ON THE CARTIER DUALITY OF CERTAIN FINITE GROUP SCHEMES OF TYPE (p^n, \ldots, p^n)

By

Nobuhiro Akı

Abstract. In this paper, we determine the Cartier dual of certain finite group schemes of type (p^n, \ldots, p^n) , restricting ourselves to positive characteristic p case. They are given by the kernel of certain endomormphisms of the fibre product $W_{l,A} \times_{\operatorname{Spec} A} \cdots \times_{\operatorname{Spec} A} W_{l,A}$ of the group scheme of Witt vectors of the length l. Moreover we can treat the kernel of the endomorphism of a type $F^n + a_1 F^{n-1} + \cdots + a_n : W_{l,A} \to W_{l,A}$ as our special class, where F is the Frobenius endomorphism and a_k $(k = 1, \ldots, n)$ are suitable Witt vectors.

1. Introduction

Throughout this paper, we denote by p a prime number. Let A be a commutative unitary ring of characteristic p. For a group scheme G over A, we denote by \hat{G} the formal completion of G along the zero section. Our argument is expanded on the group schemes introduced by T. Sekiguchi and N. Suwa [SS2, Theorem 3.2 and Theorem 3.3]

$$\mathscr{E}_n := \operatorname{Spec} A \left[X_0, X_1, \dots, X_{n-1}, \frac{1}{1 + \lambda_1 X_0}, \\ \frac{1}{D_1(X_0) + \lambda_2 X_1}, \frac{1}{D_{n-1}(X_0, \dots, X_{n-2}) + \lambda_n X_{n-1}} \right].$$

These group schemes are constructed inductively by the following extensions;

$$\mathscr{E}_1 = \mathscr{G}^{(\lambda_1)} = \operatorname{Spec} A\left[X_0, \frac{1}{1 + \lambda_1 X_0}\right]$$

Here, $\lambda_1, \lambda_2, \ldots, \lambda_n$ are elements of A, and $D_i(X_0, X_1, \ldots, X_{n-1})$'s are given as elements of $\text{Hom}_{A/\lambda_i}(\hat{\mathscr{E}}_{i-1}, \hat{\mathbf{G}}_{m,A/\lambda_i})$. For deciding D_i 's more explicitly, they introduced the endomorphism $U^n: W_A^n \to W_A^n$ on the fibre product space of group schemes of Witt vectors, and showed the canonical isomorphism;

$$\operatorname{Ker}[U^n:W_A(A)^n\to W_A(A)^n]\simeq \operatorname{Hom}(\hat{\mathscr{E}}_n,\hat{\mathbf{G}}_{m,A}).$$

Moreover they also showed the canonical isomorphism;

$$\operatorname{Coker}[U^n:W_A(A)^n \to W_A(A)^n] \simeq H_0^2(\hat{\mathscr{E}}_n,\hat{\mathbf{G}}_{m,A}),$$

where $H_0^2(\hat{\mathscr{E}}_n,\hat{\mathbf{G}}_{m,A})$ means the Hochschild cohomology groups.

By these results, the homomorphism $D_i \in \operatorname{Hom}_{A/\lambda_i}(\hat{\mathscr{E}}_{i-1}, \hat{\mathbf{G}}_{m,A/\lambda_i})$ is given by an element in $\operatorname{Ker}[U^{i-1}:W_{A/\lambda_i}(A/\lambda_i)^{i-1} \to W_{A/\lambda_i}(A/\lambda_i)^{i-1}]$. The group scheme structure of \mathscr{E}_n is given by the one which makes the morphism

$$\alpha^{(n)}:\mathscr{E}_n\to\mathbf{G}^n_{m-4},$$

defined by

$$(x_0, x_1, \dots, x_{n-1}) \mapsto (1 + \lambda_1 x_0, D_1(x_0) + \lambda_2 x_1, \dots, D_{n-1}(x_0, \dots, x_{n-2}) + \lambda_n x_{n-1}),$$

a homomorphism of group schemes. Hereafter let l be a positive integer. For a given group scheme \mathcal{E}_n such as above, if we take the p^l -th power of the data defining \mathcal{E}_n , then those data defines a group scheme $\mathcal{E}_n^{p^l}$;

$$\mathscr{E}_{n}^{p^{l}} := \operatorname{Spec} A \left[X_{0}, X_{1}, \dots, X_{n-1}, \frac{1}{1 + \lambda_{1}^{p^{l}} X_{0}}, \frac{1}{D_{1}^{\prime}(X_{0}) + \lambda_{2}^{p^{l}} X_{1}}, \frac{1}{D_{n-1}^{\prime}(X_{0}, \dots, X_{n-2}) + \lambda_{n}^{p^{l}} X_{n-1}} \right].$$

The group scheme structure of $\mathscr{E}_n^{p^l}$ is given by the one which makes the morphism

$$\alpha^{(n)'}:\mathscr{E}_n^{p^l}\to\mathbf{G}_{m,A}^n,$$

defined by

$$(x_0, x_1, \dots, x_{n-1}) \mapsto (1 + \lambda_1^{p^l} x_0, D_1'(x_0) + \lambda_2^{p^l} x_1, \dots, D_{n-1}'(x_0, \dots, x_{n-2}) + \lambda_n^{p^l} x_{n-1}),$$

a homomorphism. And this satisfies the following commutative diagram;

$$\mathscr{E}_n \xrightarrow{\alpha^{(n)}} \mathbf{G}_{m,A}^n$$
 $\psi^{(l)} \downarrow \qquad \qquad \varphi \downarrow$
 $\mathscr{E}_n^{p^l} \xrightarrow{\alpha^{(n)'}} \mathbf{G}_{m,A}^n$

where φ is given by $\varphi(t_0,\ldots,t_{n-1})=(t_0^{p^l},\ldots,t_{n-1}^{p^l})$ and $\psi^{(l)}$ is isogeny defined by $\psi^{(l)}(x_0,\ldots,x_{n-1})=(x_0^{p^l},\ldots,x_{n-1}^{p^l})$. Then the kernel $N_l=\operatorname{Ker}\psi^{(l)}$ is given explicitly by

$$N_l = \text{Spec } A[X_0, \dots, X_{n-1}] / (X_0^{p^l}, \dots, X_{n-1}^{p^l}),$$

and we have the exact sequence;

$$0 \longrightarrow N_l \stackrel{\iota}{\longrightarrow} \mathscr{E}_n \stackrel{\psi^{(l)}}{\longrightarrow} \mathscr{E}_n^{p^l} \longrightarrow 0.$$

Note that the group scheme sturucture of N_l is the one induced from \mathcal{E}_n . In our argument, the important thing is that we can identify the finite group scheme N_l with the completion \hat{N}_l , because X_i 's are nilpotents in the coordinate ring of N_l , and we can consider the exact sequence;

$$0 \longrightarrow N_l \stackrel{\iota}{\longrightarrow} \hat{\mathscr{E}}_n \stackrel{\psi^{(l)}}{\longrightarrow} \hat{\mathscr{E}}_n^{p^l} \longrightarrow 0.$$

By means of the definition of the endomorphism

$$U^n:W^n_A\to W^n_A,$$

it induces an endomorphism

$$U_l^n:W_{l,A}^n\to W_{l,A}^n$$

which makes the following commutative diagram;

$$\begin{array}{ccc} W_A^n & \xrightarrow{(R_l)^n} & W_{l,A}^n \\ U^n \bigg\downarrow & & U_l^n \bigg\downarrow \\ W_A^n & \xrightarrow{(R_l)^n} & W_{l,A}^n. \end{array}$$

Under these notations, our first main result is given as follows;

THEOREM 1. Assum that A is a commutative unitary ring of chracteritic p. Then the Cartier dual of N_l is canonically isomorphic to $\text{Ker}[U_l^n:W_{l,A}^n \to W_{l,A}^n]$.

Oort-Tate [OT] gave the result of Theorem 1 in the case of l = n = 1. Next M. Amano [A] proved Theorem 1 for any l and n = 1, and N. Aki and M. Amano [AA] proved Theorem 1 for any l and n = 2 by using the deformations of Artin-Hasse exponential series. We prove Theorem 1 in the general case by generalizing the argument in the previous paper [AA].

Let K be a perfect field of characteritic p. Then we have Dieudonné ring \mathbf{D}_K and the isomorphism $\mathbf{D}_K/\mathbf{D}_K V^l \simeq \mathrm{Hom}(W_{l,K},W_{l,K})$. ([DG, p. 550].) From this point of view, $F^n + a_1 F^{n-1} + \cdots + a_n$ is an element of $\mathbf{D}_K/\mathbf{D}_K V^l$ for Witt vectors $a_1, \ldots, a_n \in W_{l,A}$. In Section 6, we give an isomorphism;

$$Ker[U_l^n: W_{l,A}^n \to W_{l,A}^n] \simeq Ker[F^n + a_1F^{n-1} + \dots + a_n: W_{l,A} \to W_{l,A}],$$

for some special type of Witt vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in W_{l,A}$, and we give the second asertion;

THEOREM 2. If we choose the base ring A of characteritic p and the group scheme \mathscr{E}_n suitably, then the Cartier dual of N_l is canonically isomorphic to $\operatorname{Ker}[F^n+a_1F^{n-1}+\cdots+a_n:W_{l,A}\to W_{l,A}]$, where for each $1\leq k\leq n$, a_k is Witt vectors given by $a_k=\sum_{n\geq i_1>i_2\cdots>i_k\geq 1}(-1)^k[\prod_{j=1}^k\lambda_{i_k}^{(p-1)p^{n-i_j-(j-1)}}]$, and $[\lambda_{i_k}]$ is the Teichmüller lifting $(\lambda_{i_k},0,\ldots)\in W(A)$ of $\lambda_{i_k}\in A$.

The contents of this paper is as follows. The next two sections are devoted to give the definitions and some reviews of properties of Witt vectors, the deformed Artin-Hasse exponential series and the group schemes \mathscr{E}_n and $\mathscr{E}_n^{p^l}$. In Section 5 and Section 6 we give the proofs of Theorem 1 and Theorem 2.

Notations

 $G_{m,A}$: the multiplicative group scheme over A

 $W_{n,A}$: the group scheme of Witt vectors of length n over A

 W_A : the group scheme of Witt vectors over A

 $\mathbf{G}_{m,A}$: the multiplicative formal group scheme over A

 $\hat{W}_{n,A}$: the formal group scheme of Witt vectors of length n over A

 \hat{W}_A : the formal group scheme of Witt vectors over A

F: the Frobenius of endomorphism of W_A

V: the Verschiebung endomorphism of W_A

 R_n : the restriction homomorphism of W_A to $W_{n,A}$ [λ]: the Teichmüller lifting $(\lambda,0,\ldots) \in W(A)$ of $\lambda \in A$ $\boldsymbol{a}^{(p)} := (a_0^p,a_1^p,\ldots)(=F(\boldsymbol{a}))$ $(\boldsymbol{a}=(a_0,a_1,\ldots) \in W(A))$ $F^{(\lambda)} := F - [\lambda^{p-1}]$

 $\mathbf{X} := (X_0, X_1, \ldots)$ (a sequence of variables)

 $\mathbf{Y} := (Y_0, Y_1, \ldots)$ (a sequence of variables)

Acknowledgments

The author expresses his gratitude to Professor Tsutomu Sekiguchi for his kind advice, suggestions and his careful reading of the manuscript. He thanks also Michio Amano for stimulative conversaitions.

2. Witt Vectors

In this short section we recall necessary facts on Witt vectors for this paper. For details, see [DG, Chap. V] or [HZ, Chap. III].

2.1. Let $\mathbf{X} = (X_0, X_1, \ldots)$ be a sequence of variables. For each $n \ge 0$, we denote by $\Phi_n(\mathbf{X}) = \Phi_n(X_0, X_1, \ldots, X_n)$ the Witt polynomial

$$\Phi_n(\mathbf{X}) = X_0^{p^n} + pX_1^{p^{n-1}} + \dots + p^nX_n$$

in $\mathbf{Z}[\mathbf{X}] = \mathbf{Z}[X_0, X_1, \ldots]$. Let $W_{n, \mathbf{Z}} = \operatorname{Spec} \mathbf{Z}[X_0, X_1, \ldots, X_{n-1}]$ be the *n*-dimentional affine space over \mathbf{Z} . We define a morphism (the so-called Phantom map) $\Phi^{(n)}$ by

$$\Phi^{(n)}:W_{n,\mathbf{Z}}\to \mathbf{A}^n_{\mathbf{Z}};\quad x\mapsto (\Phi_0(x),\Phi_1(x),\ldots,\Phi_{n-1}(x)).$$

Note that $W_{n,\mathbf{Z}}$ has the ring so that $\Phi^{(n)}$ becomes a ring scheme homomorphism, when $\mathbf{A}_{\mathbf{Z}}^n$ is regarded as a ring scheme by coordinate-wise addition and multiplication.

2.2. The Verschiebung homomorphism V is defined by

$$V: W(A) \to W(A); \quad \mathbf{x} = (x_0, x_1, \ldots) \mapsto V(\mathbf{x}) = (0, x_1, x_2, \ldots).$$

The restriction homorphism R_n is defined by

$$R_n: W(A) \to W_n(A); \quad \mathbf{x} = (x_0, x_1, \dots) \mapsto \mathbf{x}_n = (x_0, x_1, \dots, x_{n-1}).$$

We define a morphism $F: W_n(A) \to W_{n-1}(A)$ by

$$\Phi_i(F\mathbf{x}) = \Phi_{i+1}(\mathbf{x})$$

for $x \in W_n(A)$. If A is of characteristic p, F is noting but the usual Frobenius endomorphism. For $\lambda \in A$, $[\lambda]$ and $F^{(\lambda)}$ denote the Teichmüller lifting $[\lambda] = (\lambda, 0, \ldots) \in W(A)$ and the endomorphism $F - [\lambda^{p-1}]$ of W(A), respectively. For $\mathbf{a} = (a_0, a_1, \ldots) \in W(A)$, we also define a morphism $T_{\mathbf{a}} : W(A) \to W(A)$ by

$$\Phi_n(T_a \mathbf{x}) = a_0^{p^n} \Phi_n(\mathbf{x}) + p a_1^{p^{n-1}} \Phi_{n-1}(\mathbf{x}) + \dots + p^n a_n \Phi_0(\mathbf{x})$$

for $x \in W(A)$. Then it is known that this morphism satisfies the formula $T_a = \sum_{k \geq 0} V^k \cdot [a_k]$. (cf. [SS2, Chap. 4, p. 20].)

3. Deformed Artin-Hasse Exponential Series

In this short section we recall necessary facts on the deformed Artin-Hasse exponential series for this paper.

3.1. The Artin-Hasse exponential series $E_p(X)$ is given by

$$E_p(X) = \exp\left(\sum_{r>0} \frac{X^{p^r}}{p^r}\right) \in \mathbf{Z}_{(p)}[[X]].$$

We define a formal power series $E_p(U, \lambda; X)$ in $\mathbb{Q}[U, \lambda][[X]]$ by

$$E_p(U,\Lambda;X) = (1 + \Lambda X)^{U/\Lambda} \prod_{k=1}^{\infty} (1 + \Lambda^{p^k} X^{p^k})^{(1/p^k)((U/\Lambda)^{p^k} - (U/\Lambda)^{p^{k-1}})}.$$

As in [SS1, Corollrary 2.5] or [SS2, Lemma 4.8], we see that this formal power series $E_p(U, \lambda; X)$ is integral over $\mathbf{Z}_{(p)}$.

Let A be a $\mathbf{Z}_{(p)}$ -algebra. Let $\lambda \in A$ and $\mathbf{v} = (v_0, v_1, \ldots) \in W(A)$. We define a formal power series $E_p(\mathbf{v}, \lambda; X)$ in A[[X]] by

$$\begin{split} E_p(\boldsymbol{v}, \lambda; X) &= \prod_{k=0}^{\infty} E_p(v_k, \lambda^{p^k}; X^{p^k}) \\ &= (1 + \lambda X)^{v_0/\lambda} \prod_{k=1}^{\infty} (1 + \lambda^{p^k} X^{p^k})^{(1/p^k \lambda^{p^k}) \Phi_{k-1}(F^{(\lambda)} \boldsymbol{v})}. \end{split}$$

Moreover we define a formal power series $F_p(\mathbf{v}, \lambda; X, Y)$ as follows;

$$F_p(v,\lambda;X,Y) = \prod_{k=1}^{\infty} \left(\frac{(1+\lambda^{p^k}X^{p^k})(1+\lambda^{p^k}Y^{p^k})}{1+\lambda^{p^k}(X+Y+\lambda XY)^{p^k}} \right)^{(1/p^k\lambda^{p^k})\Phi_{k-1}(v)}.$$

As in [SS1, Lemma 2.16] or [SS2, Lemma 4.9], we see that the formal power series $F_p(\mathbf{v}, \lambda; X, Y)$ satisfies the formula;

$$\frac{E_p(\boldsymbol{v},\boldsymbol{\lambda};\boldsymbol{X})E_p(\boldsymbol{v},\boldsymbol{\lambda};\boldsymbol{Y})}{E_p(\boldsymbol{v},\boldsymbol{\lambda};\boldsymbol{X}+\boldsymbol{Y}+\boldsymbol{\lambda}\boldsymbol{X}\boldsymbol{Y})}=F_p(F^{(\boldsymbol{\lambda})}\boldsymbol{v},\boldsymbol{\lambda};\boldsymbol{X},\boldsymbol{Y}).$$

4. Definitions of the Group Schemes \mathscr{E}_n and $\mathscr{E}_n^{p^l}$

We review here the group schemes \mathcal{E}_n briefly from T. Sekiguchi and N. Suwa [SS2, Theorem 3.3].

4.1. Let A be a $\mathbf{Z}_{(p)}$ -algebra and $\lambda, \lambda_1, \dots, \lambda_n$ be non-zero elements of A. For a vector \bar{a} of $W(A/\lambda)$, we denote by $a \in W(A)$ a representative of \bar{a} . Note that the formal completion \hat{W} is characterized as a functor given by;

$$\hat{W}(A) = \{(a_0, a_1, \ldots) \in W(A) \mid a_i \text{ are nilpotents and } a_i = 0 \text{ for almost all } i\}.$$

We choose Witt vectors

$$\bar{\boldsymbol{a}}^i = (\bar{\boldsymbol{a}}_i^i)_{1 \le i \le i} \in \operatorname{Ker}[U^i : \hat{\boldsymbol{W}}(A/\lambda_{i+1})^i \to \hat{\boldsymbol{W}}(A/\lambda_{i+1})^i]$$

inductively by the following recursive conditions;

$$\begin{split} U^1 := F^{(\lambda_1)}, \quad \bar{\pmb{a}}^1 := \bar{\pmb{a}}^1_1 \in \mathrm{Ker}[U^1 : \hat{\pmb{W}}(A/\lambda_2) \to \hat{\pmb{W}}(A/\lambda_2)] \\ \pmb{b}^2_1 := \frac{1}{\lambda_2} F^{(\lambda_1)} \pmb{a}^1_1, \quad U^2 := \begin{pmatrix} F^{(\lambda_1)} & -T_{\pmb{b}^2_1} \\ 0 & F^{(\lambda_2)} \end{pmatrix}, \end{split}$$

and for $k \ge 2$, we choose

$$\bar{\boldsymbol{a}}^k := (\bar{\boldsymbol{a}}_j^k)_{1 \leq j \leq k} \in \mathrm{Ker}[U^k : \hat{\boldsymbol{W}}(A/\lambda_{k+1})^k \to \hat{\boldsymbol{W}}(A/\lambda_{k+1})^k],$$

and we define

$$egin{aligned} m{b}_j^{k+1} &:= rac{1}{\lambda_{k+1}} \left(F^{(\lambda_j)} m{a}_j^k - \sum_{l=j+1}^k T_{m{b}_j^l} m{a}_l^k
ight) \quad 1 \leqq j \leqq k-1 \ m{b}_k^{k+1} &:= rac{1}{\lambda_{k+1}} F^{(\lambda_k)} m{a}_k^k \ U^{k+1} &:= egin{pmatrix} F^{(\lambda_1)} & -T_{m{b}_1^2} & \cdots & \cdots & -T_{m{b}_1^{k+1}} \ 0 & F^{(\lambda_2)} & -T_{m{b}_2^3} & \cdots & -T_{m{b}_2^{k+1}} \ 0 & \cdots & & -T_{m{b}_k^{k+1}} \ 0 & \cdots & & F^{(\lambda_{k+1})} \end{pmatrix}. \end{aligned}$$

Moreover we define formal power series $D_k(X_0, X_1, \dots, X_{k-1})$ $(k \ge 1)$ by

$$D_0 = 1$$

$$D_1(X_0) = E_p(\bar{a}_1^1, \lambda_1; X_0)$$

and for $k \ge 1$

$$D_{k+1}(X_0, X_1, \dots, X_k) = E_p(\bar{\boldsymbol{a}}^{k+1}, (\lambda_i)_{1 \le i \le k+1}; X_0, X_1, \dots, X_k)$$

$$:= \prod_{i=1}^{k+1} E_p(\bar{\boldsymbol{a}}_i^{k+1}, \lambda_i; \frac{X_{i-1}}{D_{i-1}(X_0, X_1, \dots, X_{i-2})}).$$

We put

$$\mathscr{E}_n := \operatorname{Spec} A \left[X_0, X_1, \dots, X_{n-1}, \frac{1}{1 + \lambda_1 X_0}, \frac{1}{D_1(X_0) + \lambda_2 X_1}, \dots, \frac{1}{D_{n-1}(X_0, \dots, X_{n-2}) + \lambda_n X_{n-1}} \right].$$

Then by [SS2, Theorem 4.16 and Theorem 3.3], \mathcal{E}_n becomes a group scheme and

$$D_i \in \operatorname{Hom}_{A/\lambda_{i+1}}(\mathscr{E}_n \otimes_A A/\lambda_{i+1}, \mathbf{G}_{A/\lambda_{i+1}}), \text{ for } i = 1, \dots, n-1.$$

4.2. In this subsection, let A be of characteristic p and $\lambda_1, \ldots, \lambda_n \in A$. We will define a group scheme denoted by $\mathscr{E}_n^{p^l}$. Let l be positive interger and $(\lambda_i^{p^l})_{1 \le i \le k+1}$ be elements of A. We define Witt vectors inductively by the following recursive condisions.

For $\bar{a}_1^1 \in \text{Ker } U^1$, we have a relation

$$F^{(\lambda_1)}(\boldsymbol{a}_1^1) \equiv 0 \mod \lambda_2.$$

So we have also the following relation

$$F^{(\lambda_1^{p^l})}((\boldsymbol{a}_1^1)^{(p^l)}) \equiv 0 \mod \lambda_2^{p^l}.$$

We put $\overline{\mathbf{A}}_1^1 := \overline{\mathbf{a}}_1^{1(p^l)}$, then $\overline{\mathbf{A}}_1^1 \in \operatorname{Ker} F^{(\lambda_1^{p^l})}$. We define $(U^1)' := F^{(\lambda_1^{p^l})}$. Then we have the following congruences;

$$\overline{\mathbf{A}}^1 := \overline{\mathbf{A}}^1_1 \in \operatorname{Ker}[(U^1)' : \hat{W}(A/\lambda_2^{p^l}) \to \hat{W}(A/\lambda_2^{p^l})].$$

For $(\bar{a}_i^k)_{1 \le i \le k} \in \text{Ker } U^k$, we have following equations;

$$F^{(\lambda_1)} \boldsymbol{a}_1^k - T_{\boldsymbol{b}_1^2} \boldsymbol{a}_2^k - \dots - T_{\boldsymbol{b}_1^2} \boldsymbol{a}_2^k \equiv 0 \mod \lambda_{k+1}$$

$$F^{(\lambda_2)} \boldsymbol{a}_2^k - \dots - T_{\boldsymbol{b}_2^k} \boldsymbol{a}_k^k \equiv 0 \mod \lambda_{k+1}$$

$$\vdots$$

$$F^{(\lambda_k)} \boldsymbol{a}_k^k \equiv 0 \mod \lambda_{k+1}$$

and

$$\begin{split} (F^{(\lambda_1)}\pmb{a}_1^k - T_{\pmb{b}_1^2}\pmb{a}_2^k - \cdots - T_{\pmb{b}_1^2}\pmb{a}_2^k)^{p^l} &\equiv 0 \mod \lambda_{k+1}^{p^l} \\ (F^{(\lambda_2)}\pmb{a}_2^k - \cdots - T_{\pmb{b}_2^k}\pmb{a}_k^k)^{p^l} &\equiv 0 \mod \lambda_{k+1}^{p^l} \\ &\vdots \\ (F^{(\lambda_k)}\pmb{a}_k^k)^{p^l} &\equiv 0 \mod \lambda_{k+1}^{p^l}. \end{split}$$

Moreover we have the following equations;

$$\begin{split} F^{(\lambda_1^{p^l})}(\pmb{a}_1^k)^{(p^l)} - \cdots - T_{\pmb{b}_2^{k(p^l)}}(\pmb{a}_k^k)^{(p^l)} &\equiv 0 \mod \lambda_{k+1}^{p^l} \\ F^{(\lambda_2^{p^l})}(\pmb{a}_2^k)^{(p^l)} - \cdots - T_{\pmb{b}_2^{k(p^l)}}(\pmb{a}_k^k)^{(p^l)} &\equiv 0 \mod \lambda_{k+1}^{p^l} \\ &\vdots \\ F^{(\lambda_k)^{p^l}}(\pmb{a}_k^k)^{(p^l)} &\equiv 0 \mod \lambda_{k+1}^{p^l}. \end{split}$$

For $k \ge 2$ we define

$$\begin{split} (U^2)' &:= \begin{pmatrix} F^{(\lambda_1^{p'})} & -T_{\mathbf{B}_1^2} \\ 0 & F^{(\lambda_2^{p'})} \end{pmatrix} \\ \mathbf{B}_1^2 &:= \frac{1}{\lambda_2^{p'}} F^{(\lambda_1^{p'})} \mathbf{A}_1^1 = \left(\frac{1}{\lambda_2} F^{(\lambda_1)} \mathbf{a}_1^1\right)^{p'} = \overline{\mathbf{b}}_1^{2(p')} \\ \mathbf{B}_j^{k+1} &:= \frac{1}{\lambda_{k+1}} \left(F^{(\lambda_j^{p'})} \mathbf{A}_j^k - \sum_{l=j+1}^k T_{\mathbf{B}_j^l} \mathbf{A}_l^k \right) \quad 1 \leq j \leq k-1 \\ \mathbf{B}_k^{k+1} &:= \frac{1}{\lambda_{k+1}^{p'}} F^{(\lambda_k^{p'})} \mathbf{A}_k^k \end{split}$$

$$(U^{k+1})' := egin{pmatrix} F^{(\lambda_1^{p^l})} & -T_{\mathbf{B}_1^2} & \cdots & \cdots & -T_{\mathbf{B}_1^{k+1}} \ 0 & F^{(\lambda_2^{p^l})} & -T_{\mathbf{B}_2^3} & \cdots & -T_{\mathbf{B}_2^{k+1}} \ 0 & \cdots & & -T_{\mathbf{B}_k^{k+1}} \ 0 & \cdots & & F^{(\lambda_{k+1}^{p^l})} \end{pmatrix}.$$

For $k \ge 2$ we put

$$\overline{\mathbf{A}}^k := (\overline{\mathbf{A}}_j^k)_{1 \le j \le k} = (\overline{\mathbf{a}}_j^{k(p^l)})_{1 \le j \le k}.$$

And for $k \ge 2$, we have relations

$$\overline{\mathbf{A}}^k = (\overline{\mathbf{A}}_j^k)_{1 \le j \le k} \in \operatorname{Ker}[(U^k)' : \hat{\mathbf{W}}(A/\lambda_{k+1}^{p^l})^k \to \hat{\mathbf{W}}(A/\lambda_{k+1}^{p^l})^k].$$

So we define formal power series $D_k'(X_0,X_1,\ldots,X_{k-1})$ $(k\geqq 1)$ by

$$D_0' = 1$$

$$D_1'(X_0) = E_p(\overline{\mathbf{A}}_1^1, \lambda_1^{p'}; X_0)$$

and for $k \ge 1$

$$\begin{split} D'_{k+1}(X_0,X_1,\ldots,X_k) &= E_p(\overline{\mathbf{A}}^{k+1},(\lambda_i^{p'})_{1 \leq i \leq k+1};X_0,X_1,\ldots,X_k) \\ &:= \prod_{i=1}^{k+1} E_p\bigg(\overline{\mathbf{A}}_i^{k+1},\lambda_i^{p'};\frac{X_{i-1}}{D'_{i-1}(X_0,X_1,\ldots,X_{i-2})}\bigg). \end{split}$$

Then we have a group scheme;

Spec
$$A\left[X_0, X_1, \dots, X_{n-1}, \frac{1}{1 + \lambda_1^{p^l} X_0}, \frac{1}{D_1'(X_0) + \lambda_2^{p^l} X_1}, \dots, \frac{1}{D_{n-1}'(X_0, \dots, X_{n-2}) + \lambda_n^{p^l} X_{n-1}}\right]$$

satisfied the above conditions and in this case, we denote the group scheme by $\mathscr{E}_n^{p^l}$.

5. The Proof of Theorem 1

In this section we give our proof of Theorem 1. Suppose A is a commutative unitary ring of characteristic p. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be elements of A and \mathscr{E}_n be a

group scheme defined in section 4.1 and $\hat{\mathscr{E}}_n$ be the formal completion of \mathscr{E}_n along the zero section. We can easily see that the map

$$\psi^{(l)}: \hat{\mathscr{E}}_n \to \hat{\mathscr{E}}_n^{p^l}; \quad (x_0, \dots, x_{n-1}) \mapsto (x_0^{p^l}, \dots, x_{n-1}^{p^l}),$$

is a homomorphism and the kernel of this isogeny is given by

$$N_{l} = \text{Ker } \psi^{(l)} = \text{Spf } A[[X_{0}, X_{1}, \dots, X_{n-1}]] / (X_{0}^{p^{l}}, X_{1}^{p^{l}}, \dots, X_{n-1}^{p^{l}})$$

$$= \text{Spec } A[X_{0}, X_{1}, \dots, X_{n-1}] / (X_{0}^{p^{l}}, X_{1}^{p^{l}}, \dots, X_{n-1}^{p^{l}})$$

since X_0, X_1, \dots, X_{n-1} are nilpotents in the coordinate ring of N_l . The following exact sequence is induced by the homomorphism $\psi^{(l)}$;

$$0 \longrightarrow N_l \stackrel{\iota}{\longrightarrow} \hat{\mathscr{E}}_n \stackrel{\psi^{(l)}}{\longrightarrow} \hat{\mathscr{E}}_n^{p^l} \longrightarrow 0,$$

where i is the canonical inclusion. This exact sequence (1) deduces the following long exact sequence;

$$(2) \qquad 0 \longrightarrow \operatorname{Hom}(\hat{\mathscr{E}}_{n}^{p^{l}}, \hat{\mathbf{G}}_{m,A}) \xrightarrow{\psi^{(l)^{*}}} \operatorname{Hom}(\hat{\mathscr{E}}_{n}, \hat{\mathbf{G}}_{m,A}) \xrightarrow{(l)^{*}} \operatorname{Hom}(N_{l}, \hat{\mathbf{G}}_{m,A})$$

$$\stackrel{\hat{\sigma}}{\longrightarrow} \operatorname{Ext}^{1}(\hat{\mathscr{E}}_{n}^{p^{l}}, \hat{\mathbf{G}}_{m,A}) \xrightarrow{\psi^{(l)^{*}}} \operatorname{Ext}^{1}(\hat{\mathscr{E}}_{n}, \hat{\mathbf{G}}_{m,A}) \longrightarrow \cdots.$$

As a consequence of the argument in the proofs of Lemma 4 and Lemma 5, we will see that in the exact sequences, we can replace $\operatorname{Ext}^1(\hat{\mathscr{E}}_n^{p^l},\hat{\mathbf{G}}_{m,A})$ and $\operatorname{Ext}^1(\hat{\mathscr{E}}_n,\hat{\mathbf{G}}_{m,A})$ with the Hochschild cohomology groups $H_0^2(\hat{\mathscr{E}}_n^{p^l},\hat{\mathbf{G}}_{m,A})$ and $H_0^2(\hat{\mathscr{E}}_n,\hat{\mathbf{G}}_{m,A})$ respectively. Here $H_0^2(\hat{G},\hat{H})$ denote the Hochschild cohomology group consisting of symmetric 2-cocycles of \hat{G} with coefficients in \hat{H} for formal group schemes G and G. (c.f. [DG, II.2 and Chap III.6].) Therfore we have the following exact sequence;

On the other hand, as in the case n of [SS2, Theorem 5.1], the following morphisms are isomorphic;

(4)
$$\xi_0^n : \operatorname{Ker}[U^n : W(A)^n \to W(A)^n] \to \operatorname{Hom}(\hat{\mathscr{E}}_n, \hat{\mathbf{G}}_{m,A});$$
$$\bar{\mathbf{v}}^n = (\bar{\mathbf{v}}_i^n) \mapsto E_n(\bar{\mathbf{v}}^n, (\lambda_i); \mathbf{X})$$

(5)
$$\xi_1^n : \operatorname{Coker}[U^n : W(A)^n \to W(A)^n] \to H_0^2(\hat{\mathscr{E}}_n, \hat{\mathbf{G}}_{m,A});$$

$$\overline{\mathbf{w}}^n = (\overline{\mathbf{w}}_i^n) \mapsto F_p(\overline{\mathbf{w}}^n, (\lambda_i); \mathbf{X}, \mathbf{Y}).$$

We put

$$U^n := egin{pmatrix} F^{(\lambda_1)} & -T_{m{b}_1^2} & \cdots & \cdots & -T_{m{b}_1^n} \ 0 & F^{(\lambda_2)} & -T_{m{b}_2^3} & \cdots & -T_{m{b}_{n-1}^n} \ 0 & \cdots & & -T_{m{b}_{n-1}^n} \ 0 & \cdots & F^{(\lambda_n)} \end{pmatrix}$$

and

$$(U^n)' := egin{pmatrix} F^{(\lambda_1^{p^l})} & -T_{\mathbf{B}_1^2} & \cdots & \cdots & -T_{\mathbf{B}_1^n} \ 0 & F^{(\lambda_2^{p^l})} & -T_{\mathbf{B}_2^3} & \cdots & -T_{\mathbf{B}_{n-1}^n} \ 0 & \cdots & & -T_{\mathbf{B}_{n-1}^n} \ 0 & \cdots & & F^{(\lambda_n^{p^l})} \end{pmatrix}$$

where b_i^j and \mathbf{B}_i^j (see section 4) are Witt vectors. We consider the following diagram;

$$0 \longrightarrow W(A)^{n} \xrightarrow{(V^{l})^{n}} W(A)^{n} \xrightarrow{(R^{l})^{n}} W_{l}(A)^{n} \longrightarrow 0$$

$$\downarrow U^{n} \downarrow \qquad \qquad U^{n} \downarrow \qquad \qquad \downarrow U^{n} \downarrow \qquad \qquad (*)$$

$$0 \longrightarrow W(A)^{n} \xrightarrow{(V^{l})^{n}} W(A)^{n} \xrightarrow{(R^{l})^{n}} W_{l}(A)^{n} \longrightarrow 0,$$

where U_l^n is the restriction morphism of U^n to $W_l(A)^n$. Then we have the commutativity of this diagram.

PROPOSITION 1. The diagram (*) is commutative.

Lemma 1.
$$T_{b_1^2}V^l = V^l T_{\mathbf{B}_1^2}$$
.

PROOF. This follows from [AA, Sublemma 1]. By using this lemma, we get

$$\begin{aligned} \mathbf{B}_{j}^{k+1} &= \frac{1}{\lambda_{k+1}^{p^{l}}} \left(F^{(\lambda_{j}^{p^{l}})} \mathbf{A}_{j}^{k} - \sum_{l=j+1}^{k} T_{\mathbf{B}_{j}^{l}} \mathbf{A}_{l}^{k} \right) \\ &= \left(\frac{1}{\lambda_{k+1}} \left(F^{(\lambda_{j})} \mathbf{a}_{j}^{k} - \sum_{l=j+1}^{k} T_{\mathbf{b}_{j}^{l}} \mathbf{a}_{l}^{k} \right) \right)^{p^{l}} \\ &= \mathbf{b}_{i}^{j(p^{l})} \quad 1 \leq j \leq k-1. \end{aligned}$$

First we will check the equality $U^n \circ (V^l)^n = (V^l)^n \circ (U^n)'$.

In fact for $v^n = (v_i^n)_{1 \le i \le n} \in W(A)^n$, we have

$$\begin{split} U^n \circ (V^l)^n (\boldsymbol{v}^n) &= \begin{pmatrix} F^{(\lambda_1)} V^l \boldsymbol{v}_1^n & -T_{\boldsymbol{b}_1^2} V^l \boldsymbol{v}_2^n & \cdots & \cdots & -T_{\boldsymbol{b}_1^n} V^l \boldsymbol{v}_n^n \\ 0 & F^{(\lambda_2)} V^l \boldsymbol{v}_2^n & -T_{\boldsymbol{b}_2^3} V^l \boldsymbol{v}_3^n & \cdots & -T_{\boldsymbol{b}_2^n} V^l \boldsymbol{v}_n^n \\ 0 & \cdots & & -T_{\boldsymbol{b}_{n-1}^n} V^l \boldsymbol{v}_n^n \\ 0 & \cdots & & F^{(\lambda_n)} V^l \boldsymbol{v}_n^n \end{pmatrix} \\ &= \begin{pmatrix} V^l F^{(\lambda_1^p)^l} \boldsymbol{v}_1^n & -V^l T_{\boldsymbol{B}_1^2} \boldsymbol{v}_2^n & \cdots & \cdots & -V^l T_{\boldsymbol{B}_1^n} \boldsymbol{v}_n^n \\ 0 & V^l F^{(\lambda_2^{p^l})} \boldsymbol{v}_2^n & -V^l T_{\boldsymbol{B}_2^3} \boldsymbol{v}_3^n & \cdots & -V^l T_{\boldsymbol{B}_{n-1}^n} \boldsymbol{v}_n^n \\ 0 & \cdots & & -V^l T_{\boldsymbol{B}_{n-1}^n} \boldsymbol{v}_n^n \end{pmatrix} \\ &= (V^l)^n \circ (U^n)'(\boldsymbol{v}^n). \quad \Box \end{split}$$

The next equality $U_l^n \circ (R_l)^n = (R_l)^n \circ U^n$ is a direct consequence of the definition of U_l^n . The exactness of the horizontal sequences are obvious. By applying the snake lemma to (*), we have the following exact sequence;

Then, we can combine the exact sequence (3), (6) and the isomorphisms (4), (5) we have the following diagram in which the two horizontal sequences are exact, and vertical morphisms except for ϕ are isomorphisms;

Here, ϕ is the composite map $(i)^* \circ \xi_0^n$ of the morphism $(i)^*$ in (3) with the isomorphism ξ_0^n in (4). If the diagram (7) is proved to be true, we get the isomorphism $\phi : \text{Ker}[U_l^n : W_l(A)^n \to W_l(A)^n] \simeq \text{Hom}(N_l, \hat{\mathbf{G}}_{m,A})$ by the five lemma. So we obtain the Theorem 1. Next we will check the commutativity of (7).

Lemma 2.
$$(\psi^{(l)})^* \circ \phi_1 = \phi_2 \circ (V^l)^n$$
.

PROOF. For $(v^n) = (v_i^n)_{1 \le i \le n}$, we have

$$E_{p}((\mathbf{v}^{n}), (\lambda_{i}^{p^{l}})_{1 \leq i \leq n}; (x_{i-1})_{1 \leq i \leq n}) = \prod_{i=1}^{n} E_{p}\left(\mathbf{v}_{i}^{n}, (\lambda_{i}^{p^{l}}); \frac{x_{i-1}^{p^{l}}}{D_{i}'(x_{0}^{p^{l}}, x_{1}^{p^{l}}, \dots, x_{n-2}^{p^{l}})}\right)$$

$$= \prod_{i=1}^{n} E_{p}\left(\mathbf{v}_{i}^{n}, (\lambda_{i}^{p^{l}}); \left(\frac{x_{i-1}}{D_{i}'(x_{0}, x_{1}, \dots, x_{n-2})}\right)^{p^{l}}\right)$$

$$= \prod_{i=1}^{n} E_{p}\left(V^{l}\mathbf{v}_{i}^{n}, (\lambda_{i}); \frac{x_{i-1}}{D_{i}(x_{0}, x_{1}, \dots, x_{n-2})}\right)$$

$$= E_{p}(V^{l}(\mathbf{v}^{n}), (\lambda_{i})_{1 \leq i \leq n}; (x_{i-1})_{1 \leq i \leq n}).$$

These equalities means our assertions.

Lemma 3.
$$(i)^* \circ \phi_2 = \phi \circ (R_l)^n$$
.

PROOF. This follows immediately from the definitions of ϕ and $(i)^*$.

Lemma 4.
$$\partial \circ \phi = \phi_3 \circ \partial$$
.

PROOF. For $(R_l)^n v^n = (R_l v_i^n)_{1 \leq i \leq n} \in \text{Ker } U_l^n$, we caculate $\partial E_p((R_l)^n v^n, (\lambda_i)_{1 \leq i \leq n}; (x_{i-1})_{1 \leq i \leq n}) \in \text{Ker } U_l^n$ on the fibre product $\hat{\mathbf{G}}_{m,A} \times \hat{\mathcal{E}}_n^{p^l}$ where the following diagram is commutative;

$$(8) \qquad \begin{array}{cccc} 0 & \longrightarrow & N_{l} & \longrightarrow & \hat{\mathscr{E}}_{n} & \stackrel{\psi^{(l)}}{\longrightarrow} & \hat{\mathscr{E}}_{n}^{p^{l}} & \longrightarrow & 0 \\ & & & \downarrow & & & & & & & & \\ E_{p}((R_{l})^{n}v^{n},(\lambda_{i});(x_{i-1})) \downarrow & & & \downarrow & & & & & & \\ 0 & \longrightarrow & \hat{\mathbf{G}}_{m,A} & \longrightarrow & \hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_{n}^{p^{l}} & \longrightarrow & \hat{\mathscr{E}}_{n}^{p^{l}} & \longrightarrow & 0. \end{array}$$

By the above condition, we get Φ as the following map;

$$\Phi: \hat{\mathscr{E}}_n \to \hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n^{p^l}; \quad (x_{i-1}) \mapsto (E_p((\boldsymbol{v}_i^n), (\lambda_i); (x_{i-1})), \psi^{(l)}((x_{i-1})))$$

so we must endow $\hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n^{p^l}$ with a group scheme structrures so that Φ is a homomorphism. This means the equality;

$$\Phi((x_{i-1}),(y_{i-1})) = \Phi((x_{i-1})) \cdot \Phi((y_{i-1})), \quad (x_{i-1}),(y_{i-1}) \in \hat{\mathscr{E}}_n,$$

where

$$\Phi((x_{i-1}) \cdot (y_{i-1})) = (E_p((\mathbf{v}_i^n), (\lambda_i); (x_{i-1}) \cdot (y_{i-1})), \psi^{(l)}((x_{i-1}) \cdot \psi^{(l)}(y_{i-1}))),
\Phi((x_{i-1})) \cdot \Phi((y_{i-1})) = (E_p((\mathbf{v}_i^n), (\lambda_i); (x_{i-1})), \psi^{(l)}((x_{i-1})))
\cdot (E_p((\mathbf{v}_i^n), (\lambda_i); (y_{i-1})), \psi^{(l)}((y_{i-1}))).$$

For elements $(t_1,(z_{i-1})),(t_2,(w_{i-1}))$ of $\hat{\mathbf{G}}_{m,A} \times \hat{\mathcal{E}}_n^{p^l}$, we choose the inverse images (x_{i-1}) and (y_{i-1}) of (z_{i-1}) and (w_{i-1}) with respect to the $\psi^{(l)}$, respectively. Then the group sturucture of $\hat{\mathbf{G}}_{m,A} \times \hat{\mathcal{E}}_n^{p^l}$ should be given by

$$\begin{split} &(t_{1},(z_{i-1}))\cdot(t_{2},(w_{i-1}))\\ &=\left(t_{1}t_{2}\cdot\frac{E_{p}((\boldsymbol{v}_{i}^{n}),(\lambda_{i});(x_{i-1})\cdot(y_{i-1}))}{(E_{p}((\boldsymbol{v}_{i}^{n}),(\lambda_{i});(x_{i-1})))\cdot(E_{p}((\boldsymbol{v}_{i}^{n}),(\lambda_{i});(y_{i-1})))},(z_{i-1})\cdot(w_{i-1})\right)\\ &=F_{p}(U^{n}(\boldsymbol{v}_{i}^{n}),(\lambda_{i});(x_{i-1}),(y_{i-1})). \end{split}$$

Next we must show the following equation;

$$F_p(U^n(\mathbf{v}_i^n), (\lambda_i); (x_{i-1}), (y_{i-1})) = F_p((\mathbf{w}_i^n), (\lambda_i); (x_{i-1}), (y_{i-1}))$$
(note that $(V^l)^n(\mathbf{w}_i^n) = U^n(\mathbf{v}_i^n)$).

$$\begin{split} F_{p}(U^{n}(\boldsymbol{v}_{i}^{n}),(\lambda_{i});(x_{i-1}),(y_{i-1})) \\ &= \prod_{i=1}^{n} F_{p} \left(V^{l} \boldsymbol{w}_{i}^{n}, \lambda_{i}; \frac{x_{i-1}}{D_{i-1}(x_{0}, \dots, x_{n-2})}, \frac{y_{i-1}}{D_{i-1}(y_{0}, \dots, y_{n-2})} \right) \\ &\times \prod_{i=1}^{n} F_{p} \left(V^{l} \boldsymbol{w}_{i}^{n}, \lambda_{i}; H_{i-1}, \frac{x_{i-1}}{D_{i-1}(x_{0}, \dots, x_{n-2})} \dotplus \frac{y_{i-1}}{D_{i-1}(y_{0}, \dots, y_{n-2})} \right) \\ &\times \prod G_{p}(V^{l} \boldsymbol{w}_{i}^{n}, \lambda_{i}; F^{i-1})^{-1} \\ &= \prod_{i=1}^{n} F_{p} \left(\boldsymbol{w}_{i}^{n}, \lambda_{i}^{p'}; \left(\frac{x_{i-1}}{D_{i-1}(x_{0}, \dots, x_{n-2})} \right)^{p'}, \left(\frac{y_{i-1}}{D_{i-1}(y_{0}, \dots, y_{n-2})} \right)^{p'} \right) \\ &\times \prod_{i=1}^{n} F_{p} \left(V^{l} \boldsymbol{w}_{i}^{n}, \lambda_{i}^{p'}; H_{i-1}^{(p')}, \left(\frac{x_{i-1}}{D_{i-1}(x_{0}, \dots, x_{n-2})} \dotplus \frac{y_{i-1}}{D_{i-1}(y_{0}, \dots, y_{n-2})} \right)^{p'} \right) \\ &\times \prod G_{p}(V^{l} \boldsymbol{w}_{i}^{n}, \lambda_{i}^{p'}; (F^{(i-1)})^{(p')})^{-1} \\ &= F_{p}(U^{n}(\boldsymbol{w}_{i}^{n}), (\lambda_{i}^{p'}); (x_{i-1}^{p'}), (y_{i-1}^{p'})). \end{split}$$

This means our assertion.

LEMMA 5.
$$\psi^{(l)} \circ \phi_3 = \phi_4 \circ (V^l)^n$$
.

PROOF. For $(v^n) \in \operatorname{Coker}(U^n)'$, we can determine the direct image;

$$(\psi^{(l)})^* F_p((\boldsymbol{v}_i^n), (\lambda_i^{p^l}); (z_{i-1}), (w_{i-1}))$$

on the fibre product $\hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n$, so we look at the following commutative diagram;

By the condition of diagram (9), we have a map Φ given by

$$\Phi: \hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n \to \hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n^{p^l}; \quad (t,(x_{i-1})) \mapsto (t,\phi^{(l)}((x_{i-1}))).$$

We endow $\hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n$ with a group scheme structure so that Φ becomes a homomorphism. Let $(t_1,(x_{i-1}))$ and $(t_2,(y_{i-1}))$ be local sections in $\hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n$. If the product $(t_1,(x_{i-1})) \cdot (t_2,(y_{i-1}))$ is expressed as $(t_1,(x_{i-1})) \cdot (t_2,(y_{i-1})) = (t_1t_2G((x_{i-1}),(y_{i-1})),(x_{i-1}) \cdot (y_{i-1}))$ where $G((x_{i-1}),(y_{i-1}))$ is a cocycle on $\hat{\mathbf{G}}_{m,A} \times \hat{\mathscr{E}}_n$. Then we have the following equation;

$$\Phi((t_1, (x_{i-1})) \cdot (t_2, (y_{i-1}))) = \Phi(t_1 t_2 G((x_{i-1}), (y_{i-1})), (x_{i-1}) \cdot (y_{i-1}))$$

$$= (t_1 t_2 G((x_{i-1}), (y_{i-1})), \phi^{(l)}(x_{i-1}) \cdot \phi^{(l)}(y_{i-1})).$$

On the other hand, we have

$$\begin{split} &\Phi((t_1,(x_{i-1})) \cdot \Phi((t_2,(y_{i-1}))) \\ &= (t_1,\phi^{(l)}(x_{i-1})) \cdot (t_2,\phi^{(l)}(y_{i-1})) \\ &= (t_1t_2F_p((\boldsymbol{v}^n),(\lambda_i^{p^l});\phi^{(l)}(x_{i-1}),\phi^{(l)}(y_{i-1})),\phi^{(l)}(x_{i-1}) \cdot \phi^{(l)}(y_{i-1})). \end{split}$$

Hence it is necessarly to have the following condition that Φ is a homomorphism;

$$G((x_{i-1}), (y_{i-1})) = F_p((\mathbf{v}^n), (\lambda_i^{p^l}); \phi^{(l)}(x_{i-1}), \phi^{(l)}(x_{i-1})).$$

We'll show the next equation to prove this;

$$F_p((\mathbf{v}^n), (\lambda_i^{p^l}); \phi^{(l)}(x_{i-1}), \phi^{(l)}(x_{i-1})) = F_p(V^l(\mathbf{v}^n), (\lambda_i); \phi^{(l)}(x_{i-1}), \phi^{(l)}(y_{i-1})).$$

(But it has already proved in [AA, lemma 3].)

6. The Kernel of the Type $F^n + a_1F^{n-1} + \cdots + a_n$

In the previous paper [AA], we can construct the case where the endomorphism T_b becomes the identity map. Taking the similar method, we give such a description in the generalized situation when n is arbitrary, $T_{b_1^2}, T_{b_2^3}, \ldots$, and $T_{b_{n-1}^n}$ are identity maps and the other $T_{b_i^n}$'s are zero maps. So we get

$$U^n = egin{pmatrix} F^{(\lambda_1)} & -1 & \cdots & \cdots & 0 \ 0 & F^{(\lambda_2)} & -1 & \cdots & 0 \ 0 & \cdots & & -1 \ 0 & & \cdots & & F^{(\lambda_n)} \end{pmatrix}.$$

Let (v_I^n) be the element of Ker U_I^n , we have following equations;

$$egin{aligned} F^{(\lambda_1)} m{v}_l^1 - m{v}_l^2 &= 0 \ F^{(\lambda_2)} m{v}_l^2 - m{v}_l^3 &= 0 \ &dots \ F^{(\lambda_{n-1})} m{v}_l^{n-1} - m{v}_l^n &= 0 \ F^{(\lambda_n)} m{v}_l^n &= 0. \end{aligned}$$

Hence we have the next equations;

$$egin{aligned} m{v}_l^2 &= F^{(\lambda_1)} m{v}_l^1 \ \ m{v}_l^3 &= F^{(\lambda_2)} m{v}_l^2 = F^{(\lambda_2)} F^{(\lambda_1)} m{v}_l^1 \ \ &\vdots \ \ m{v}_l^n &= F^{(\lambda_{n-1})} F^{(\lambda_{n-2})} \cdots F^{(\lambda_1)} m{v}_l^1 \ \ \ 0 &= F^{(\lambda_n)} m{v}_l^n = F^{(\lambda_n)} F^{(\lambda_{n-1})} \cdots F^{(\lambda_1)} m{v}_l^1 \end{aligned}$$

Therefore in this case we have the canonical isomorphism;

$$\operatorname{Ker}[U_l^n:W_l^n\to W_l^n]\simeq \operatorname{Ker}[F^{(\lambda_n)}F^{(\lambda_{n-1})}\cdots F^{(\lambda_l)}:W_l\to W_l].$$

Moreover $F^{(\lambda_n)}F^{(\lambda_{n-1})}\cdots F^{(\lambda_1)}$ is given the following polynomial in F;

$$F^{(\lambda_n)}F^{(\lambda_{n-1})}\cdots F^{(\lambda_1)}=F^n+a_1F^{n-1}+\cdots+a_n,$$

where the Witt vectors a_k 's are given by;

$$a_k = \sum_{n \ge i_1 > i_2 \dots > i_k \ge 1} (-1)^k \left[\prod_{j=1}^k \lambda_{i_k}^{(p-1)p^{n-i_j-(j-1)}} \right] \quad k = 1, \dots, n.$$

References

- [AA] N. Aki, M. Amano, On the Cartier Duality of Certain Finite Group Schemes of type (p^n, p^n) Tsukuba J. Math., Vol. 34, No. 1, (2010), 31–46.
- [A] M. Amano, On The Cartier Duaulity of Certain Finite Group Schemes of order p^n , Tokyo J. Math., Vol. 33, No. 1.
- [DG] M. Demazure and P. Gabriel, Groupes algébriques, Tome 1, Masson-North-Holland, Paris-Amsterdam, 1970.
- [HZ] M. Hazewinkel, Formal groups and applications, Academic Press, New York, 1978.
- [OT] Oort, F., Tate, J., Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 22, (1989), 345–375.
- [SOS] T. Sekiguchi, F. Oort, N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22, (1989), 345–375.
- [SS1] T. Sekiguchi, N. Suwa, A note on extentions of algebraic and formal groups IV, Tohoku Math. J., 53, (2001), 203–240.
- [SS2] T. Sekiguchi, N. Suwa, On the unified Kummer-Artin-Schreier-Witt theory, Prépublication N.111, université de Bordeaux, (1999).

(Nobuhiro Aki)

Department of Mathematics

Chuo University

1-13-27 Kasuga, Bunkyo-Ku, Tokyo, 112-8551 Japan

E-mail address: s87201@gug.math.chuo-u.ac.jp