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ON THE CARTIER DUALITY OF CERTAIN FINITE
GROUP SCHEMES OF TYPE (p",...,p")

By
Nobuhiro Ak1

Abstract. In this paper, we determine the Cartier dual of certain
finite group schemes of type (p”,...,p"), restricting ourselves to
positive characteristic p case. They are given by the kernel of certain
endomormphisms of the fibre product W 4 Xspec.a =+ XSpecu Wi 4
of the group scheme of Witt vectors of the length /. Moreover we
can treat the kernel of the endomorphism of a type F" + a;F""!
+---+a,: Wi 4 — W; 4 as our special class, where F is the Fro-
benius endomorphism and a; (k = 1,...,n) are suitable Witt vectors.

1. Introduction

Throughout this paper, we denote by p a prime number. Let 4 be a
commutative unitary ring of characteristic p. For a group scheme G over A4, we
denote by G the formal completion of G along the zero section. Our argument
is expanded on the group schemes introduced by T. Sekiguchi and N. Suwa
[SS2, Theorem 3.2 and Theorem 3.3]
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D (Xp) + 22Xy 7Dn,l(X(), vy Xpo2) F An X } '
These group schemes are constructed inductively by the following extensions;
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) 1 1

0 @(%2) & = Spec A | X, X, & 0
— — 02 pec 05 1,1+)~1X07D0(X0)+;LZX1 — 1 —

0— @B &3 — & — 0

0 gl &, — 61 — 0.

Here, A1,/2,...,4, are elements of 4, and D;(Xy, X1,...,X,—1)’s are given
as elements of HomAM[(é",»_l,Gm 4/5)- For deciding D;’s more explicitly, they
introduced the endomorphism U”: W] — W/} on the fibre product space of

group schemes of Witt vectors, and showed the canonical isomorphism;

Ker[U" : W4(A)" — W4(A)"] ~ Hom(&,, G, ).

Moreover they also showed the canonical isomorphism;

Coker[U" : Wy(A)" — W4(A)") ~ H (&1, G 4),

where Hg(é?’”,f}m, 4) means the Hochschild cohomology groups.

By these results, the homomorphism D; € Hom;, (&i-1, Gy, 4/;,) is given by
an element in Ker[U'™!: WA/;,,,(A//I,-)’I*1 — WAM,.(A//“L,-)H]. The group scheme
structure of &, is given by the one which makes the morphism

& — G”

m, A’

defined by
(X0, X15 - -y Xp—1) — (1 4+ A1x0, D1 (x0) + Aax1, ..., Dp1(X0, - -+, Xu—2) + AnXn—1),

a homomorphism of group schemes. Hereafter let / be a positive integer. For a
given group scheme &, such as above, if we take the p’-th power of the data
defining &,, then those data defines a group scheme é“,f';

1
(gf[ = SpecA X07X17~~-;Xn—1,7/7
14+ 47 Xo
1 1

D|(Xo) + ' X, D) (Xoy ..o, Xu2) + 722 Xy |

The group scheme structure of éa,f’[ is given by the one which makes the
morphism

o g G

m, A’
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defined by

1 1
(X0, X1+« oy Xno1) — (14 27 x0, Dy (x0) + A5 x1,..., D) _ (X0, ..., Xn—2) + )v,f,xn,l)7
a homomorphism. And this satisfies the following commutative diagram;

o ot n
& —— G, 4

|

where ¢ is given by ¢(fo,..., 1) = (t{)’[,...,t,fll) and ¢y is isogeny defined by
1 1
D (x0, .. x01) = (xb,...,x"",). Then the kernel N; = Ker ¥ is given explicity
by
1 1
N; =Spec A[Xo, ..., Xu1l/(XY ..., X)),
and we have the exact sequence;

f l/,(1) /
0— N — 6 — 6 —0.

Note that the group scheme sturucture of N; is the one induced from &,. In our
argument, the important thing is that we can identify the finite group scheme N,
with the completion N;, because X;’s are nilpotents in the coordinate ring of N,
and we can consider the exact sequence;

.0
OAN[;&LQ”I%O.

By means of the definition of the endomorphism
u"-wji— wj,
it induces an endomorphism
Ul Wi — W
which makes the following commutative diagram;

n (R n
Wi —— W/,

U JV U[n l

wi 2w

Under these notations, our first main result is given as follows;
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THEOREM 1. Assum that A is a commutative unitary ring of chracteritic p.
Then the Cartier dual of N is canonically isomorphic to Ker[U/": W}, — W[ ].

Oort-Tate [OT] gave the result of Theorem 1 in the case of /=n=1.
Next M. Amano [A] proved Theorem 1 for any / and n =1, and N. Aki and
M. Amano [AA] proved Theorem 1 for any / and » =2 by using the defor-
mations of Artin-Hasse exponential series. We prove Theorem 1 in the general
case by generalizing the argument in the previous paper [AA].

Let K be a perfect field of characteritic p. Then we have Dieudonné ring Dg
and the isomorphism Dg/Dg V'’ ~ Hom(W, g, Wi k). (DG, p. 550].) From this
point of view, F” 4+ a;F"' + ... + a, is an element of Dx/Dg V' for Witt vectors
ay,...,a, € W; 4. In Section 6, we give an isomorphism;

Ker[U: W'y — W',] ~ Ker[F" + @ F" + - ay: Wi g — Wi,

for some special type of Witt vectors ay,...,a, € W 4, and we give the second
asertion;

THEOREM 2. If we choose the base ring A of characteritic p and the group
scheme &, suitably, then the Cartier dual of N; is canonically isomorphic to
Ker[F" + aF"™ " + - +a, : Wi 4 — W, 4], where for each 1 <k <n, ay is Witt
vectors given by ap = Yoot (=DM AP and (3] s the
Teichmiiller lifting (2;,,0,...) € W(A) of A, € A.

The contents of this paper is as follows. The next two sections are devoted to
give the definitions and some reviews of properties of Witt vectors, the deformed
Artin-Hasse exponential series and the group schemes &, and éi{’l. In Section 5
and Section 6 we give the proofs of Theorem 1 and Theorem 2.

Notations

G, 4: the multiplicative group scheme over A4
W, 4: the group scheme of Witt vectors of length n over A4
W 4. the group scheme of Witt vectors over A

G, 4: the multiplicative formal group scheme over 4

Wm 4. the formal group scheme of Witt vectors of length n over A
W,: the formal group scheme of Witt vectors over A

F: the Frobenius of endomorphism of Wy

V: the Verschiebung endomorphism of W,
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R,: the restriction homomorphism of W, to W, 4
[2]: the Teichmiiller lifting (4,0,...) e W(A4) of 1€ 4
al?) = (af,a},...)(= F(a)) (a=(ap,a1,...) e W(A))
FW .= F 77

X := (Xp, X1,...) (a sequence of variables)

Y := (Yo, Y1,...) (a sequence of variables)
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2. Witt Vectors

In this short section we recall necessary facts on Witt vectors for this paper.
For details, see [DG, Chap. V] or [HZ, Chap. III].

2.1. Let X = (X, X1,...) be a sequence of variables. For each n > 0, we denote
by ©,(X) = ®,(Xo, Xi,...,X,) the Witt polynomial
(I)n(X) = XOP" + leer +o 4+ p”Xn

in Z[X] = Z[Xo, X1, ...]. Let W, z = Spec Z[Xy, X1, ..., X,—1] be the n-dimentional
affine space over Z. We define a morphism (the so-called Phantom map) ®" by

D" W,z — Ay x (Po(x), Dy(x),..., Dy (x)).
Note that W, z has the ring so that ®" becomes a ring scheme homomor-
phism, when A} is regarded as a ring scheme by coordinate-wise addition and
multiplication.
2.2. The Verschiebung homomorphism ¥V is defined by
V:W(A)— W(A); x=(x0,x1,...)— V(x)=(0,x1,x2,...).

The restriction homorphism R, is defined by

R, : W(A) = W,(A); x=(x0,X1,...) — Xp = (X0, X1y, Xn_1)-

We define a morphism F: W,(4) — W,_1(A4) by

Q;(Fx) = Qi1 (x)
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for x e W,(A4). If A is of characteristic p, F is noting but the usual Frobenius
endomorphism. For 1€ 4, [A] and F“ denote the Teichmiiller lifting [i] =
(2,0,...) € W(A) and the endomorphism F — [17~'] of W(A), respectively. For
a = (ap,ay,...) € W(A), we also define a morphism 7, : W(4) — W(A4) by

n—1

D, (T,x) = af Dy(x) + pa]  ©,1(x)+ - + p"a,Po(x)

for xe W(A). Then it is known that this morphism satisfies the formula
Tu=> koo V5 lak]. (cf. [SS2, Chap. 4, p. 20].)

3. Deformed Artin-Hasse Exponential Series

In this short section we recall nececssary facts on the deformed Artin-Hasse
exponential series for this paper.

3.1. The Artin-Hasse exponential series E,(X) is given by

Ep(X) = exp (Z );p ) € Z)[[X1]-

r>0

We define a formal power series E,(U, ; X) in Q[U, A][[X]] by

-1
E,(U,A; X) = (1 +AX) U/"H + AP Xp)l/p (w/n)" —(u/ay* )
k=1

As in [SS1, Corollrary 2.5] or [SS2, Lemma 4.8], we see that this formal power
series E,(U,Z; X) is integral over Z).

Let 4 be a Z,-algebra. Let A€ 4 and v = (vo,v1,...) € W(A). We define a
formal power series E,(v,4; X) in A[[X]] by

0

E[?(Da/l; X) - HEI)(Ukvipk;ka)

k=0

— (14 Ax)"/ ﬁ( 1yt B ),
k=1

Moreover we define a formal power series F,(v,4; X, Y) as follows;

OC ( AP X (14 Yp")>(l/pkw)@kl(v>

v,;X,Y) :
,g 1+ 27 (X + Y +2x7)"
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As in [SS1, Lemma 2.16] or [SS2, Lemma 4.9], we see that the formal power
series F,(v,4; X, Y) satisfies the formula;

E,(v,A; X)E, (v, 4;Y)

= F,(F%p,1: X, Y).
B0 i X+ ¥y ET0AXT)

4. Definitions of the Group Schemes &, and é(;{;/

We review here the group schemes &, briefly from T. Sekiguchi and N. Suwa
[SS2, Theorem 3.3].

4.1. Let 4 be a Z,-algebra and 4,4,...,4, be non-zero elements of A. For
a vector a of W(A/Z), we denote by ae W(A) a representative of a. Note that
the formal completion W is characterized as a functor given by;

W(A) = {(ap,ay,...) € W(A)|a; are nilpotents and a; = 0 for almost all 7}.
We choose Witt vectors
@' = (@), e Ker[U - W(A/di)' — W(A/ 1)
inductively by the following recursive conditions;
U':=F% @' :=al eKer[U': W(A4/2) — W(A/))]
() _
b’ :ziF(ma1 U? .= £ b
R b 0o FU) )
and for k =2, we choose

a* = (af), <<, € Ker[UX - W(A/lpr)  — W(A) i) ],

and we define

1 k
pi+! =7 (F(ﬂ-/)a;‘ - Z Tb/alk> 1<j<k-1

1=j+1
B+ = 1 FUx) gk
" Ak+1
F)  _ o o Ty
e 0 FU) — oo Ty
0 1 gt

0 A F(/lkﬂ)
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Moreover we define formal power series Dy (Xo, X1,...,Xk—1) (K= 1) by
Dy=1
Di(Xo) = Ep(@j, A1; Xo)
and for k> 1

Dk_H(X(),X],.. .,Xk) = Ep(ﬁk+l, ()”i)1§i§k+l;X07X1’ .. .,Xk)

k+1 X
= HE (d“l Ai; il )
i=1 ’ ! ’ ’Di—l(X())Xla"'vA/i—Z)

We put

1
& = Spec A|Xo, X1, Xyt ————
pec [ 0,41 ! 1+)V]X()

1 1
Dl(X()) + X, T ’D,,,I(Xo, Ceey Xn,Q) + A, X1 :l '
Then by [SS2, Theorem 4.16 and Theorem 3.3|, &, becomes a group scheme and

D; e Homy;,, (6, ®4A4/%i11,Gays,,,), fori=1,....n—1.

4.2. In this subsection, let 4 be of characteristic p and /i,...,4, € A. We will
define a group scheme denoted by (5",{’/. Let / be positive interger and (47 ])151.S Kl
be elements of 4. We define Witt vectors inductively by the following recursive
condisions.

For a} e Ker U', we have a relation
F%(al) =0 mod 4.

So we have also the following relation

o

FA)((a))) =0 mod 22"

_ _ 1 o
We put Al :=a?" then A! e Ker F). We define (U')':= F{). Then we
have the following congruences;

A=Al eKer[(UY) : W(4/22') = W(4/iL)].

For (af), ;< € Ker U¥, we have following equations;
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(A'l)k_ k_..‘_ k: )
F a; Tb]zaz Tblzaz =0 mod Ak+1
)k k — )
F( 2)a2—~~~— b;a,{:O mod Axy

F()vk)al]: =0 mod ;L/<+1

and
(F(/h)a{c _ Tb$“§ . blzaéc)p[ =0 mod ii;l
(FU«z)aé( . sz,falf)pl =0 mod /1,’(’;]

!

(Faf)?" =0 mod 2/ .

Moreover we have the following equations;

! ! ! /
FOD gk — . Ty (@) =0 mod 2,

1 1 c ! !
FU (@) . L (@) ") =0 mod 2,

For k = 2 we define

!

1 ! 1 ) P
B = — FWIAl = <)QF<‘1)af) — B

7
B — L[ F0 Ak zk: TyAF| 1<j<k—1
! Met1 =i o
o
k A k
Bk+1 -— FU )Ak

191
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F()]p ) — B]2 [ BIHI
!
(Uk+l)/ — 0 F'(}Lg ) — B; ce B£c+1
0 R — Bf“
0 FUL)

For k =2 we put

And for k > 2, we have relations
RF = (Rf) <oy € Kerl(UY) W (420" = W (42,1,
So we define formal power series D;(Xo, Xi,...,Xk—1) (k =1) by
Dj=1
D} (X0) = E, (A}, 4]’ Xo)

and for k> 1

— 1
D1;+1(X07X17 s Xi) = EP(Ak+lv (}'[‘] )1§i§k+1;X07Xla ooy Xk)

1

k+1
= li[E (X{‘HJJ’[; AX}_I >
14 14 i i D[(_I(XO,XI,..-,Xjfz)

Then we have a group scheme;

1
SpeCA|:X07X1a"'7A/I1—17 7 )
1+ 7 Xo
1 1

Di(Xo)+ X, D) (Ko Xoa) + 2 Ko

n—1

satisfied the above conditions and in this case, we denote the group scheme by
&',
5. The Proof of Theorem 1

In this section we give our proof of Theorem 1. Suppose 4 is a commutative
unitary ring of characteristic p. Let 4, 4s,...,4, be elements of 4 and &, be a
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group scheme defined in section 4.1 and &, be the formal completion of &, along
the zero section. We can ecasily see that the map

1

~ A ] 1
tp(”:@@n—%,{]; (X0, vy Xpot) = (X5 X)),

is a homomorphism and the kernel of this isogeny is given by
Ny = Ker y = Spf A[[Xo, X1,..., X))/ (X2 X7, XD )

= Spec A[Xo, Xi,..., X 1] /(X X7 X))

since Xy, X1,...,X,_1 are nilpotents in the coordinate ring of N;. The following

exact sequence is induced by the homomorphism W);
AU
(1) 0— N = é L ér o,
where 1 is the canonical inclusion. This exact sequence (1) deduces the following
long exact sequence;
ST 0N S . R
o " Hom(6?', Gy 1) —— Hom(é,, Gy 1) ——— Hom(N;, Gy )

" “ n* A A
L Bt Gua) S Bxt' (6 Ga) ——

As a consequance of the argument in the proofs of Lemma 4 and Lemma 5,
we will see that in the exact sequences, we can replace Extl(éi{",(}m’ 4) and
Extl(é%n,(},,,, 4) with the Hochschild cohomology groups H()Z((g",{’[,(/\}m: 4) and
H(&,, G, 4) respectively. Here HZ(G,H) denote the Hochschid cohomology
group consisting of symmetric 2-cocycles of G with coefficients in H for formal
group schemes G and H. (c.f. [DG, 11.2 and Chap IIL.6].) Therfore we have the
following exact sequence;

~ ~ n* n A * R
(3) 0 —— Hom(gﬁplaGm,A) d]—} Hom(éame.A) L’ HOI’Il(N[,Gm‘A)
d ~ ~ n* PN
— e HE\Gna) S H}6,Gra) ——

On the other hand, as in the case n of [SS2, Theorem 5.1], the following
morphisms are isomorphic;

(4) &N Ker[U™: W(A)" — W(A)"] — Hom(&,, G 4);
0" = (9]') = Ep(0", (4); X)
(5) N Coker[U™ : W(A)" — W(A)"] — HE(&,, G a);

w' = (w!') — F,(w", (4);X,Y).

1
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We put
FG1)  _ 5 Ty
U — 0 Fl2) B _Tbg
0 Ty,
0 F )
and
1
FA) B2 _TBI"
)l
(U = 0 FE) — w o —Tey
0 — Ty,
0 FU

where b/ and B/ (see section 4) are Witt vectors. We consider the following
diagram;

]IX
0 —— w)" 0wy L8 )

(U")i U"J l ()

(V/>IX

0 —— W(A)" — W(A)" A)"

wi(4)
where U/ is the restriction morphism of U” to W;(A4)". Then we have the
commutativity of this diagram.

PropPOSITION 1. The diagram (%) is commutative.
Lemma 1. Tp V' = V/Tp.

Proor. This follows from [AA, Sublemma 1].
By using this lemma, we get

1 ! k
k+1 _ G Ak _ k
B/ = (F AF— M TBj_/A,>

“k+1 I=j+1

!

=|(—1F"a — Tya
2 ! =1

. 1
5" 1<j<k-1

First we will check the equality U”o (V)" = (V)" o (U")'.
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In fact for v" = (v]'),<,<, € W(A4)", we have

F()vl)V/v{l _Tb12 V’vg’ —Tb;IVlv,'f
A 1n 1,n 1,n
vo(y@y=| 0 FEVI STVl Tyl
— Ty V!
Fylyn
A;/
VIF(/% )viz _VITBlzvg —VITB]"D,';
AJ[
_ 0 VIFU Doy —VITgot o =V Ty
—V TBr’x’ lv;l
0 VIFG

=)o (Uun'(". O
The next equality U o (R;)" = (R;)" o U" is a direct conseqgence of the definition
of U/'. The exactness of the horizontal sequences are obvious. By applying the
snake lemma to (x), we have the following exact sequence;

nn n
0 —— Ker(U"' U Kerur B

3 nn
— Coker(U")’ 7 coker U P, Coker U —— 0.

Ker Uy
(6)

Then, we can combine the exact sequence (3), (6) and the isomorphisms (4), (5)
we have the following diagram in which the two horizontal sequences are exact,
and vertical morphisms except for ¢ are isomorphisms;

o w 0}

HOIl’l n s m A) — Hom((gizvcn1,A) E— HOI’l’l(N], Gm.A)
I
N p
Ker(U” LEN Ker U” SN Ker U/

— Hz(g GmA) l//—> Hoz(é;mcmﬂ)

n

AT

P nn

—,  Coker(U") U0 coker v B Coker Uy
Here, ¢ is the composite map (1)" o &j of the morphism (1)* in (3) with the
isomorphism &) in (4). If the diagram (7) is proved to be true, we get the iso-
morphism ¢ : Ker[U} : Wi(4)" — Wi(4)"] ~ Hom(N;,G,, 4) by the five lemma.
So we obtain the Theorem 1. Next we will check the commutativity of (7).
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LEMMA 2. (lﬁ(l))* oy =dyo (V)"

PrOOF. For (v") = (v]');<;<,, We have

[]1
1 X
Ey((v"), (27 )1<1<n’(xl 1 1<z<n HE,,(D vas Iy 1,11 ! Y )>

/
D [ C S S

n ) P!
= E I’l Alp] N xz71
g p<vl’( ! )’ (D;(XO,XI,...,xnz)
n
Xi—1
— E )“l
H < Di(x07x17"'7xn2))

= Ep(V/(Un)7 (}~i)1gign§ (xifl)lgign)-

These equalities means our assertions. |
LemMA 3. ()" o¢, = ¢o (R)".
PrOOF. This follows immediately from the definitions of ¢ and (1)". ]
LEMMA 4. Oo¢=¢;00.
Proor. For (R;)"v" = (Rp]'),<;<, € Ker U, we caculate 6E,,((R;)”v”,

(4i)1<i<ns (Xi-1)1<i<,) € Ker U on the fibre product G4 x &' where the
following diagram is commutative;

R W(I) ~
0O— N — & 87 0
(8) Ep<<R,>"v'u<zf):<x,-ml @J
O—>GmA—’Gn1Ang é?;fl 0

By the above condition, we get ® as the following map;
®: 6, = G x 85 (xi1) = (Bp((0]), (20); (xi1)), 9 ((xim1))

so we must endow an, 4 X éA",f/ with a group scheme structrures so that @ is a
homomorphism. This means the equality;

O((xi-1), (yi-1)) = P((xi-1)) - P((yi-1)),  (xi-1), (yi-1) € &y,
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where
O((xim1) - (yi-1)) = (Bp((0]), (4); (xim1) - (=)o P (i) - ¥ (i),
O((xi-1)) - ©((yi-1)) = (Ep((v]), (s (i) 0 ((xim))
(Ep((0]), (20); (i) D ((vim1))-

For elements (11, (z;—1)), (t2, (wi—1)) of (A},,,, 4 X @%{", we choose the inverse images
(xi—1) and (y;_) of (zi_1) and (w;_;) with respect to the ), respectively. Then
the group sturucture of G,,L 4 X 6?’””1 should be given by

(11, (zi-1)) - (t2, (Wi-1))

_ , Ep((v]'), (43); (xiz1) - (yic1)) 2 ) (s
(s e G ) B ooy ) )

= Fp(U"(v]"), (4); (xi-1), (yi-1))-
Next we must show the following equation;
FP(U”(U?), ()“l)v (xifl)a (yifl)) = Fp((wl-n), (11), (Xl',l), (yifl))

(note that (V)" (w) = U"(v")).

=

FP<U”(01{1>7 (%)? (X,;1>7 (yifl))

n
Xi—1 Yi-1
=T1F (VW i , >
;I;Il 17< ! ' Di*l(x07"~;xn72) Di*l(y()a"'vynfz)

! Xi—1 : Yi-1
X F, Vlwezaj'i;Hifl, : + >
,11 p( ' Di1(x0,- -5 Xn-2)  Di-1(¥0y---, Yn-2)

< [[ G (V'w, a7

1

n !
(et (o Y (e Y
i—1 ’ ! b D[—l (XO; ey xn—2) Di—l (y07 R )

n . . p[
AN S ( Al + it )
il} p( P AD (%0, -5 %02) - Dic1 (Y05 Yao2)

x T[] Gy (v wp, 2" (D) )

/A

!

= F,(U"(w}), () (&), (07

This means our assertion. O
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LemMa 5. Vo gy =g, 0 (V)"

ProOF. For (v") e Coker(U")’, we can determine the direct image;

WOV Ey (o), (2): (2i1), (wi))

on the fibre product (A},,L 4 X (g’”, so we look at the following commutative di-

agram;
0 G 4 Goa X 6, é, 0
9) d{ ¢
0 G Goa x & ér' 0.

By the condition of diagram (9), we have a map ® given by
O Ga X by = Ga x 75 (1, (xim1)) = (1,6 (xi01)))-

We endow Gm, 4 x &, with a group scheme structure so that ® becomes a
homomorphism. Let (¢, (x;—1)) and (#,(y;_1)) be local sections in C,,L A X &,
If the product (71, (x;—1)) - (t2, (¥i—1)) is expressed as (1, (x;i—1)) - (f2,(yiz1)) =
(122G((xi1), (§i-1), (xi1) - (yi-1)) - where  G((xi-1), (vi-1)) is a cocycle on
G, 4 % &,. Then we have the following equation;

O((11, (xi-1)) - (12, (yi-1))) = ©(12G((xi-1), (yi-1)), (xi1) - (yi-1))
= (1:G((xi-1), (7i-1)), 8V (xir) - 9 (yi)).
On the other hand, we have
(11, (xi-1)) - ©((12, (yi-1)))
= (01,0 (xi-1)) - (12,0 (yi-1))
= (2B (@), ()3 (xi1), 60 (3i-0)), 00 (i) - 90 (3i-0)).
Hence it is necessarly to have the following condition that ® is a homomorphism;
G((xi-1), (3im1) = B (@), (0 )3 60 (xi1), 90 (xi1)).
We'll show the next equation to prove this;
Fy(0"), (20 ): 00 (xi1), 0 (xi1)) = E,(V' ("), (33 6 (xi1), 60 (3-1)).

(But it has already proved in [AA, lemma 3].)
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6. The Kernel of the Type F" +a;F" '+ .. +a,

In the previous paper [AA], we can construct the case where the endo-
morphism 7 becomes the identity map. Taking the similar method, we give such

a description in the generalized situation when »n is arbitrary, T 52> szz, ..., and
Ty are identity maps and the other 7),,’s are zero maps . So we get
FA) 1 ... L. 0
U — 0 F®R) _1 ... 0
0 1
0 F (An)

Let (v/) be the element of Ker U/”, we have following equations;
FApl — 92 =0

FR2)p2 3 =0

Hence we have the next equations;
v,2 =F U“)v}

1,13 - F(/lz)vl2 — F(/:Z)F(Zl)vll

o = F 1) pldna) .F(il)vll
0= F(/ln>vln = FUn) ) | -F(;‘])v}.
Therefore in this case we have the canonical isomorphism;
Ker[U : W' — W] ~ Ker[F") FU-0 ... F&D) - — W),
Moreover FU») FU1) ... F(4) s given the following polynomial in F;

FUW:)F(’%—I) .. .F(;Ll) = F" + aan_l + 4 a,,
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where the Witt vectors a;’s are given by;

k .
n—ij—(j-1)
e = Z (_l)k H;Ll(;:pimp ' k:17"'7n'

n>i > > >1 j=1
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