 2 \quad (\alpha_2 + \cdots + \alpha_{l-1}) + \alpha_l,$$

$$\gamma_1 = \alpha_1 \qquad \text{and} \qquad \gamma_2 = 0.$$

$$D_l(l \ge 4)$$

$$\varphi' \text{ is of type } A_3 \quad \text{(if } l = 4) \text{ or } D_{l-1} \quad \text{(if } l \ge 5).$$

$$\alpha_0 = \alpha_1 + 2 \quad (\alpha_2 + \cdots + \alpha_{l-2}) + \alpha_{l-1} + \alpha_l,$$

$$\beta_0 = \alpha_2 + 2 \quad (\alpha_3 + \cdots + \alpha_{l-2}) + \alpha_{l-1} + \alpha_l,$$

$$\gamma_1 = \alpha_1 + \alpha_2 \qquad \text{and} \qquad \gamma_2 = \alpha_2.$$

$$E_6$$

$$\varphi' \text{ is of type } D_4.$$

$$\alpha_0 = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6,$$

$$\beta_0 = \alpha_2 + \alpha_3 + 2 \quad (\alpha_4 + \alpha_5) + \alpha_6,$$

q. e. d.

$$7_{1} = \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} \quad \text{and}$$

$$7_{2} = \alpha_{2} + \alpha_{3} + \alpha_{4}.$$

$$E_{7}$$

$$A_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7}$$

$$A_{6} \quad \alpha_{6}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7}$$

$$A_{8} \quad \alpha_{1} + 2\alpha_{2} + 3\alpha_{3} + 4\alpha_{4} + 3\alpha_{5} + 2\alpha_{6} + 2\alpha_{7},$$

$$A_{9} = \alpha_{2} + 2\alpha_{3} + 3\alpha_{4} + 2\alpha_{5} + 2\alpha_{5} + \alpha_{7},$$

$$A_{1} = \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{7} \quad \text{and}$$

$$A_{2} = \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{7}.$$

$$A_{1} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{6} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{8} \quad \alpha_{9} \quad \alpha_{9}$$

$$A_{7} \quad \alpha_{9} = \alpha_{1} + 3\alpha_{2} + 4\alpha_{3} + 6\alpha_{4} + 5\alpha_{5} + 4\alpha_{6} + 3\alpha_{7} + 2\alpha_{8},$$

$$A_{9} = \alpha_{2} + \alpha_{3} + 2 \quad (\alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7}) + \alpha_{8},$$

$$A_{1} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{7} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{8} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8}$$

$$A_{8} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \quad \alpha_{5} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8} \quad \alpha_{8} \quad \alpha_{7} \quad \alpha_{7} \quad \alpha_{8} \quad \alpha_{8} \quad \alpha_{8} \quad \alpha_{7} \quad \alpha_{8} \quad \alpha_{8} \quad \alpha_{8} \quad \alpha_{8}$$

PROPOSITION 4. Let Φ be an irreducible root system of rank ≥ 2 and Δ be any fixed base of Φ . Then the elementary subgroup $E_{\rho}(\Phi, R)$ is generated by $\{X_{\alpha} | \alpha \in \Psi\}$, where

 $\gamma_2 = \alpha_2 + \alpha_3$.

$$\Psi = (\Phi^+ - \{\alpha_0\}) \cup \{-\alpha_0\}$$

and α_0 is the highest root of Φ with respect to Δ .

PROOF. First we shall prove this in case the rank of Φ is 2, that is, Φ is of type A_2 , or B_2 , or G_2 . Then we shall treat the case when the rank of Φ is greater than 2. Let $G[\Psi]$ be the subgroup of $E_{\rho}(\Phi, R)$ generated by $\{X_{\alpha} | \alpha \in \Psi\}$. We have to show that $G[\Psi]$ is equal to $E_{\rho}(\Phi, R)$.

Supposing first that we are in case A_2 , or B_2 , or G_2 , put $\Delta = \{\alpha, \beta\}$ such that α is a short root and β is a long root if Φ is of type B_2 or G_2 . Then $\alpha_0 = \alpha + \beta$ (resp. $\alpha_0 = 2\alpha + \beta$, $\alpha_0 = 3\alpha + 2\beta$) when Φ is A_2 (resp. B_2 , G_2). We claim that there exists a base $\Delta' = \{\alpha', \beta'\}$ such that root subgroups corresponding to the roots $\pm \alpha'$ and $\pm \beta'$ are contained in $G[\Phi]$. Since we have a relation (cf. [7], §3 and §4)

$$[x_{\alpha}(s), x_{\beta}(t)] = x_{\alpha+\beta}(\pm st)$$

(resp.
$$[x_{\alpha}(s), x_{\beta}(t)] = x_{\alpha+\beta}(\pm st)x_{2\alpha+\beta}(\pm s^2t), [x_{\beta}(s), x_{3\alpha+\beta}(t)] = x_{3\alpha+2\beta}(\pm st)$$
)

when Φ is A_2 (resp. B_2 , G_2), $X_{\alpha_0} \subseteq G[\Psi]$ and hence $w_{\alpha_0} = x_{\alpha_0}(1)x_{-\alpha_0}(-1)x_{\alpha_0}(1) \in G[\Psi]$. By (RIII), every root subgroup corresponding to the root conjugate to a positive root by w_{α_0} is in $G[\Psi]$ (cf. [4], §4). So we can choose $\Delta' = \Delta = \{\alpha, \beta\}$ (resp. $\Delta' = \{\alpha, -(\beta + 2\alpha) \ \Delta' = \{-(\beta + \alpha), \beta\}$) if Φ is A_2 (resp. B_2 , G_2), and the subgroup generated by $\{w_r|_{T} \in \Delta'\}$ is contained in $G[\Psi]$. Since the Weyl group W of Φ is generated by the reflections corresponding to the roots of Δ' (cf. [2], Chap. 6, §1, Th. 2), every root subgroup corresponding to the root conjugate to a root of Δ' under W is in $G[\Psi]$. On the other hand, for any two roots of the same length, there is an element of W which maps one to the other (cf. [2], Chap. 6, §1, Prop. 11). Therefore every root subgroup is in $G[\Psi]$, and this completes the proof of this case.

Supposing next that we are in case the rank of $\Phi \geq 3$, we proceed by induction on the rank and use the notation of Proposition 3. $\langle \beta_0, \gamma_1 \rangle$ is an irreducible root system of rank 2 with highest root α_0 . By hypothesis, $X_r \subseteq G[\Phi]$, where γ is any positive root in $\langle \beta_0, \gamma_1 \rangle$ or $\gamma = -\alpha_0$. Then by the cases of rank 2, $X_{-\beta_0}, X_{-r_1} \subseteq G[\Phi]$. Since β_0 is the highest root of $\langle \alpha_2, \dots, \alpha_l \rangle$, $X_{-\alpha_l} \subseteq G[\Phi]$ ($2 \leq i \leq l$) by induction. It remains only to show that $X_{-\alpha_1} \subseteq G[\Phi]$. If $\Phi = A_l$ or C_l , $\gamma_1 = \alpha_1$, hence we have $X_{-\alpha_1} \subseteq G[\Phi]$. If Φ is not A_l or C_l or F_4 , then $\langle \alpha_1, \gamma_2 \rangle$ is an irreducible root system of rank 2 with highest root γ_1 . By an argument similar to the above, we have $X_{-\alpha_1} \subseteq G[\Phi]$. Finally if Φ is of type F_4 , $\langle -\gamma_1, \alpha_1 + 2\gamma_2 \rangle$ is of type B_2 with highest root $-\alpha_1$. Hence we have $X_{-\alpha_1} \subseteq G[\Psi]$.

3. Main result

In this section we shall prove the following theorem:

THEOREM. Let Φ be an irreducible root system of rank ≥ 2 , R be a commutative ring with an identity such that the additive group R^+ of R is finitely generated and ρ be any faithful representation of the Lie algebra $\mathfrak{g}(\Phi)$. Then the elementary subgroup $E_{\varrho}(\Phi,R)$ has the property (FA).

To prove this theorem we need the following result due to Jean-Pierre Serre (cf. [5], Proposition 2 and its corollaries).

PROPOSITION 5. Let G be a finitely generated nilpotent group. Assume that G acts without inversions on a tree X.

- (i) Let $\{g_i\}$ be a finite set of generators of G. If X^{g_i} is non-empty for all i, then X^G is non-empty.
- (ii) Let g be an element of G. If g^n is in [G,G] for some positive integer n, then X^g is non-empty.

PROPOSITION 6. Assume that the elementary subgroup $E_{\rho}(\Phi, R)$ acts without inversions on a tree X, where ρ , Φ and R are as in the theorem. Let $U=U_{\rho}(\Phi, R, \Delta)$ be as in Section 2. Then X^{U} is non-empty.

PROOF. Let Δ be any fixed base of Φ . Since $U=U_{\rho}(\Phi,R,\Delta)$ is finitely generated and nilpotent, we can apply (i) of Proposition 5 to the group U. It is enough to prove that for each generator $g=x_{\alpha}(t)$, $\alpha \in \Phi^+$, $t \in R$, of U, X^g is non-empty. On the other hand, by Proposition 2, for any root $\alpha \in \Phi$ and any element $t \in R$ there exist a base Δ' of Φ and a positive integer n such that $x_{\alpha}(t) \in U'$ and $x_{\alpha}(t)^n = x_{\alpha}(nt) \in [U', U']$, where $U' = U_{\rho}(\Phi, R, \Delta')$. Applying (ii) of Proposition 5 to the group U' and an element $g=x_{\alpha}(t) \in U'$, we have $X^g \neq \phi$. q.e.d.

PROOF OF THE THEOREM. Given an action of $E_{\rho}(\Phi, R)$ on a tree X, let $\{r_i \in R | i = 1, \dots, n\}$ be a finite set of generators of R^+ . For each $\alpha \in \Phi$ and $r_i \in R$, put

$$q_{i,\alpha} = x_{\alpha}(r_i), \quad X_{i,\alpha} = X^{q_{i,\alpha}}.$$

First we claim that $X_{i,\alpha} \cap X_{j,\beta}$ is non-empty for any α , $\beta \in \mathcal{V}$ and integers i,j $(1 \leq i, j \leq n)$, where \mathcal{V} is as in Proposition 4. We may assume $\alpha \neq \beta$. Since $\alpha + \beta$ is non-zero, there is a base Δ' of Φ such that α and β are positive roots with respect to Δ' . Take $U' = U_{\rho}(\Phi, R, \Delta')$, then $X^{U'}$ is non-empty by Proposition 6. On the other hand, since $g_{i,\alpha}, g_{j,\beta} \in U'$, we have $X_{i,\alpha} \cap X_{j,\beta} \supseteq X^{U'}$. Thus $X_{i,\alpha} \cap X_{j,\beta}$ is non-empty. Hence we have, by Proposition 4,

$$X^{E_{\rho}(\Phi,R)} = \bigcap_{\substack{1 \leq i \leq n \\ \alpha \in \Psi}} X_{i,\alpha}$$

and this is non-empty by (Proposition 1).

References

- [1] Abe, E., Chevalley groups over local rings, Tohoku Math. J. 21, (1969) 474-494.
- [2] Bourbaki, N., Groupes et algèbres de Lie, Chap. IV, V, et VI, Hermann, Paris, 1968.
- [3] Chevalley, C., Certains schèmas de groupes semi-simples, Sèm. Bourbaki, Exp. 219 (1960-61).
- [4] Hurley, J., Normality in elementary subgroups of Chevalley groups over rings, Canadian J. Math. 28, (1976) 420-428.
- [5] Serre, J.P., Amalgames et points fixes, Proc. Second International Conference, Theory of Groups, Canberra, (1973) 633-640.
- [6] Stein, M. R., Generators, Relations and Coverings of Chevalley Groups over commutative rings, Amer. J. Math. 93, (1971) 965-1004.
- [7] Steinberg, R., Lectures on Chevalley groups, Yale University, 1968.
- [8] Tits, J., Sur le groupe des automorphismes d'un arbre, Essays on topology and related topics, Mémoires dédiés à Georges de Rham, (1970) 188-211.

Institute of Mathematics University of Tsukuba Sakuramura, Ibaraki, 305 Japan