On the Jacobson radical of the center of an infinite group algebra

Dedicated to Professor Goro Azumaya on the occasion of his 60th birthday

By Yasushi Ninomiya

(Received September 22, 1979)

Throughout K will represent an algebraically closed field of characteristic $p>0$, and G a group. We denote by $G^{\prime}, Z(G)$ and P the commutator subgroup, the center and a Sylow p-subgroup of G respectively. For $x \in G$, C_{x} is the conjugacy class of G containing x. Given a finite subset S of G, we denote by \hat{S} the element $\sum_{x \in S} x$ of the group algebra $K G$. If R is a ring (with identity), then $Z(R)$ and $J(R)$ denote the center and the (Jacobson) radical of R respectively, and $N(R)$ is the sum of all the nilpotent ideals of R.

In case G is a finite p-solvable group, R. J. Clarke [1] gave a necessary and sufficient condition for $J(Z(K G))$ to be an ideal of $K G$. Recently, S. Koshitani [2] proved that if G is finite and $J(Z(K G))$ is an ideal of $K G$ then G is p-solvable. Hence, in case G is finite, the problem to find a necessary and sufficient condition for $J(Z(K G))$ to be an ideal of $K G$ has been solved completely. In this paper, we consider this problem for infinite groups, and give an answer for poly- $\left\{p, p^{\prime}\right\}$ groups.

At first we recall the following
Theorem 1 (Passman [5, Lemma 4.1.11]). $J(K G) \cap Z(K G)=J(Z(K G))$.
Now, by making use of the same argument as in the proof of $[1$, Lemma 4], we shall prove the next

Lemma 1. Suppose that $J(Z(K G))$ is an ideal of $K G$. Then the following statements hold:
(1) If G^{\prime} is an infinite group, then $J(Z(K G))=0$.
(2) If G^{\prime} is a finite group with $p \nmid\left|G^{\prime}\right|$, then $J(Z(K G))=\hat{G}^{\prime} J(K G)$.
(3) If G^{\prime} is a finite group with $p\left|\left|G^{\prime}\right|\right.$, then $J(Z(K G))=G^{\prime} K G$.

Proof. Since $J(Z(K G))$ is an ideal of $K G$, for $x, y \in G$ and $a \in$ $J(Z(K G))$ we have

$$
\left(x^{-1} y^{-1} x y\right) a=x^{-1} y^{-1}(y a) x=x^{-1} a x=a .
$$

Hence $g a=a$ for all $g \in G^{\prime}$. Therefore it is easily seen that if G^{\prime} is infinite
then $J(Z(K G))=0$, and that if G^{\prime} is finite then $J(Z(K G)) \subset \hat{G}^{\prime} K G$. Now, we assume that G^{\prime} is finite. If $p \nmid\left|G^{\prime}\right|$, then $e=\left|G^{\prime}\right|^{-1} \hat{G}^{\prime \prime}$ is a central idempotent of $K G$ and we have $J(Z(K G)) \subset e J(K G)$. Since $e K G \subset Z(K G)$, by Theorem 1 we have $e J(K G)=J(e K G) \subset J(Z(K G))$. Hence it holds that $J(Z(K G))=e J(K G)=\hat{G}^{\prime} J(K G)$. Next, if $p\left|\left|G^{\prime}\right|\right.$, then \hat{G}^{\prime} is a central nilpotent element of $K G$, and so $\hat{G}^{\prime} \in J(Z(K G))$. Thus, we have $J(Z(K G))=\hat{G}^{\prime} K G$.

We call a group H a p^{\prime}-group if H has no elements of order p. Now, we put
$\Delta(G)=\left\{x \in G \mid\left[G: C_{G}(x)\right]\right.$ is finite $\}$.
$\Delta^{+}(G)=\{x \in \Delta(G) \mid x$ is of finite order $\}$.
$\Delta^{p}(G)=\langle x \in \Delta(G)| x$ is of order a power of $\left.p\right\rangle$.
These are characteristic subgroups of G, and have the following properties ([5, Lemma 8.1.6]).
(i) $\Delta(G) / \Delta^{+}(G)$ is torsion free abelian.
(ii) $\Delta^{+}(G) / \Delta^{p}(G)$ is a locally finite p^{\prime}-group.

A group G is said to be an $F C$ (finite conjugate) group if $G=\Delta(G)$. The following theorem plays an important role in our subsequent study.

Theorem 2 (Passman [5, Theorem 4.2.13]). The following statements are equivalent:
(1) $K G$ is semi-prime.
(2) $Z(K G)$ is semi-prime.
(3) $Z(K G)$ is semi-simple.
(4) G has no finite normal subgroups H with $p||H|$.
(5) $\Delta(G)$ is a p^{\prime}-group.

Combining Theorem 2 with Lemma 1, we can now obtain the following
Corollary 1. Let G be a non-abelian group with G^{\prime} infinite. Then the following statements are equivalent:
(1) $J(Z(K G))$ is an ideal of $K G$.
(2) $J(Z(K G))=0$.
(3) G has no finite normal subgroups H with $p||H|$.

Henceforth, we may therefore restrict our attention to the case that G^{\prime} is finite. Note that if G^{\prime} is finite then G is an $F C$ group. Theorem 2 together with Theorem 1 and [5, Lemma 8.1.8] deduces the following

Corollary 2. Let G be an FC group. Then $K G$ is semi-simple if and only if $Z(K G)$ is semi-simple.

Now, by making use of the same argument as in the proof of [5, Lemma 8.1.8], we shall prove the following lemma, which implies the if
part in the above corollary for a twisted group algebra (see Corollary 3 below).

Lemma 2. Let G be an $F C$ group, and $K^{t} G$ a twisted group algebra of G. Then $J\left(K^{t} G\right)=N\left(K^{t} G\right)$.

Proof. Since $G / \Delta^{+}(G)$ is a torsion free abelian group, by [3, Corollary 1.11] we have $J\left(K^{t} G\right) \subset J\left(K^{t} \Delta^{+}(G)\right) K^{t} G$. Let $a \in J\left(K^{t} \Delta^{+}(G)\right)$, and put $L=$ $\left\langle\Delta^{p}(G)\right.$, Supp $\left.a\right\rangle$. Since $\Delta^{+}(G) / \Delta^{p}(G)$ is a locally finite p^{\prime}-group, $L / \Delta^{p}(G)$ is a finite p^{\prime}-group. Hence, by [3, Proposition 1.5] we see that $a \in J\left(K^{t} \Delta^{+}(G)\right)$ $\cap K^{t} L \subset J\left(K^{t} L\right)=J\left(K^{t} \Delta^{p}(G)\right) K^{t} L$. Therefore, by [3, Theorem 3.7], we have $J\left(K^{t} G\right) \subset J\left(K^{t} \Delta^{+}(G)\right) K^{t} G \subset J\left(K^{t} \Delta^{p}(G)\right) K^{t} G=N\left(K^{t} G\right)$, namely, $J\left(K^{t} G\right)$ $=N\left(K^{t} G\right)$.

Corollary 3. Let G be an $F C$ group, and $K^{t} G$ a twisted group algebra of G. If $Z\left(K^{t} G\right)$ is semi-simple, then $K^{t} G$ is semi-simple.

Proof. Suppose $J\left(Z\left(K^{t} G\right)\right)=0$. Then $K^{t} G$ is semi-prime by [4, Theorem 2.2]. Hence $N\left(K^{t} G\right)=0$, and so $J\left(K^{t} G\right)=0$ by Lemma 2.

Now, we shall prove the following
Lemma 3. Let G be an $F C$ group, and N a finite normal p^{\prime}-subgroup of G. If $(1-e) J(Z(K G))=0$, then $(1-e) J(K G)=0$, where $e=|N|^{-1} \hat{N}$.

Proof. Evidently, $f=1-e$ is a central idempotent of $K G$. Let $f=f_{1}+$ $f_{2}+\cdots+f_{n}$ be the decomposition of f into the sum of orthogonal central primitive idempotents in $K N$, and let f_{*} be an arbitrary one of $\left\{f_{i} \mid 1 \leqq i \leqq n\right\}$. Suppose $\operatorname{Supp} f_{*}=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and set $W=\cap_{i=1}^{k} C_{G}\left(x_{i}\right)$. Since G is an $F C$ group, $[G: W]$ is finite. We put $H=\left\{g \in G \mid g f_{*} g^{-1}=f_{*}\right\}$. Then H contains W, and so $[G: H]$ is finite. Now, let $G=a_{1} H \cup a_{2} H \cup \cdots \cup a_{s} H$ be the decomposition of G into right cosets with respect to H. Then $a_{j} f_{*} a_{j}^{-1}$ $(1 \leqq j \leqq s)$ is some one of $\left\{f_{i} \mid 1 \leqq i \leqq n\right\}$. We put $\tilde{f}_{*}=\sum_{j=1}^{s} a_{j} f_{*} a_{j}^{-1}$. Then \tilde{f}_{*} is a central idempotent of $K G$, and by [5, Themrem 6.1.9], $\tilde{f}_{*} K G$ is isomorphic to the matrix ring $\left(K^{t} H / N\right)_{m}$ for some m, where $K^{t} H / N$ is a suitable twisted group algebra of H / N. Since $f J(Z(K G))=0$, we see that $J\left(Z\left(\tilde{f}_{*} K G\right)\right)=\tilde{f}_{*} J(Z(K G))=0$, and so $J\left(Z\left(K^{t} H / N\right)\right)=0$. Thus, by Corollary 3 we have $J\left(K^{t} H / N\right)=0$, and so $\tilde{f}_{*} J(K G)=0$. Hence $f J(K G)=0$.

The proof of the next lemma is quite similar to that of [1, Lemma 5].
Lemma 4. Let N be a finite normal p^{\prime}-subgroup of G. If $J(Z(K G))$ is an ideal of $K G$, then $J(Z(K G / N))$ is an ideal of $K G / N$.

Now, we shall consider the case that G has a non-trivial normal p-subgroup. In case G is a p-group, it is known that $Z(G)=\{1\}$ if and only if G has no non-trivial finite normal subgroups ([6, Theorem 6.3.1]). In fact, there does exist an infinite p-group Q with $Z(Q)=\{1\}$ (see [6, Example 5, p. 216]).

Lemma 5. Let G be a non-abelian group with G^{\prime} finite. Suppose that G has a non-trivial normal p-subgroup Q. If $J(Z(K G))$ is an ideal of $K G$, then the following statements hold:
(1) $G^{\prime} \subset Q$, and so P is normal in G and $G^{\prime} \subset Z(P)$.
(2) Let $P=G^{\prime} \cup\left(\cup_{i \in I} G^{\prime} s_{i}\right)$ be the decomposition of P into left cosets with respect to G^{\prime}. Then the conjugacy classes of the elements of P in G are $\{1\}, G^{\prime}-\{1\}$ and $\left\{G^{\prime} s_{i} \mid i \in I\right\}$.

Proof. Let $s \in Q-\{1\}$. Since Q^{\prime} is finite, Q is locally finite, and so $C_{s}-\left|C_{s}\right| \in J(K Q) \cap Z(K G)$. Hence $C_{s}-\left|C_{s}\right|$ is a central nilpotent element of $K G$, so that it is contained in $J(Z(K G))$. Thus, by Lemma 1 we see that $C_{s}-\left|C_{s}\right| \in \hat{G}^{\prime} K G$, whence it follows that $C_{s}-\left|C_{s}\right|=\sum_{x \in s} k_{x} \hat{G}^{\prime} x$, where S is a suitable finite subset of G and $k_{x} \in K$. Since $C_{s} \subset G^{\prime} s$, the above equation yields
(a)

$$
C_{s}-\left|C_{s}\right|=\hat{G}^{\prime} s .
$$

Hence we have $\hat{G}^{\prime \prime}=C_{s} s^{-1}-\left|C_{s}\right| s^{-1}$, which implies that $G^{\prime} \subset Q$. In partiqular, P is normal in G. Since G^{\prime} is a finite normal subgroup of P, as was claimed just before Lemma 5, $Z(P)$ is a non-trivial normal subgroup of G, and so $G^{\prime} \subset Z(P)$, proving (1). Now, since P is normal in G, (a) holds for any element s of $P-\{1\}$. Then (2) readily follows from the last.

Remark 1. In the above lemma, if G is finite then $G^{\prime}=Z(P)$ (see [1, Lemma 8]). In fact, if $s \in Z(P)$ then $p \nmid\left|C_{s}\right|$, and hence we have $s \in G^{\prime}$ from the equation $C_{s}-\left|C_{s}\right|=\hat{G}^{\prime} s$.

Now, we consider the case that G^{\prime} is a finite p-solvable group. By making use of Lemmas 4 and 5 , we shall prove the following

Lemma 6. Let G be a non-abelian group. Assume that G^{\prime} is a finite p-solvable group. If $J(Z(K G))$ is an ideal of $K G$, then G^{\prime} is p-nilpotent.

Proof. Suppose that $\left|G^{\prime}\right|$ is divisible by p. We put $N=O_{p^{\prime}}\left(G^{\prime}\right)$ and $\bar{G}=G / N$. Then $J(Z(K \bar{G}))$ is an ideal of $K \bar{G}$ by Lemma 4. Since $O_{p}\left(\bar{G}^{\prime}\right)$ is a nontrivial normal p-subgroup of \bar{G}, by Lemma 5 (1) we see that \bar{G}^{\prime} is a p-group. Hence G^{\prime} is p-nilpotent.

Proposition 1. Let G be a non-abelian group with a non-trivial Sylow p-subgroup P. Assume that G^{\prime} is a finite p-solvable group with $O_{p^{\prime}}\left(G^{\prime}\right) \neq\{1\}$. Then $J(Z(K G))$ is an ideal of $K G$ if and only if the following hold:
(1) P is finite.
(2) $G^{\prime} P$ is a Frobenius group with kernel $O_{p^{\prime}}\left(G^{\prime}\right)$ and complement P.
(3) $J\left(Z\left(K G / O_{p^{\prime}}\left(G^{\prime}\right)\right)\right)$ is an ideal of $K G / O_{p^{\prime}}\left(G^{\prime}\right)$.

Proof. We put $N=O_{p^{\prime}}\left(G^{\prime}\right)$ and $e=|N|^{-1} \hat{N}$.
Suppose that $J(Z(K G))$ is an ideal of $K G$. Then by Lemma $6, G^{\prime}$ is a p-nilpotent group. Now, let T be a finite subgroup of G containing G^{\prime} such that T / N is a p-group. Since T is normal in $G, J(K T) \subset J(K G)$. Moreover, since $J(Z(K G)) \subset \hat{G}^{\prime} K G \subset \hat{N} K G$, by Lemma 3 we have (1-e) $J(K T)$ $\subset(1-e) J(K G)=0$. This implies that $J(K T)=e J(K T) \cong J(K T / N) \cong J(K Q)$, where Q is a Sylow p-subgroup of T. Then by [7, Theorem 2], T is a Frobenius group with kernel N. Hence, we have $|N|=1+k|Q|$ for some positive integer k, which implies that $\left|T / G^{\prime}\right| \leqq|T / N|=|Q|<|N|$. Thus, the order of any finite subgroup of the abelian p-group $P N / G^{\prime}$ is not greater than $|N|$. This is only possible if P itself is finite. We see therefore that $G^{\prime} P$ is a finite Frobenius group with kernel N. Furthermore, (3) follows from Lemma 4.

Conversely, suppose that the conditions (1), (2) and (3) hold. Since $G / G^{\prime} P$ is abelian and has no elements of order p, we have $J(K G)=J\left(K G^{\prime} P\right) K G$ ([5, Theorem 7.3.1]). Moreover, since $G^{\prime \prime} P$ is a finite Frobenius group with kernel N, we have $J\left(K G^{\prime} P\right)=e J(K P)([7$, Theorem 2]). Hence, $J(K G)=$ $e J(K P) K G=e J(K G)=J(e K G)$. This implies that $J(Z(K G))=e J(Z(K G))=$ $J(Z(e K G))$, because $J(Z(K G)) \subset J(K G)$ (Theorem 1). Since $e K G \cong K G / N$, it holds that $J(Z(e K G)) \cong J(Z(K G / N))$, and hence by the condition (3), we see that $J(Z(K G))$ is an ideal of $K G$.
D. A. R. Wallace [8] gave a necessary and sufficient condition for $J(K G)$ to be contained in $Z(K G)$. The condition (3) in the next corollary is the condition (2) in [8, Theorem 1.2].

Corollary 4. Let G be a non-abelian group with a non-trivial Sylow p-subgroup P. Assume that G^{\prime} is a finite p^{\prime}-group. Then the following are equivalent:
(1) $J(Z(K G))$ is an ideal of $K G$.
(2) $J(K G)=J(Z(K G))$.
(3) P is finite and $G^{\prime} P$ is a Frobenius group with kernel G^{\prime} and complement P.

Proof. (2) $\Rightarrow(1) \Rightarrow(3)$ by Proposition 1. If (3) is satisfied, then $J(K G)=$ $J\left(K G^{\prime} P\right) K G=\hat{G}^{\prime} J(K P) K G=\hat{G}^{\prime} J(K G) \subset J(Z(K G))$. Hence, by Theorem 1 we have (2).

Now, we consider the case that G has a non-trivial normal p-subgroup, and establish a necessary and sufficient condition for $J(Z(K G))$ to be an ideal of $K G$. At first, we shall deal with the case that $Z(G)$ has a p-element.

Proposition 2. Let G be a non-abelian group with $G^{\prime \prime}$ finite. Assume that $Z(G)$ has a p-element. Then the following are equivalent:
(1) $J(Z(K G))$ is an ideal of $K G$.
(2) $p=2,\left|G^{\prime}\right|=2$ and $Z(G) \cap P=G^{\prime}$.

Proof. (1) $\Rightarrow(2)$: Let s be an arbitrary p-element of $Z(G)$. Then $s-1 \in J(Z(K G))$. Since G^{\prime} is a p-group Lemma 5), by Lemma 1 we have $s-1 \in \hat{G}^{\prime} K G$. This implies that the order of s is 2 and $G^{\prime}=\langle s\rangle$. Hence, we have $p=2$ and $Z(G) \cap P=G^{\prime}$.
(2) $\Rightarrow(1)$: If $g \in G-Z(G)$, then $\left[G: C_{G}(g)\right]=2$ by $\left|G^{\prime}\right|=2$, and it is easy to see that G has conjugacy classes $\{z\}_{z \in Z(G)}$ and $\left\{G^{\prime} x\right\}_{x \in S}$, where S is a suitable subset of G. Since each $\hat{G}^{\prime} x(x \in S)$ is a central nilpotent element of $K G$, it is contained in $J(Z(K G))$. Now, suppose that $a=\sum_{z \in Z(G)} k_{z} z$ $\left(k_{z} \in K\right)$ is in $J(Z(K G))$. Then, by Theorem 1 we have $a \in K Z(G) \cap J(K G)$ $\subset J(K Z(G))=J\left(K G^{\prime}\right) K Z(G)=\hat{G}^{\prime} K Z(G)$. This implies that $J(Z(K G))=\hat{G}^{\prime} K G$, which is an ideal of $K G$.

Remark 2. Since $Z(G) \cap P \subset Z(P)$, Remark 1 enables us to see that, in the above proposition, if G is finite then the condition (2) may be replaced by the following:
(2) $\quad p=2,\left|G^{\prime}\right|=2$ and $Z(P)=G^{\prime}$ (see [1, Lemma 8]).

Corollary 5 (cf. [1, Corollary]). Let P be a non-abelian p-group. Then $J(Z(K P))$ is an ideal of $K P$ if and only if one of the following conditions holds:
(1) $Z(P)=\{1\}$.
(2) $p=2,\left|P^{\prime}\right|=2$ and $P^{\prime}=Z(P)$.

Proof. Suppose that $J(Z(K P))$ is an ideal of $K P$. If $J(Z(K P))=0$, then (1) holds by Theorem 2 and the remark stated just before Lemma 5. On the other hand, if $J(Z(K P)) \neq 0$, then P^{\prime} is finite (Lemma 1), and so $Z(P) \neq\{1\}$. Hence (2) holds by Proposition 2. The converse implication is clear by Theorem 2 and Proposition 2.

Next, we consider the case that $Z(G)$ has no elements of order p.
Proposition 3. Let G be a non-abelian group with G^{\prime} finite. Assume that G has a non-trivial normal p-subgroup and that $Z(G)$ has no elements of order p. Then the following conditions are equivalent:
(1) $J(Z(K G))$ is an ideal of $K G$.
(2) $P=G^{\prime}, P$ is an elementary abelian group of order greater than 2, and it has a complement $H \supset Z(G)$ in G such that $\bar{G}=G / Z(G)=\bar{P} \bar{H}$ is a finite Frobenius group with kernel \bar{P} and complement \bar{H} and $|\bar{H}|=|P|-1$.

In advance of proving the proposition, we state the following
Lemma 7. Suppose that G satisfies the assumptions in Proposition 3.

If $J(Z(K G))$ is an ideal of $K G$, then the following statements hold:
(1) P is an abelian group containing at least three elements, $G^{\prime \prime} \subset P$ and G^{\prime} has a complement $H \supset Z(G)$ in G.
(2) If $h \in H$ and $C_{G}(h) \cap G^{\prime} \neq\{1\}$, then $h \in Z(G)$.

Proof. (1) Since G has a non-trivial normal p-subgroup, $G^{\prime} \subset Z(P)$ by Lemma 5 (1), and hence we have $G^{\prime} \cap Z(G)=\{1\}$, because $Z(G)$ has no elements of order p. Let $s \in G^{\prime}-\{1\}$. Then by the above, there exists some $x \in G$ with $x s x^{-1} \neq s$. Now, by Lemma 5 (2), for any $t \in G^{\prime}-\{1\}$ there exists some $g \in G$ with $g s g^{-1}=t$, and hence we have

$$
x t x^{-1}=x g s g^{-1} x^{-1}=g x\left(x^{-1} g^{-1} x g\right) s\left(g^{-1} x^{-1} g x\right) x^{-1} g^{-1} .
$$

Since $x^{-1} g^{-1} x g \in G^{\prime} \subset Z(P)$, the last implies that

$$
x t x^{-1}=g x s x^{-1} g^{-1} \neq g s g^{-1}=t .
$$

Thus, we have $G^{\prime} \cap C_{G}(x)=\{1\}$. This together with $\left[G: C_{G}(x)\right] \leqq\left|G^{\prime}\right|$ shows that $H=C_{G}(x)$ is a complement of G^{\prime} in G and $H \supset Z(G)$. Again by $G^{\prime} \subset Z(P)$, we see that P is the direct product of G^{\prime} and $P \cap H$, and hence P is abelian. Finally, if $|P|=2$, then P is contained in $Z(G)$. But this is a contradiction.
(2) Let $h \in H-\{1\}$, and suppose that $C_{G}(h) \cap G^{\prime} \neq\{1\}$. Let $s \in\left(C_{G}(h)\right.$ $\left.\cap G^{\prime}\right)-\{1\}$. Then, by Lemma 5 (2), for any $t \in G^{\prime}-\{1\}$, there exists $g \in G$ with $g s g^{-1}=t$. Since $h t h^{-1}=h g s g^{-1} h^{-1}=g h\left(h^{-1} g^{-1} h g\right) s\left(g^{-1} h^{-1} g h\right) h^{-1} g^{-1}=$ $g h s h^{-1} g^{-1}=g s g^{-1}=t$, we see that $h \in C_{G}\left(G^{\prime}\right)$. This together with the fact that H is abelian implies that $h \in Z(G)$.

Proof of Proposition 3. (1) $\Rightarrow(2)$: Suppose that $J(Z(K G))$ is an ideal of $K G$. Then, by Lemma $7, P$ is abelian and has at least three elements, and $G^{\prime}(\subset P)$ has a complement $H \supset Z(G)$ in G. We put $\bar{G}=G / Z(G)$. Let $\bar{s} \in \bar{G}^{\prime}-\{\overline{1}\}$, and $\bar{h} \in C_{\overline{\bar{I}}}(\bar{s})$. Then $s h s^{-1} h^{-1} \in G^{\prime} \cap Z(G)=\{1\}$, and hence $s \in C_{G}(h)$. Thus, we have $\bar{h}=\overline{1}$ by Lemma 7 (2). Since $\bar{G}=\bar{G}^{\prime} \bar{H}$, this implies that $C_{\bar{G}}(\bar{s})=\bar{G}^{\prime}$, and hence $|\bar{H}|=\left[\bar{G}: \bar{G}^{\prime}\right]=\left[\bar{G}: \mathrm{C}_{\bar{G}}(\bar{s}]\right]<\infty$. We conclude therefore that \bar{G} is a finite Frobenius group with kernel \bar{G}^{\prime} and complement \bar{H}, which implies also $G^{\prime}=P$. Now, let $s \in P-\{1\}$. Since $\bar{P}-\{\overline{1}\}$ is a conjugacy class in \bar{G} (Lemma 5 (2)), we have $\left\{\bar{h} \bar{s} \bar{h}^{-1} \mid \bar{h} \in \bar{H}\right\}=\bar{P}-\{\overline{1}\}$. Furtheremore, since \bar{G} is a Frobenius group, we have $|\bar{H}|=\left|\left\langle\bar{h} \bar{s} \bar{h}^{-1}\right| \bar{h} \in \bar{H}\right\} \mid=$ $|\bar{P}|-1=|P|-1$. Finally, it is clear that P is elementary abelian, because $P-\{1\}$ is a conjugacy class in G.
$(2) \Rightarrow(1)$: let g be an arbitary element of $G-Z(G)$. Firstly, assume that $g \in Z(G) P$, and put $g=z s$ with $z \in Z(G)$ and $s \in P-\{1\}$. Since \bar{G} is a Frobenius group and \bar{P} is abelian, there holds that $\bar{P} \subset \overline{C_{G}(s)} \subset C_{\bar{G}}(\bar{s})=\bar{P}$.

Hence $C_{G}(s)=Z(G) P$, and so $\left[G: C_{G}(s)\right]=[\bar{G}: \bar{P}]=|\bar{H}|=|P|-1$. Noting that $C_{G}(z s)=C_{G}(s)$, we have $C_{g}=(P-\{1\}) z$. Secondly, assume $g \notin Z(G) P$. Then $g=z a s$ with some $z \in Z(G), a \in H-Z(G)$ and $s \in P$. Since \bar{G} is a Frobenius group and \bar{H} is abelian, $\overline{a s}$ is contained in $\overline{H^{u}}$ for some $\bar{u} \in \bar{G}$ and there holds that $\overline{H^{u}} \subset \overline{C_{G}(a s)} \subset C_{\bar{G}}(\overline{a s})=\overline{H^{u}}$. Hence $C_{G}(a s)=H^{u}$, which implies that $\left[G: C_{G}(a s)\right]=|P|$. Noting that $C_{G}(z a s)=C_{G}(a s)$, we have $C_{g}=P g$. Thus, we have seen that G has conjugacy classes $\{z\}_{z \in Z(G)},\{(P-\{1\}) z\}_{z \in Z(G)}$ and $\{P x\}_{x \in S}$, where S is a suitable subset of G. Since each $\hat{P} x(x \in S)$ is a central nilpotent element of $K G$, it is contained in $J(Z(K G))$. Now, suppose that $a=\sum_{z \in Z(G)} k_{z} z+\sum_{z \in Z(G)} l_{z}(\hat{P}-1) z\left(k_{z}, l_{z} \in K\right)$ is in $J(Z(K G))$. Since $a=\sum_{z \in Z(G)}$ $\left(k_{z}-l_{z}\right) z+\sum_{z \in Z(G)} l_{z} \hat{P}_{z}$ and $\hat{P} z \in J(Z(K G))$ for all $z \in Z(G)$, by Theorem 1 we have $\sum_{z \in Z(G)}\left(k_{z}-l_{z}\right) z \in K Z(G) \cap J(K G) \subset J(K Z(G))=0$, which implies $J(Z(K G)) \subset \hat{P} K G$. Hence $J(Z(K G))=\hat{P} K G=\hat{G}^{\prime} K G$, which is an ideal of $K G$.

We call G a poly- $\left\{p, p^{\prime}\right\}$ group, if G has a finite normal series

$$
G=G_{n} \supset \cdots \supset G_{1} \supset G_{0}=\{1\}
$$

such that each quotient G_{i+1} / G_{i} is a p-group or a p^{\prime}-group. Now, we can state our principal theorem as follows:

Theorem 3. Let G be a non-abelian poly- $\left\{p, p^{\prime}\right\}$ group. Then $J(Z(K G))$ is an ideal of $K G$ if and only if one of the following statements holds:
(1) G has no finite normal subgroups H with $p||H|$.
(2) $p=2,\left|G^{\prime}\right|=2$ and $Z(G) \cap P=G^{\prime}$.
(3) $P=G^{\prime}, P$ is a finite elementary abelian group of order greater than 2, and it has a complement $H \supset Z(G)$ in G such that $\bar{G}=G / Z(G)$ is a finite Frobenius group with kernel $\bar{P}(\cong P)$ and complement \bar{H} and $|\bar{H}|$ $=|P|-1$.
(4) G^{\prime} is a finite p^{\prime}-group, P is finite, and $G^{\prime} P$ is a Frobenius group with kernel G^{\prime} and complement P.
(5) $p=2, G^{\prime}$ is a finite group of order $2 m$ (m is odd), P is finite, and $G^{\prime} P$ is a Frobenius group with kernel $G^{\prime \prime}$ and complement P such that $Z(\bar{G}) \cap \bar{P}=\bar{G}^{\prime}$, where $\bar{G}=G / G^{\prime \prime}$.
(6) p is odd, $|P|=p$ and G^{\prime} is a Frobenius group of order $p n$ (n is prime to p) with kernel $G^{\prime \prime}$ and complement P such that \bar{G}^{\prime} has a complement $\bar{H} \supset Z(\bar{G})$ in $\bar{G}=G / G^{\prime \prime}$. Further, $\bar{G}=\bar{G} / Z(\bar{G})$ is a finite Frobenius group with kernel $\tilde{P}(\cong P)$ and complement \tilde{H} and $|\tilde{H}|=p-1$.

Proof. Assume that $J(Z(K G))$ is an ideal of $K G$. If $J(Z(K G))=0$, then (1) holds by Theorem 2. From now on, we restrict our attention to the case that $J(Z(K G)) \neq 0$. Then G^{\prime} is finite by Lemma 1 . If G has a
normal p-subgroup, then (2) (resp. (3)) follows from Proposition 2 (resp. Proposition 3). Accordingly, henceforth we may assume that G^{\prime} is finite and G has no normal p-subgroups. Firstly, if G^{\prime} is a p^{\prime}-group, then (4) holds by Corollary 4. Secondly, assume that $\left|G^{\prime}\right|$ is divisible by p. Since G is a poly- $\left\{p, p^{\prime}\right\}$ group, G^{\prime} is a finite p-solvable group. We have $O_{p^{\prime}}\left(G^{\prime}\right)$ $\neq\{1\}$, because $O_{p^{\prime}}\left(G^{\prime}\right)=\{1\}$ implies a contradiction that $O_{p}\left(G^{\prime}\right)$ is a nontrivial normal p-subgroup of G. We put $N=O_{p^{\prime}}\left(G^{\prime}\right)$ and $\bar{G}=G / N$. Then \bar{G} has a non-trivial normal p-subgroup. By Proposition 1, it holds that $G^{\prime} P$ is a finite Frobenius group with kernel N and complement P, and $J(Z(K \bar{G}))$ is an ideal of $K \bar{G}$. Now, we shall distinguish between two cases.

Case 1. $Z(\bar{G})$ has a p-element. By Proposition 2, $p=2$ and $Z(\bar{G}) \cap$ $\bar{P}=\bar{G}^{\prime}$ is of order 2. Since $G^{\prime} P$ is a Frobenius group, G^{\prime} is also a Frobenius group with kernel N, and hence $N \subset G^{\prime \prime}$. Noting that G^{\prime} / N is abelian, we have $N=G^{\prime \prime}$, and therefore (5).

Case 2. $Z(\bar{G})$ has no elements of order p. By Proposition 3, $\bar{G}^{\prime}=\bar{P}$ is an elementary abelian group of order greater than $2, \bar{P}$ has a complement $\bar{H} \supset Z(\bar{G})$ in \bar{G}, and $\bar{G}=\bar{G} / Z(\bar{G})$ is a finite Frobenius group with kernel \tilde{P} $(\cong P)$ and complement \tilde{H} of order $|P|-1$. Since $G^{\prime}\left(=G^{\prime} P\right)$ is a Frobenius group with complement P elementary abelian, we see that P is a cyclic group of order $p>2$. Furtheremore, as in Case 1, we have $N=G^{\prime \prime}$, and therefore (6).

The converse implication follows from Theorem 2, Propositions 1, 2 and 3 , and Corollary 4.

Corollary 6. Let G be a non-abelian poly- $\left\{p, p^{\prime}\right\}$ group. If $J(Z(K G))$ is a non-trivial ideal of $K G$, then P is one of the following groups:
(1) a finite elementary abelian group.
(2) a finite cyclic group.
(3) a finite generalized quaternion group.
(4) a 2-group whose commutator subgroup is of order 2.

Remark 3. If G satisfies the condition (2) or (5) in Theorem 3 and $|P|=2$, then G is a group cited in [8, Theorem 1.2(1)].

References

[1] R. J. Clarke: On the radical of the centre of a group algebra, J. London Math. Soc. 1 (1969), 565-572.
[2] S. Koshitani: A note on the radical of the centre of a group algebra, ibid. 18 (1978), 243-246.
[3] D. S. Passman: Radicals of twisted group rings, Proc. London Math. Soc. 20 (1970), 409-437.
[4] D. S. Passman: Twisted group algebras of discrete groups, ibid. 21 (1970), 219-231.
[5] D. S. PAsSmAN: The algebraic structure of group rings, Wiley-Interscience, 1977.
[6] W. R. Scott: Group theory, Prentice-Hall, 1964.
[7] D. A. R. Wallace: Note on the radical of a group algebra, Proc. Cambridge Philos. Soc. 54 (1958), 128-130.
[8] D. A. R. Wallace: On commutative and central conditions on the Jacobson radical of the group algebra of a group II, J. London Math. Soc. 4 (1971), 91-99.

Shinshu University

