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ALGEBRAIC INDEPENDENCE OF INFINITE PRODUCTS
GENERATED BY FIBONACCI NUMBERS

By

Takeshi Kurosawa, Yohei TacHivA, and Taka-aki TANAKA

Abstract. The aim of this paper is to establish necessary and
sufficient conditions for certain infinite products generated by Fibo-
nacci numbers and by Lucas numbers to be algebraically inde-
pendent.

1. Introduction and the Results

Let o and f be real algebraic numbers with || >1 and «f = —1. We
define
o — "

U, = " and V,=a"+p" (n=0). (1)

If o= (1++/5)/2, we have U, =F, and V,, = L, (n>0), where the sequences
{Fu},s0 and {L,},., are Fibonacci numbers and Lucas numbers defined, re-
spectively, by Fpo=F, 1 +F, n>0), Fpb=0, Fi=1 and Ly, =Ly + L,
(n>=0), Ly=2, Ly =1. Let d > 2 be a fixed integer. For an arbitrary nonzero
integer a, the second author [3] proved that the infinite products

0 a o) a
1+ > and (1 + )
[T (regy) e I (e
U #—a Vi #—a

a a

are transcendental numbers, except for only two algebraic numbers
[T2,(1 =1/V5) and T2, (1 +2/V5k) (cf. Remark 1 below).
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The purpose of this paper is to establish necessary and sufficient conditions
for the infinite products

ﬁ (1+5;k> (i=1,...,m) or ﬁ <1+If;k> (i=1,...,m)

k=1 k=1
Uk #—a;i Vi #—ai
with nonzero integers ay,...,a, to be algebraically independent.

Tueorem 1. Let {U,},-, be the sequence defined by (1) and d an integer

greater than 1. Let ay,...,a, be nonzero distinct integers. Then the numbers
0
a;i .
H <1+U ) (i=1,...,m)
iy dk
U #—a;

d

are algebraically independent.

ExampLE 1. Let {F,},., be the Fibonacci numbers. For any nonzero

nx
distinct integers «y,...,a,, the numbers
H (1+ l) (i=1,...,m)
k=1 Fax
Fyp#—a;

d

are algebraically independent. In particular, the numbers [[;2,(1 — 1/F,) and
[T, (1 + 1/F,x) are algebraically independent.

CoROLLARY 1. Let {U,},- and d be as in Theorem 1. Let aj,...,a, be
distinct integers. Then the numbers
= 1
14+— =1,... 2
11 (14 5a) (=1 @
Uk #—ai, —a;i—1

are algebraically independent.

THEOREM 2. Let {V,},>, be the sequence defined by (1) and d an integer
greater than 1. Let ay,...,a, be nonzero distinct integers. Then the numbers

I (175) omtem

k=1
Vi #—ai
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are algebraically dependent if and only if d =2 and at least one of the following
two properties are satisfied:

(i) For some j (1 <j<m), aj=—1 or 2.
(i) The set {a\,...,an} contains integers by,...,by (I =3) with by < -3
satisfying

by=—bi, bj=b>,—2 (j=3,....0—1), by=-b} +2. (3)

ExampLE 2. Let {L,},., be the Lucas numbers. For an arbitrary integer
m > 3, the numbers

L) L) ) H0ez)

k=1 k=1 k=1

Il
>

are algebraically independent, while [];~,(1 +2/Lsx)

ExampLE 3. The transcendental numbers

_v’ | 5 _OO 1 5 J _OC | 23
Pl—H L) Pz—H +L—2k’ an Pz—H I

k=1 k=1 k=1

are algebraically dependent with trans.degg Q(py,p,p3) =2 and 4/5p,py + ps
=0.

ReEMARK 1. If d =2 and if the property (i) in Theorem 2 is satisfied, then
the corresponding infinite products are algebraic. Indeed, the second author [3]
obtained

e 1 at—1 o 2 a+1
[ S S d 1 = )
H( V2k> at + a2 +1 an H( + Vzk) a2 —1

On the other hand, if d = 2 and if there exist integers b;,...,b; (I = 3) satisfying
the recurrence relation (3), letting

k= b,-xzk .
‘P,'(X):H 1+W i=1,...,0)

k=0

and using [];2,(1+x2") = 1/(1 — x2), we have
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W1 ()W (x) = (1 - x%)? H(l —bax?" 22,

k=0
“P]()C)‘Pz( )“P;( ) 1 —b3X+x2H 1 — 2k+2)’
(1 —X2)172 = k1 k+2
Wi (x)Wa(x) - Wioa(x) = (1—bx* +x¥),

T30 = byx +x?) i
and

(122" ()

LPI(X)TZ( ) Wi 1( ) (1+blx+x2)nj(;§(1—bjx—f-xz).

Noting that

for large N, we see v;! ;;11 vj € Q(a).

REMARK 2. In a similar but simpler way to Remark 1 and the proof
of Theorem 2 we can show the following: Let y be an algebraic number with
0< |yl <1 and d an integer greater than 1. Let ay,...,a, be nonzero distinct
integers. Then the numbers

are algebraically dependent if and only if d =2 and at least one of the following
two properties are satisfied:

(i) For some j (1<j<m), aj=1.
(i) The set {ai,...,a,} contains integers by,...,b; (I >3) with b} < -2
satisfying

by=—b1, bi=bj, (j=3,....—=1), b =-bj,
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2. Preparation for the Proof

Let K be an algebraic number field, K(x) the field of rational functions over
K, and K][[x]] the ring of formal power series with coefficients in K. We define the
subgroup H, of the group K(x)* of nonzero elements of K(x) by

g(x’) .
Hd:{ g(x) € K(x) }
g(x) (4)
We use the following lemmas for proving the theorems.
LemMa 1 (Kubota [1, Corollary 8]). Let fi(x),..., fm(x) € K[[x]]\{0} satisfy
the functional equations
filx®) = () filx), a(x) eK(x)* (i=1,...,m). ()
Then fi(x),..., fm(x) are algebraically independent over K(x) if and only if the
rational functions c¢|(x),...,cn(x) are multiplicatively independent modulo H,.

Lemma 2 (Kubota [1], see also Theorem 3.6.4 in Nishioka [2]). Suppose that
the functions fi(x), ..., fm(x) € K[[x]] converge in |x| < 1 and satisfy the functional
equations (5) with c;(x) defined and nonzero at x=0. Let y be an algebraic
number with 0 < |y| < 1 such that c;(y?") are defined and nonzero for all k > 0.
If fi(x),..., fu(x) are algebraically independent over K(x), then the wvalues
H©@), -, fm(y) are algebraically independent.

3. Proofs of Theorems and Corollary 1

ProoF OF THEOREM 1. Define

B (2 = B)ax®" .
(I)Z(X)ZH<1+W) (i=1,...,m).

k=0
Take an integer N such that |Ug| > max{|ai|,...,|an|} for all k£ > N. Then
o™y =T (1+-2) (i=1,...
=TI (1vgs) G=tm,
so that

ﬁ (1+£§k)=®,~(a—d“’) ﬁ (1+é‘i) (i=1,...,m).  (6)

k=0
Uk #—ai Uk #—ai
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Suppose that the numbers (6) are algebraically dependent. Then so are the values
@ (o), ..., Du(a?"). Since ®;(x),..., D, (x) satisfy the functional equations
O;(x9) = ¢;(x)®;(x) with

— (=152
ci(x) = - =)

71+(a7ﬂ)aix7(7l)dx2 (i:1""’m)a

the functions ®,(x),...,®,,(x) are algebraically dependent over K(x) by Lemma
2 with K = Q(«). Then by Lemma 1 the rational functions ¢;(x),...,c,(x) are
multiplicatively dependent modulo H,, namely there exist integers ey, ..., e, not
all zero, and g(x) e K(x)* such that [, ¢;(x)“ = g(x?)/g(x). Then, renum-
bering the a;, we may assume that there exist coprime polynomials A(x), B(x) €
K[x] such that

h s

AX)BED [ Pix) = (1= (1)) A Bx) [T Pilo), (7)

i=1 i=h+1

where h,e;,eeZ with h,e; >1 and P;(x) =1+ (a — B)aix — (—1)x2. Since «
and f are real with off = —1, we have |a — ff| = |«| + |f] > 2, so that the roots o;
and f; (Jo;| = |f;]) of Pi(x) =0 are real with |o;| > 1 > |f;|. Since we admit the
case of e < 0, renumbering the ¢; again if necessary, we may assume |o| > |o]
and |f,| < |f;] (i=2,3,...,s). Noting that P;(x) and P;(x) (i # j) are coprime
and substituting x = oy into (7), we have A(af)B(a;) = 0.

If A(2') = 0, substituting x = a into (7) and noting that A4(x) and B(x) are
coprime, we get A(a{lz) = 0. Repeating this process, we obtain A(ocldl) =0 for all
/ > 1, which is impossible. Thus we have B(o;) =0. If d >3 or o <0, sub-
stituting x = ocll / into (7) and noting that the roots of P;(x) = 0 are real, we get
B(ocll/d) =0 and so B(ocll/dl) =0 for all /> 0. This is impossible and hence we
obtain d = 2 and o) > 0. Substituting x = 8, into (7), we have ff; > 0 by the same
way as above, which contradicts o, = —1. O

ProoF oF THEOREM 2. We define

¥,(x) = 1+—" ) (i=1,...,m),
R A

which satisfy the functional equations ¥;(x?) = ¢;(x)¥;(x) with

1+ (=1)9x2
¢i(x) = ) )
I+ax+(—1)"x
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Then we have

[ (o) B (o) o

_ h—1

#—a; Vi #—

for large N. Suppose that the numbers (8) are algebraically dependent. By
Lemmas 1 and 2 with K = Q, the rational functions c¢{(x),...,¢,(x) defined
above are multiplicatively dependent modulo H;. Hence by the same way as in
the proof of Theorem 1 there exist coprime polynomials A(x), B(x) in Z[x] such
that

AWBE [ 20" = (14 (1)) axBl) [[ P ©)

i=1 i=h+1

where h,e;,e € Z with hye; > 1 and Pi(x) =1+ aix+ (—l)dxz. Let o; be one of
the roots of P;(x) =0 with |o;| > 1. If d >3 is odd, then the roots of P;(x) =0
are real and |« > 1. Hence we can deduce a contradiction by a similar way to
the proof of Theorem 1.

Now we suppose that d >2 is even. Then the equation (9) is expressed
as

HP (14 x?) H Pi(x (10)

i=h+1

with P;(x) = 1 + a;x + x>. Comparing the orders at x = 1 of both sides of (10),
we see that a; # —2 for all i. We distinguish two cases.

Case I). d > 4 is even.

If || =3 for some i (1 <i<s), noting that || > 1, we deduce a con-
tradiction by a similar way to the proof of Theorem 1. Hence a; € {+1,2}, so
that oy € {+w, —1}, where w is a primitive cubic root of unity. First we consider
the cases of d > 8 and d =4. Let {; be a primitive d-th root of unity. Sub-
stituting x = oy into (10), we have A(a)B(a;) =0. If A(xf) =0, substituting
x = {40 into (10) again and noting that P;({,o) #0 (1 <i<3), we have
A({4o1) = 0. Repeating this process, we obtain A(Cdzcxl/d )=0forall/>1, a
contradiction. Similarly in the case of B(a;) = 0 we obtain B(Cdzcxll/dl) =0 for all
[ > 1, a contradiction.

Thus we have d =6. In the case of a; =1, noting that A(1) =0 and
substituting x = —w, —1 into (10), we may put P(—w)=0 and P3(—1) =0,
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respectively, since A(—w)A(—1) # 0 by the same arguments as above. Hence the
equation (10) is written as

A(x)B(x®) (1 + x4+ x3)(1 — x4+ x*)2(1 +x)2€3 = (1+x»)4(x*)B(x), (11)

where e=e;+e+e3>1. Substituting x=+—-1 into (11), we have
A(vV—=1)B(—1) =0, which again leads to a contradiction. The proof is similar

also in the cases of ¢y = —1 and a; = 2.
Case 1I). d = 2.
Comparing the orders at x = w of both sides of (10), we see that a; # 1. For
the case of a; = —1, using
—Xx g(x) 1 —x?
1+—="7 - =
+1+x2 g(x2)’ 9(x) 1+ x4 x2’
we have
k& X 1 — x2
1(X) ]];[0 +1+X2k+1 1+ x+x2° |.X|< ( )
Similarly for the case of a; =2, we have
= 2x2 1+x
l(x) /H)( +1+x2k+| ]—X’ |X|< ( 3)

Thus the property (i) in Theorem 2 is yielded.

Now we consider the remaining case of |aj| > 3. Then «; is a real quadratic
number with |oj| > 1. Since ¢;(x)Pi(x) = (1 —x*)/(1 — x?) € Hy, where H, is
defined by (4), and since ¢;(x),...,c,(x) are multiplicatively dependent modulo
H,, the polynomials P;(x),..., P,(x) are multiplicatively dependent modulo H,.
Hence, changing the indices i if necessary, we have

AWBE) [[ P = AG2)BG) [] P (14)

i=1 i=h+1

with |oy| > |o;| (i =2,...,s). Substituting x = o into (14), we get A(a?)B(e;) = 0.
Suppose that A(a?) = 0. Then we see inductively that A(o?') =0 for all /> 1,

which is impossible, so that B(x;) = 0. If o; < 0, then P,—(ocll/z) #0 (1<i<y),

so that B(ocll/ 21) =0 for all /> 1, which is also impossible. Thus we obtain

o; > 0. In what follows, we denote by ocll/ 2" the positive root of X2~ =0

(N =1,2,...). Substituting x = 7“11/2 into (14) and noting that B(—ocll/z) # 0,
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we see that there exists an #; (h+1<i <s) with P;(—a 1/2) = 0 On the other
hand, substituting x = ocl/2 into (14), we have B(x 1/2) [T Pi (acl ) = 0. If there
exists a j with P](all/z) =0, we put i, = j. Otherwise, we see B(ocll/z) =0 and
hence, by the same argument as above, there exists an ir (h+ 1 < i, <s) with
P, (— ocll/ 4) = 0. Repeating this process, we get for some ¢ > 1

P( 0511/2)—0 (k:1727'-'al)7 Piz+1(a11/2’)20'

Noting that o +o;! = —a; and P, (x) =1 +a;x + x%, we see that
k _ k t — t
—ocll/z — o 12 =—a, (k=12,...,1), ocll/z +o 1/2 —a,, -
Therefore we can choose from the set {ay,...,a,} the integers by,...,b; (I = 3)

with b < —3 satisfying
by=—bi, bj=bj =2 (j=3,...,1-1), b =—b +2,

which implies the property (ii) in Theorem 2. The converse follows from (12),
(13), and Remark 1. U

PrROOF OF COROLLARY 1. Let M = max{|ai|,...,|a,|} and let N > 1 be an
integer such that |Uz| > M + 1 for all k > N. Assume on the contrary that the
numbers (2) are algebraically dependent. Then so are the numbers

1 1
! kHv< +Udk—M—l+j> (G=1,....,2M + 1),
and so there exists a nonzero polynomial f(x1,...,X2r+1) € Z[x1,...,X241] such

that f(s71,...,92p41) = 0. Let F > 0 be the total degree of f(xi,...,X2p+1) and
define g(y17'~'7y2M+1) GZ[yla'“vyZMJrl] by

9 Yami1) (& yu 1 VM2 y2M+1) (15)
(yiy2---yan)” T v yu vt yam

We note that ¢g(yi,..., om41) #0. Indeed, substituting y; = H,ﬁl x; !
(i=1,...,M) and y; =[[i_py Xk (i=M+1,....2M +1) into (15), we see
that the right-hand side coincides with f(xi,...,xop41) # 0. Let

ﬁ( Ll“) G=1,.... M)

f— d

e M
H(1+ “) (G=M+1,...2M+1),
Ju s U

&=
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Noting that

1 ~M+j M -1+ "
1 =(1+— ) (1 +—" 7
Ry Ty (* Uy >(+ Uy > ’

we have ;= Ga/G U=1....M—=1), ny=1/Ey, My =<ms1, and
n=¢&/¢1 (J=M+2,...,2M +1). Therefore we obtain g(¢y, ..., <o) =
(SRR AT Mmi1) =0, so that &,..., &y are algebraically de-
pendent, which contradicts Theorem 1. O
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