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EVALUATION OF THE DIMENSION OF THE
Q-VECTOR SPACE SPANNED BY THE SPECIAL
VALUES OF THE LERCH FUNCTION

By

Makoto KAwASHIMA

Abstract. Nikisin [6] proved the linear independence of special
values of polylogarithm functions over the rational number field. (see
Theorem 0.1). In this paper, we give a generalization of the above
result of Nikisin to the case of the Lerch function.

Introduction

A lot of problems on special values of the Riemann zeta function at positive
integers, for example, irrationality or trancendency of these numbers, remain
unsolved in many cases. The Padé approximation of the polylogarithm functions
and the Hurwitz zeta function are one of the main methods to study these
problems and have been studied for the polylogarithm functions (see [1], [3], [4],
[6], [9], [10]) and for the Hurwitz zeta function (see [2], [8]). We recall the
following result of Nikisin which is one of the classical results for the Padé
approximation of the polylogarithm functions.

w Z

n
THEOREM 0.1 ([6, Theorem 1]). Let se N and Liy(z) = an; be the s-th

polylogarithm function. Let z be a negative rational number and assume, for unique
coprime integers a, b such that z =a/b with b >0 and z < —1, the inequality

(1) b*! < |a| exp[—(s — 1)(slog s + (254 1) log 2 + .
Then, we have

2) dimg(Q+QLij(1/z) +---+ QLiy(1/2)) = s+ 1.
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Let

i m+l

= (m+x)°
be the Lerch function with s e N, x > 0 and z € C satistying |z| < 1 and (s,z) #
(1,1). The Lerch function is related to the Hurwitz zeta function {(s,x), the
polylogarithm functions Liy(z), and the Riemann zeta function {(s). In fact there
are equations

{(s,x) = Dg(x, 1), Lis(z) = Ds(1,2), {(s) = Dy(1,1).

Rivoal [10] studied the Padé approximation of the Lerch function. In [10] Rivoal
generalized the study of the Padé approximation of the polylogarithm functions
in [9] and that of the Hurwitz zeta function in [2]. Rivoal remarked that the study
of the Padé approximation of the Lerch function is related to the study of the
Diophantine problems of the Riemann zeta function. In this paper, by using the
Padé approximation of the Lerch function, Proposition 2.1, we prove the fol-
lowing generalization of the Nikisin’s result, Theorem 0.1, for the Lerch function.
That is as follows

THEOREM 0.2. Let s € N. Suppose that x is a positive rational number and z
is a negative rational number and assume, for unique coprime integers o, 8 and a, b
such that x = o/f and z=a/b with f,b>0 and z < —1, the inequality

. log ¢
s+1 2
b5t <|a|exp<—[s <log[)’+§ q1+ﬂ>

qlp

+(s—1)(slogs+ (2s+1) log2) — ]),

where q runs through the prime divisors of ff. Then, we have
dimg(Q + Q®(x,1/z) + -+ + Q4(x,1/z)) = s+ 1.
ReMARK 0.3. Note that Theorem 1 in [6] insists the same conclusion as the
conclusion (2) of Theorem 0.1 with a condition
b* < |a| exp[—(s — 1)(s log s + 25 log 2)],

which is weaker than the condition (1) in Theorem 0.1. Unfortunately, there
are minor errors in the proof of Theorem 1 in [6]. More precisely,



Evaluation of the dimension of the Q-vector space spanned 173

Byexp{n(slns+2sIn2)} on line 14, page 386 should be replaced by
Byexp{n(slns+ (2s+1)Ins)}, and b"¢* on line 11, page 388 should be
replaced by (be*)*. These replacements lead the condition (1), which is the
condition given in Theorem 0.2 with f=1.

RemARrRk 0.4. Hata evaluated the dimension of the Q-vector space spanned
by some special values of the Lerch function in [5, Theorem 2.1]. His method is
quite different from ours and our result is stronger than that of Hata’s.

ReEMARK 0.5. It might be a natural question to ask the relation between the
Padé approximation of Lerch function obtained in [10, Theorem 1] and that of
ours (see Proposition 2.1 of this paper). At the moment, the relation is not clear
to us.
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1. A Criterion of Linear Independence of Numbers
In this section, we recall a criterion of linear independence for given real

numbers. From now on throughout the paper, we fix a natural number s e N.

LemmA 1.1. Let 0y,...,6, € R. Suppose that there exist (s+ 1) linear forms

S
LI (Xo,..., X) =Y A

) .
2 e (0<g<s;neN),

for all n e N with integer coefficients, which satisfy the following two conditions.

(3) det((A{"))o<p g<s) # 0,

: (n) () ys—1Y _
@ im (max (1L0)) | max (147" ) <o

n—o \ 0<g<.
where L(S")(H) = Lén)(l,ﬁl, ..., 65). Then, we have

dimg(Q + Q0 +--- + Qb)) =5+ 1.
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ProOOF. We denote 6y = 1. We consider a linear form with integer coefficients
I—Zx, i = (x0,...,x5) #0).

According to the condition (3), the determinant

45y Ay Al
Agy AUy A
AW =det| xo X cee X
A(g’f/)aﬂ Aifl])nﬂ e AAEZZH
A7

ag oAl

YS

is non zero for some p which depends on n. Adding the i-th column multipled by
0,y for 2 <i<s+1 to the first column, we get

L) Ay - A

L, (0) 4", AL

Ai”) = det / X1 e X
L (8) A 4™

p+1 1,p+ s,p+1

L) 4" - Al

Since A" #0 and A" € Z, we get 1 < |A")| for all ne N. We estimate an
upper bound of [A]. Let Ai"),,, be the (f,u)-th cofactor of the above matrix.
Then we have

AL =3O 1AL,
t#p

For each ¢ # p with 0 <t < s, the definition of determinant implies,

(1) 1y s—1
INIEE ommax {|4 i gmax {xg}-

Hence, we get

(n) ., (n) ., (m) |y s—1 , (n) s
AL < max (L (O))s! max (|40} max ([} +1lst max {140}
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From the condition (5), when 7 tends to infinity, the first term of the right-hand
side tends to zero. Thus we get / # 0. Thus we conclude that

dimg(Q + QO + -+ Qb)) = s+ 1. 0O

REMARK 1.2. Lemma 1.1 is based on the Siegel’s paper [11]. We gave here
the detailed proof of it, following basically the argument given in [7, Chapter 2,
Section 1.4].

2. A Padé Approximation of the Lerch Function

We would like to construct linear forms with integer coefficients satisfying
the conditions (1), (2) of Lemma 1.1 for 6, = ®;(x,1/z),...,0, = ®y(x,1/z) when
x,z € Q satisfy the conditions of Theorem 0.2. For this purpose, we construct a
Padé approximation of the Lerch function.

For a positive integer n and non-negative integers k, ¢ with 0 <k, q <,
we put

F(n)(x7u) — u(uf 1)...(u70',17q+2) 7
! T (u+x+ ) (u+x+n)"

o
%‘(1”) (x,2) := ZFq(") (x,m)z="1,
m=0

where 0,,=ns+q. Then we define a family of rational functions

{/kq( )}lskgs,osqgs,os/‘s;z by

s n .(”)
(5) ) (x,u) = _Gxa_
=1 =0 (u+x+))

and a family of rational functions {A,(('le(x, 2) € Q(X)[2]} o<k g<s bY

" Yo c;",z q(x)zf for1<k<s5,0<g<s
(6) Ak’jq(x, z) = j=1-1

oz .
Zp IZ/ 1€ /p q( )Z)/:()l m otherwise.

By the definition of A;:)q(x, z), we can easily show

—1 forg=0
7 deg. xX,z) < "
™ e Ay, q( ) { n otherwise.
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Using the family of rational functions {A,(:)q(x7 2)}o<k g<s» WE Can construct
a Padé approximation of the Lerch function.

PrROPOSITION 2.1.  Under the notation above, we have %é”)(x, z) = O(z7 %)
and the following Padé approximation

(8) ZA (x,2)®(x,1/2) — A" (x,2) for 0< g <s.

Further, we have the following integral representations

s 1 x+u—1
(9) F"(x,u) = ZJ tF(k) A (x,0)(log 1/0) " dr for 0< g <5,
k=10 '

q

SO [ o (iy(d) = Al 0)

| 4 _ J 4 ka log /)51

( 0) O,q(x7 Z) P 0 F(k) -t ( Og /t) d[
for 0 < g <y,

! lx_] AI<¢”) (X, Z)
1) 2" (x,z) = J R og 1/0) N dt for 0<g<s, |z > 1.
(11) (x,2) ;()F(k) -, (og1/1) |2

q

Proor. Since the coefficients of Q )(x,z) of the expansion with respect to
z vanish for the degree larger than —o, , by the definition of F (x, u), we get
%;”)(x, z) = O(z~%4). By the relation (5), we get

SR G
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Note that if j =0, we mean >/~ 10( =1 = 0. By the above equalities,
m

we obtain

k=1 j=0
- (" () ) S5 = |
n n —m+j—
= Ci g (X)2) | Op(x,1/2) ¢ q(X) £z
k=1 \j=0 s k=1 j=1 PR e (m A+ x)
s
= A" (x,2)Pr(x,1/2) — A (x,2).

Thus we obtain the equation (8).
Using the integration

JltXHl(lo 1/n*! dr—— 1
o T'(k) s (x4 u)*’

the definition (5) and (6), we can show (9) as

K n (n)

FO o)=Y Gk

q X K
= =0 (u+x+j)

N 1 Zx+u71 () o1
_ /YTJO R A 0 log 1/ i for 0< g <5
The integral representation (10) is obtained from the equation (z/ — /) /(z — 1)
= 2771527 )(¢/2)" and the above integration.
The integral representation (12) is obtained from the equation -1 =

z—t
S ot"z=m+) on |t/z] < 1 and the above integration. O

REMARK 2.2. Let us keep the notation in Proposition 2.1. For x € Q\Z<
and g € Z, the leading coeflicient of the polynomial Ac(,f’?,(x, z) € Q|z] is not zero
for every ne N. In fact, we have

1) (u—a, 2
Cr(lnl)j.q(x) — ZE? ) (u - On,q + ) (u—l—x—l—n)q
’ [T (u+x+ )" (u+ x +n)? u=—x—n

_ (—x—n)(—x—n—11)---(—x‘—n—0,,,q+2) 20
[[5 (=n+J)’
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Therefore we obtain

(12) deg. (A" (x,2)) = n.

3. Some Estimates

By Propositin 2.1, we obtain linear systems with rational coeffitients of
1,®(x,1/z2),...,®(x,1/z) for x,ze Q. Multiplying a suitable integer to the
coeffitients of each linear systems, we obtain a family of (s+ 1) linear forms with
integral coeffitients. To verify the conditions (1), (2) in Lemma 1.1 for the above
linear forms, we would like to estimate some related values as a preparation for
Section 5.

LemMmA 3.1. Let z and x are real numbers satisfying |z| > 1 and x > 0. If
neN is enough large, then there exists ¢ >0 which is independent of n and
satisfies

(13) max {|4" (x,2)[} < |z/"n° exp{n(s log s + (25 + 1) log 2)}.
0<k,g<s 4

Proor. Using the definition of {c;"k) ()M <k s 0<q<s,0< j<n given by (5), we
get

1

(14) el () = o F (x,u)(u+ x+ /)" du.

q
Ju+_j+x—l/2

Using the integral representation of cj("lg ,(x) and the definition of Fq("> (x,u), we
obtain

") ()] < 27 suppy o {E (v 0) [}

U+ 0ng—2), 1
(u+x),(u+n+x)?

—k
<277 SUp|y ji=1/2

(u — Ong+ 2)0',1,,[—1
(u+x)(u+n+x)1
following inequalities for ue {ue C||u+ j+ x| =1},

. There are the

We give an upper bound of supj,, ;. _i»

(U= Gng+2)y, | = Nt 4 X == X)X = 0ng— j—x+2)]
<({124+j+x)--- (1240, +j+x-2)

S(THj+RD - (Ong +7+ X = 1),
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n—1 n—1
utxl, = lu+1+x =] lutj+x+1-))
1=0 1=0
n—1 N
L1 (n— !
> [—j|—=| > X~

and
u+n+x|=|lu+j+x—1j—nl|=1/2,
where [x] € Z satisfying x — 1 < [x] < x. We obtain

(u — On,q + 2)6,,_(,71
(u+x),(u+n+x)?

—k
270 Sup)y =12

_k (1 +j+ [x]) C (O'nA,q +j+ [X] _ 1)23s+qn3s
((n= N’

_ 3s+q7kn3s(j+0'n,q—|—[x]_1)! A\
- (+ BDHn° (]>

<2

By using the inequality <n) < 2" we get
J

23s+q—kn3s (] + Ong + [X]

(+ DY

1)! n\’ s+q— S(].+Un,q+[x]*l)! ns
<j>£23+ K F T

. —1)!
< 23s+q7k+]+a,,,q+[x]71n3s (Jn-q 1) ons.

(nl)*

By using the Stirling formula, we obtain

(On,q=1) ,—(0p.g—1
23‘Y+q—k+_/‘+o’n.q+[X]—1n3S (0_"711 — 1)!2ns < nc” (Gn,q — 1) e (©nq=1)

2ns+n
(n)* nhse=ns 2

< n® exp{n(slog s+ (25 + 1) log 2)},

where ¢/, ¢” > 0 do not depend on n. From the above inequalities, we conclude
that

|cj(_"k)vq(x)| <n¢ exp{n(slog s+ (2s+ 1) log 2)}.
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Using the assumption x > 0, |z| > 1, the definition (6) and the above inequality,
we obtain
|Z|n+l 1

BB forl <k <s,

0<g<s

" n¢ exp{n(slog s+ (2s+ 1) log 2)}
A g (x,2)] <

otherwise

s _
n¢ exp{n(slog s+ (2s+ 1) log 2)}|z|"71x);
for some ¢’ > 0 which does not depend on n. Thus we conclude that
max {|4") (x,2)|} < |z/"n exp{n(s log s + (25 + 1) log 2)}
0<k,g<s 4

for some ¢ > 0 which does not depend on . O

LemmA 3.2. Let x, z are real numbers which satisfy x> 1/2, z< —1. If
n € N is enough large, then there exists ¢ > 0 which is independent of n and satisfies

ns —ns(s+1)
(15) max {\%fl’“(x, )|} < n”<1> <1 + i)

0<g<s |z|

Proor. We remark that if |x/z] < 1 and x # 0, then we have the following

equation
11 J A" dw
z—1 o 2iz Re(w)=—1/2 z Sin(TEM}) '

The above equation is easily computed by means of residues.

Since 0<t<1, z< —1, the integral converges uniformly for ¢e[e 1],
z< —1—¢ where 0 <¢< 1, we obtain

s Jl el A/E?Z,(XJ)

2 x,z) = log 1/t k=1 gy
q ( — F(k) st ( / )
1 J S Jl t,\‘fl (n) el ( t>w dW
=5 A (x,t)(log 1/t dt| —- ) —
2iz Re(w):fl/Z; o I'(k) eyl Oog 1/1) z) sin(nw)
1 1 w
:_.J F(")(x, w) (__) .dw '
2iz JRewy=——1/2 * z /) sin(zw)

The last equality was obtained from the equality (9). Shifting the line of in-
tegration from Re(w) = —1/2 to Re(w) =0, ,—3/2, we get

. " dw
Fq( ) (2, w) <> —_—

z) sin(aw)’

1
R (x,2) = *-J
q ( ) iz Re(w)=a,,4—3/2
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We fix veR and put w=g0,,—3/2+iv. Then we get

n 1
(n) _Z
£ (x,w)( z) sin(zw)

A

On.q

1

Fw+1)
‘(W+x)‘v~~(w+n1+x)s

I'(w— 0,4+ 2) sin(zw)

=1z

A> 1
< ——1TI(o, .
7 ) G T (o )

The third inequality is obtained as follows. Since there is the equality

1 [(Gyg—1—w)

i = fi C\Z,
I'(w— 0,4+ 2) sin(zw) T or we C\
we can obatine the inequality for w =0, ,—3/2+iv
r 1
(v + 1) < ().

I'(w— 0,4+ 2)sin(zw)| ~
By using Stirling formula, we get

A> 1
r O-n. S
7 ) G T (o t )

SOn.q ,—50p, ¢
< A3 “’n,qe_ﬂu.q O'n,q €
= 1.[Onq “nyq . _
‘Z 1 (O'n,q + n)("»z, ’+”)€ $(0n,q+n)

Ay 1 —ns(s+1)
< —— | 1+- .
= < ’ )

for Ay, A>, A3, As = O(n®) and some ¢ > 0 which does not depend on n. Thus we
obtain the required estimate. |
We denote
d, =lcm.(1,2,...,n)
and

1, (b) = Hq[n/@fl)]

qlb

where b,n e N and the product is over all primes ¢ dividing b.
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Lemma 3.3.  Let x and z be rational numbers which satisfy x > 0 and z < —1.
Set x:% and z:%, where o, f with >0 and a, b with b >0 are coprime

integers, respectively. Then we have

ST (B) b dS kA y(X,2)€Z for 1 <k<s50<g<s,

S|ﬂm+b 1 (ﬂ)Yb (dwn 1>[),)YA(()21(x z)eZ for 0<g<s.

Especially we get
(16) S ,(B) B (dy ) AL (x,2) € Z for 0 <k, g <s.

Proor. We construct an integer which is divisible by the denominator of
()

¢ g(x) for 0<k, g <s, 0<j<n According to the equation (3), we get
1 AN s ,
m E Fq (x7u)(u+x+j) ‘uzfxfj fOfOS]Sn-L
' 1<k<s
17 c(") X) = 1 d\4*
A7) g ) 7(q—k)'(%) F(xu)(u+x+n)?|,__._, forj=n,
' l<k<g
0 for j=nk>q.

s—k
First we caluculate (s—lk)' (;i) Fq(")(x, ww+x+j)|,-,,; for 0<;<

n—1, 1 <k <s. Since we have the following equality
( i)
Fy" (x,u) (u +x + )

u(u—1)---(u—0nq+2)
(u+x) - (u+x+j-Du+x+j+1) - (u+x+n—-1)wu+x+n)?

Fq(") (x,u)(u+ x + j)* can be represented in the form of a product of the following
functions.

P(Sn)(u) = (M — Opq + 2)(” — Op,q + 3) T (u — Op,q + S),

Fe g n(x,u)

B wu—c)u—c—=1)---(u—c—(n-1))
Cutx)utx+ ) (utx+i—-Dutx+j+1) - (ut+x+n) for ¢=0.
Fegno1(x,u)

_ (w—c)u—c=1)---(u—c—(n—-2)) for ¢ > 0.

(u+x)u+x+1)-(u+x+j—Du+x+j+1)--(u+x+n—1)
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We denote

F(xu)(u+x+ j) =P H o (x

where E(")q(x, z) stands for either F.,,(x,u) or F,,,—1(x,u). Hence, we get

d s—k ,
() FOwnx s e

B (=R (d\" s (AN
_Zla+h+-~+ls=s—k]0!...[S[ du Py (u)Hm:I du Forg( i)y |-

We can express

wu—c)u—c—=1)---(u—c—(n—-1))

Fc’q’"(x’u):(u+x)(u+x+l)~~(u+x+j—1)(u+x+j+l)~-'(u+x+n)
B B B
(u+x) (u+x+1) w+x+j-1)
(u+x+j+1) (u+x+n) ’
where
Bg) = wiict (X +HI+o) - (x+e+l+n-1) ;
(-1) = 1)1 forj+1</<n.

Substituting «/f for x, we get

(=) B Ty (e + Ble + 1+ w))

) Toe for0</<j
By 4(x) = -1 g=n Tyn-! /
(-n""'p ll"[&o_(i;ﬂ(c+ ) forjri<i<n

Since

B Ihnco(e+ Ble+1+w) _ P TIiso(e+Ble+1+w)  nl
I'(n—1)! n! I'(n—1)!

n—1
[
and (a,f) =1, we obtain u,(f) H“’:O(a+i('c+ =) € Z. Henceforce we get

w,(B)p"Br4(x)eZ for 0<qg<s,neN.
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Using the above relation and the following equation

<Z¢>[(Fc’q’n(X7 u))

=10 & (_1>11! Bog(x)j | Biy(x)(j—1) Bj_1,4(x)

(u+x)l+l (u+x+1)/+l (u+x+]_ 1)/+1

B; B, — 7
+ J+17<{(x) e R +77q(x)(n /ﬁ for 0</<s—k,
(u+x+j+1) (u+x+n)

we obtain

B () (gt

U=—j—x

Similarly, we obtain

d !
,u,,,l(ﬁ)ﬁn ldﬂ/ 1 (d ) (Fc_q,n,1<x, u))luzfjfx el.

Thus we obtain

sl (BB dy e, (x) € Z.
We conclude that

sl (B) BBy A (x,2) € Z.

Next we consider the case of k = 0. From the definition (6) we get the equation

(x+1) (x+j—1)

NN ) o (@ e
_;;‘f’k"’(x)<b-’W”bﬂ(wﬁ)” Tt Gonpr)

1 j—=2 1
(n) Z/ zZ
TIEEE 9 SEHE ( PO B )
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Since s!,un(ﬂ)Sﬁ"‘”“_ld,f‘kcj(‘”k)‘ ,(x) € Z, we conclude that

Wty (B) B (i a1)p) 4G (%, 2) € Z.

_A(()”Z)(x7z) AY,I‘Z(va) Aiﬁ-)(x,z)

N

for every n e N. Then we have the following lemma

185

LEMMA 3.4. Let A" (x,z) be as above. Then A" (x,z) are non-zero poly-

nomials with rational coefficients in variable x for every ne N.

Proor. We denote

~ ) ) ey (x)
n n n 5
A (x,z) = ;A,w(x, 2) D (x,2) — Ay (x,2) = Zgw :
A"y (x,2) AN (x,2)
(n) (n) '
A X,z A" (x,z
A (x,2) 1= (1) dot| A1t 5F) Ao
A" (x,2) A" (x,2)
Lg+1\"™ 5,q+1\
(n
Al \<X,Z) A&,S(x?Z)
and
A (x,2) AV (x,2) A (x,2)

A" (x,z) = det A" (x,z) = det :
2 (x2) A(xz2) o Al x2)

We consider Aé”) (x,z) as a polynomial in z. From the construction of A,(('f;(x, z)

we get

<m—-1)+4+n+---+n=ns—1 forg=1

deg. AW
°8: %4 (x’z){:ns for ¢ = 0.
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When ¢ =0, we use the equation (12) in Remark 2.2. If we denote

() 1= T ) )
q=1

then, we get

= Z %;’0 (x, Z)A;”) (x,2)

q=0
= B )y (x) + I (x)/z + ha(x) /2 4 -
Since A™(x,z) is a polynomial in x and z, we get

A (x,2) = ™ (x)c(()f’()) (x) € Q[x].
(n)

Moreover, since ¢ (x) is not zero, AW (x,z) #0. O
REMARK 3.5. By Remark 2.2 and the equation (17) in Lemma 3.3, we have
b (x) # 0 and coo(x) #0 for x e Q..

4. Proof of the Main Theorem

In this section, x and z are rational numbers satisfying the condition of
Theorem 0.2. Theorem 0.2 is proved by using the result of Sections 2, 3 and 4.
We construct (s+ 1) linear forms with integer coefficients satisfying the con-
ditions (1), (2) in Lemma 1.1 for ®;(x,1/z),...,®D4(x,1/z). We use the notations
of the previous section.

We put

A = BT , (B) B (dy 1) AL (x,2) for 0 <k, g <,

and
S
LEI”)(XO, D A= —Aé'f;Xo + ZA,(:ZIX[, for 0<g<s,neN.
=1

By the equation (16) in Lemma 3.3, {LfI")(XO,...,XS)}OSqSS are the linear
forms with integer coefficients for all n e N.
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We denote

n n n n (n)
—Agy o Ag ~L0)4g" o A

)

A" = det : . : = det

(n)
_Asno

9y
3

Now we are ready to prove Theorem 0.2.

PrROOF. By Lemma 3.4 and Remark 3.5, we get A" %0 for all neN. By
the inequalities (13), (15) in Lemma 3.1 and 3.2 respectively, we get

max {|L"(0)]} max {4}

0<g<s 0<k,q<s ’

1 s s 1\™ 1 —ns(s+1)
= Al{ﬂnH—S_ :un(ﬂ) b”(doHr(nfl)/}) } <|7> (1 +—v>

2" exp{(s — 1)(s log s + (25 + 1) log 2)}".

where 4; = O(n°) for some ¢ > 0 which does not depend on n. Using the fact
dy, =exp{n+o(n)} and e < (1+1/s)"™" we get

() (n) |y s—1
s UL Oz (el

< Ay (B u, () b e n=1Rs) s o =ns <é> exp{(s—1)(slog s+ (2s+1) log 2)}"

b5+l 5 log ¢
£A3l( a )exp(s (logﬂ—k;q_ 1 —i—ﬁ)

+(s—1(slogs+ (254 1) log 2) s))} ,

where A, A3 = exp(o(n)). Suppose

log ¢
s+1 2
b5t <|a| exp([s (10gﬁ+ E q_1+ﬁ>

qlp

—|—(s—1)(slogs+(2s+1)10g2)—s)1>,
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then,

n s—1
max {|L{"(O)]} max_ {|4/",]}

0<g<s
goes to 0 when n tends to infinity. By Lemma 1.1, we conclude that

dimg(Q + Q1 (x, 1/2) + - + Qy(x, 1/2)) = s + L. 0
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