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Three Techniques for Obtaining
Algebraic Circle Packings

Larsen Louder, Andrey M. Mishchenko, & Juan Souto

Abstract. The main purpose of this article is to demonstrate three
techniques for proving algebraicity statements about circle packings.
We give proofs of three related theorems: (1) that every finite simple
planar graph is the contact graph of a circle packing on Ĉ, equiva-
lently in C, all of whose tangency points, centers, and radii are alge-
braic, (2) that every flat conformal torus that admits a circle packing
whose contact graph triangulates the torus has algebraic modulus, and
(3) that if R is a compact Riemann surface of genus at least 2, having
constant curvature −1 and admitting a circle packing whose contact
graph triangulates R, then R is isomorphic to the quotient of H2 by a
subgroup of PSL2(R ∩ Q̄). The statement (1) is original, whereas (2)
and (3) have been previously proved in [McC96, Chapters 8, 9], the
Ph.D. thesis of McCaughan.

Our first proof technique is to apply Tarski’s theorem, a result from
model theory, which says that if an elementary statement in the theory
of real-closed fields is true over one real-closed field, then it is true
over any real closed field. This technique works to prove (1) and (2).
Our second proof technique is via an algebraicity result of Thurston on
finite covolume discrete subgroups of PSL2 C ⊂ IsomH3. This tech-
nique works to prove (1). Our first and second techniques had not
previously been applied in this area. Our third and final technique is
via a lemma in real algebraic geometry, and was previously used by
McCaughan to prove (2) and (3). We show that in fact it may be used
to prove (1) as well.

1. Introduction

A circle packing in Ĉ is defined to be a finite collection of pairwise interiorwise
disjoint metric closed disks in the Riemann sphere Ĉ = C ∪ {∞} equipped with
the constant curvature +1 metric as usual. There are no conditions on the radii of
the disks. We say that two closed disks are tangent if their boundary circles are
tangent. The contact graph of a circle packing P is the graph G whose vertex set
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is in bijection with the disks of P , so that two vertices share an edge if and only
if the corresponding disks are tangent.

Recall that a graph is called planar if it can be homeomorphically embedded in
the plane. The contact graph G of a circle packing in Ĉ is always planar because
we may draw the vertices of G at the metric centers of the disks they correspond
to and connect adjacent vertices with geodesic arcs. It turns out that, conversely,
any planar graph G can be realized by a circle packing P in Ĉ. Furthermore, if
G is the 1-skeleton of a triangulation of the 2-sphere S2, then this P is unique
up to action by Möbius and anti-Möbius transformations on Ĉ. These results to-
gether constitute what is probably the most important theorem in circle packing,
known as the Koebe [Koe36]–Andreev [And70]–Thurston theorem. (Originally
presented at his talk at the International Congress of Mathematicians, Helsinki,
1978, according to [Sac94, p. 135]. See also [Thu80, Chapter 13].) A major mo-
tivating factor for the study of circle packings is that they are, in a certain precise
sense, a discrete approximation to the Riemann mapping, as originally conjec-
tured by Thurston (in his address at the International Symposium in Celebration
of the Proof of the Bieberbach Conjecture, Purdue University, March 1985, ac-
cording to [HS93, p. 371]) and proved by Rodin and Sullivan [RS87]. The close
relationship between circle packing and, for example, classical complex analy-
sis has been further confirmed many times; for example, see [HS93]. For further
exposition and references on circle packing, see for example the articles [Sac94;
Roh11] and their bibliographies, or the book [Ste05] by Stephenson.

In this article we present some tools for uniformizing circle packings to make
the centers and radii of their disks algebraic. Precisely, a circle packing P in Ĉ is
called algebraic if the following are all algebraic:

• all tangency points between pairs of disks in P ,
• all centers of disks in P , and
• all Euclidean radii of disks in P under stereographic projection.

There are two equivalent definitions of algebraicity of a point z ∈ Ĉ. First, we
may say that z ∈ Ĉ = C ∪ {∞} is algebraic if and only if either the image of z

under standard stereographic projection to C is algebraic, or z = ∞. Second, we
may say that z ∈ Ĉ = P1(C) is algebraic if and only if z ∈ P1(Q̄) ⊂ P1(C).

The first main theorem of this article is the following.

Theorem 1. Let G be a finite, simple, planar graph. Then there exists an alge-
braic circle packing in Ĉ having a contact graph G.

Recall that a graph is called simple if it is undirected, does not have loops, and
has no repeated edges. A loop is an edge from a vertex to itself. To the best of our
knowledge, Theorem 1 has never appeared in print.

Next, we consider circle packings on more general Riemann surfaces. A circle
packing on a Riemann surface R is a collection of pairwise interiorwise disjoint
metric closed disks on R. The following is well known, see [HS93]:
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Discrete Uniformization Theorem 1.1. Let X be a triangulation of a compact
oriented topological surface without boundary. Then there exists a constant cur-
vature closed Riemann surface R homeomorphic to X and a locally finite circle
packing P on R, so that P realizes X. Furthermore, R is uniquely determined by
X up to action by conformal isomorphisms on R, and P is then uniquely deter-
mined by X and R up to action by conformal and anticonformal automorphisms
of R.

A triangulation X = (V ,E,F ) of a surface S is a collection of triangular faces
F , having vertices V and edges E, with identifications along the edges so that the
resulting object is homeomorphic to S. We require that two distinct faces of X

meet along a single edge, or at a single vertex, or not at all, and that there are no
vertex nor edge identifications along the boundary of any one triangle. Then the
1-skeleton of X is the graph (V ,E). We consider triangulations only up to their
combinatorics. We say that the circle packing P realizes X if the contact graph of
P is equal to the 1-skeleton of X.

Call a Riemann surface R that comes from some triangulation X via Theo-
rem 1.1 circle packable. In other words, we say that R is circle packable if there
exists a locally finite circle packing P on R realizing some triangulation of R.
Then Theorem 1.1 implies that there are many R that fail to be circle packable:
this is because for any g ≥ 1, the moduli space of genus g Riemann surfaces is
uncountable, but there are only countably many triangulations, considered up to
combinatorial equivalence, of a genus g surface. It is then natural to ask which
compact Riemann surfaces are circle packable.

In [Bro86], Brooks proves that the circle packable compact Riemann surfaces
R of given genus are dense in their moduli space. The next two theorems of Mc-
Caughan [McC96, Chapters 8, 9] give further information in the direction of an
answer to this question.

Theorem 2. Suppose that T is a flat circle packable torus. Then T is similar or
isometric to C/〈1, τ 〉 with τ some algebraic number in the upper half-plane.

In other words, any flat circle packable torus has algebraic modulus. We also show
that if P is a circle packing in C/〈1, τ 〉 with τ in the upper half-plane, then the
disks of P have algebraic radii, and furthermore P may be chosen so that all of
its disks’ centers and tangency points lift to algebraic numbers in C.

Theorem 3. Suppose that R is a compact circle packable Riemann surface with-
out boundary of genus at least 2 and of constant curvature −1. Then R is isomet-
ric to the quotient of H2 by a subgroup of PSL2(R∩ Q̄) ⊂ PSL2 R = Isom+H2.

Here H2 denotes the hyperbolic plane, and Isom+ H2 the group of orientation-
preserving isometries of H2. We also show that then we may take the (hyperbolic)
centers of the circles to be algebraic and also that each circle has a hyperbolic
radius that is the logarithm of an algebraic number.
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Beyond these results and the denseness theorem mentioned previously, not
much is known about which compact Riemann surfaces are circle packable. The
analogous question in the open surface case has been answered completely by
Williams [Wil03], who proves that every open complete constant curvature Rie-
mann surface R admits a locally finite circle packing having contact graph trian-
gulating R. More recently, Kojima, Mizushima, Tan, and others have studied the
closely related question of which projective structures on surfaces are packable.
An excellent recent survey of results and open problems in that area is [KMT06].
Another closely related question is the following: if M is a complete orientable
finite-volume noncompact hyperbolic 3-manifold, then each of its cusps is iso-
metric to T × [0,∞), where T is some flat torus. Then one may ask which flat
tori appear in this way. It is known that only countably many do. In [Nim94],
Nimershiem proves that every circle packable flat torus arises as the cusp of some
M as before and gives an explicit construction. (Thanks to Alan Reid for referring
us to the article [Nim94].)

We now move on to our methods of proof for Theorems 1, 2, 3. We have
three different methods. Each of the next three sections of this article addresses
a different one of these three methods of proof. Each approach works to prove a
subset of Theorems 1, 2, 3, but none seems to work to prove all three. In each
case, we include a discussion of the obstructions to applying a given method to
those of our three main theorems that it does not handle.

The first method, which will prove Theorems 1 and 2, is via a result from
model theory:

Tarski’s Theorem 1.2. Suppose that S is a first-order sentence in the theory
of real-closed fields. If S is true in one real-closed field, then it is true in every
real-closed field.

A real-closed field is an ordered field F such that any positive element of F has a
square root in F and such that any odd-degree polynomial over F has a root in F .
The only two examples we care about here are the real numbers R and the real
algebraic numbers R∩ Q̄. A first-order sentence in the theory of real-closed fields
is, roughly speaking, a finite logical statement in which we may use the usual
logical connectives and quantifiers (⇒, ⇔, ¬, ∨, ∧, ∀, ∃), as well as the symbols
from the theory of real-closed fields (1, 0, ×, +, =, >), so that all variables in the
statement are appropriately quantified.

Our plan is to translate the statements of Theorems 1 and 2 into appropri-
ately constructed first-order sentences, which we know to be true over R by other
means, and then to apply Tarski’s Theorem 1.2 to obtain the truth of these sen-
tences over R ∩ Q̄. Theorem 1 follows almost immediately, but the situation for
Theorem 2 is more subtle. This proof technique is covered in detail in Section 2.
Swan [Swa05] provides a nice expository article on Tarski’s Theorem 1.2, includ-
ing a proof, and cites the book of Kreisel and Krivine [KK67] as his source. The
proof of Tarski’s theorem is by elimination of quantifiers.
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Our second technique works only to prove Theorem 1. It proceeds via the fol-
lowing algebraicity result of Thurston in the flavor of the Mostow–Prasad rigidity
theorem, found in [Thu80, Proposition 6.7.4].

Proposition 1.3. If � is a discrete subgroup of PSL2 C such that H3/� has finite
volume, then � is conjugate to a group of matrices whose entries are algebraic.

We sketch a proof of Proposition 1.3 at the end of Section 3.
Our proof of Theorem 1 proceeds as follows. We first complete our finite sim-

ple planar graph G to the 1-skeleton of a triangulation X and then circle pack the
resulting triangulation in Ĉ by the Koebe–Andreev–Thurston theorem, denoting
the resulting packing by P . Then every connected component U of Ĉ \ ⋃

D∈P D

is a curvilinear triangle. For such a U , let D∗
U be the metric closed disk in Ĉ

containing U , whose boundary circle passes through the corners of U . Then the
collection P∗ = {D∗

U } of all such D∗
U is called the dual circle packing to P . Let

�̂ be the group generated by reflections in the boundary circles of the disks of
P and P∗. We argue that �̂ is a discrete, finite covolume subgroup of IsomH3.
It follows that the group � consisting of orientation-preserving elements of �̂ is
also discrete and of finite covolume. Then Proposition 1.3 allows us to assume
without loss of generality that � ⊂ PSL2 Q̄. It follows easily that the tangency
points of pairs of disks in P are algebraic. We obtain the algebraic circle packing
whose contact graph is our original graph G as a subpacking of P , establishing
Theorem 1. We work out the details of this technique in Section 3.

The approaches via Tarski’s Theorem 1.2 or Proposition 1.3 had not previously
been used to prove algebraicity statements for circle packings.

The third and final technique we exposit was applied by McCaughan in his
Ph.D. thesis [McC96, Chapters 8, 9] to prove Theorems 2 and 3. Although it was
not noted by McCaughan, his approach also works to prove Theorem 1. The main
tool is the following lemma of real algebraic geometry.

Lemma 1.4. Let V be a real algebraic variety defined over a field k ⊂ R, in n

variables, and let v be a point of V that is isolated if we give V the subspace
topology from Rn. Then the coordinates of v are algebraic over k.

Then the idea is to express the existence of a suitably normalized circle pack-
ing in the complex or hyperbolic plane by a set of algebraic equations defining
a variety. One shows that this variety is nonempty and that the point of the vari-
ety corresponding to the circle packing is appropriately isolated and then applies
the lemma. We work out the details of this approach and also sketch a proof of
Lemma 1.4 in Section 4.

2. Approach via Tarski’s Theorem

We begin the section with some terminology from model theory and then go on
to prove Theorems 1 and 2 using Tarski’s Theorem 1.2. At the end of the section
we describe the main difficulty of applying this technique to prove Theorem 3.
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We first give a precise definition of elementary statement, to go with the
statement of Tarski’s Theorem 1.2. First, an atomic predicate in the theory of
real-closed fields is defined to be a relation of the form g(x1, . . . , xn) = 0 or
g(x1, . . . , xn) > 0, where g is a polynomial with integer coefficients in the vari-
ables xi . We fix once and for all a countable collection of free variables, which
we may use in our atomic predicates. The collection of elementary predicates in
the theory of real-closed fields is defined to be the smallest collection

• containing all of the atomic predicates,
• closed under negation ¬, disjunction ∨, and conjunction ∧,
• closed under existential quantification (∃x)P (x, y1, . . . , yn), and
• closed under universal quantification (∀x)P (x, y1, . . . , yn).

In particular, elementary predicates are finitely long. Finally, an elementary state-
ment in the theory of real-closed fields is an elementary predicate in that theory
having no free variables, that is, all of whose variables have been appropriately
quantified.

Tarski’s Theorem 1.2 says that one cannot distinguish between different real-
closed fields using only elementary statements. We consider a simpler example:
an elementary statement in the theory of groups is defined in the analogous way,
but the atomic predicates are just relations of the form x1 × x2 ×· · ·× xn = 1. We
can distinguish between different groups in this restricted language: for example,
the statement ∃x : ¬(x = 1) ∧ (x × x × x = 1) is true in Z/3Z but is false in Z.
Tarski’s theorem says that this does not happen in the theory of real-closed fields.
For a more thorough exposition on these definitions and on Tarski’s theorem, see
[Swa05, Section 2].

Proof of Theorem 1. Let G be a finite simple planar graph. The existence of a
circle packing having contact graph G may be expressed as follows. Enumerate
the vertices of V by v1, . . . , vn. For every vertex vi of V , let xi , yi , ri be free
variables, which will naturally represent the x-coordinate, y-coordinate, and Eu-
clidean radius of the disk corresponding to vi .

• For 1 ≤ i ≤ n, let Ri be the atomic predicate ri > 0. These statements will
ensure that the radii of our disks are positive.

• Enumerate the edges e1, . . . , em of G. For every ei = 〈vj , vk〉, let Ei be the
atomic predicate (xj − xk)

2 + (yj − yk)
2 = (rj + rk)

2. This statement will
ensure that the disks corresponding to vj and vk are tangent.

• Enumerate the pairs of vertices vj , vk of V that do not share an edge. Suppose
that there are � such pairs. For every such pair, let Fi with 1 ≤ i ≤ � be the
atomic predicate (xj − xk)

2 + (yj − yk)
2 > (rj + rk)

2. This statement will
ensure that the disks corresponding to vj and vk do not meet.

• Then, let S be the elementary statement

∃x1, . . . , xn, y1, . . . , yn, r1, . . . , rn : R1 ∧· · ·∧Rn ∧E1 ∧· · ·∧Em ∧F1 ∧· · ·∧F�.

Then the truth of S if the existential symbol is taken to quantify over R is equiva-
lent to the existence of a circle packing in C having contact graph G. Furthermore,
S is true, when quantified over R, by the Koebe–Andreev–Thurston theorem, as
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we discussed before. Thus, by Tarski’s Theorem 1.2 the statement S is also true
when quantified over R∩ Q̄. Theorem 1 follows immediately. �

Proof of Theorem 2. Our approach is along the same lines as in the proof of The-
orem 1, but there are added difficulties. We begin by pointing out the complica-
tions and outlining our plan. Let X be a triangulation of a topological 2-torus.
Note first that the existence of a circle packing on some flat torus T realizing X is
equivalent to the existence of a doubly translation-periodic circle packing in the
universal cover C of T, realizing the lift of the triangulation X. Thus, we wish to
express, via an elementary statement in the theory of real-closed fields, the exis-
tence of a τ in the upper half-plane and a 〈1, τ 〉-periodic circle packing P̃ in C, so
that the image of P̃ in the quotient T = C/〈1, τ 〉 is a circle packing P in the torus
T having a contact graph equal to the 1-skeleton of X. However, our elementary
statement cannot have an infinite number of constituent atomic predicates, so we
cannot simply pick xi , yi , ri for every vertex of the infinite packing P̃ and quan-
tify over them. Instead, our plan is to pick a sort of “fundamental domain” for P̃ ,
having only finitely many disks, so that the image of these disks under the action
by 〈1, τ 〉 is all of P̃ .

We now work out the proof in detail. Beginning with the triangulation X, let T
be a flat torus, and let P be the circle packing in T having contact graph equal to
the 1-skeleton of X, by the discrete uniformization Theorem 1.1. Let P̃ be its lift
to C. We now apply some normalizations to P̃ .

First, note that, for example, 〈1, τ 〉 and 〈1, τ + 1〉 act the same way on C,
so the choice of τ in the generators of the group which quotients P̃ to P is not
unique. However, it is well known (see [Ahl78, Section 7.2.3, Theorem 2]) that
every flat torus is equivalent (by a similarity) to exactly one C/〈1, τ 〉 for τ in the
so-called fundamental region of the modular group, which we will denote by V .
Specifically, letting H = {z ∈ C : Im(z) > 0} denote the upper half-plane, we
have:

V =
{
z ∈ H : |z| > 1, |Re(z)| < 1

2

}
∪

{
z ∈ H : |z| ≥ 1,Re(z) = −1

2

}

∪
{
z ∈ H : |z| = 1,−1

2
< Re(z) ≤ 0

}
.

Normalize P̃ by Euclidean similarities so that P = P̃/〈1, τ 〉 for some τ ∈ V . By
the essential uniqueness of R in the discrete uniformization Theorem 1.1, we have
precisely one choice of τ ∈ V for this normalization.

Next, pick once and for all a distinguished vertex v0 of X. Let D0 denote the
disk of P corresponding to v0. Apply translations to P̃ so that some lift D̃0 of
D0 ∈ P is centered at the origin. Then, in particular, the lifts of D0 in P̃ are
exactly the images of D̃0 under the action by 〈1, τ 〉. Furthermore, by the essential
uniqueness of P in the discrete uniformization Theorem 1.1, the resulting packing
P̃ is the unique one that is 〈1, τ 〉-periodic, so that there is a lift of D0 centered at
the origin.
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(Actually, the last sentence is only true if C/〈1, τ 〉 has no nontrivial automor-
phisms. If C/〈1, τ 〉 has nontrivial automorphisms, then we will require one more
normalizing condition to identify P̃ uniquely, but almost any reasonably chosen
one will do, and it will be clear how to adapt the rest of our argument to include
the extra normalization. We therefore make no further mention of this point.)

We fix a fundamental domain in C for the action by 〈1, τ 〉. Let P be the paral-
lelogram spanned by 1 and τ , so that the following hold:

• The only corner we include in P is the bottom-left-hand corner, the origin.
• We include the open bottom and left sides, but neither the top nor the right side

of the parallelogram P .

Explicitly, if τ = a + b
√−1 for a, b ∈ R, then we may express P as

P =
{
z ∈C : 0 ≤ Im(z) < b,

b

a
Im(z) ≤ Re(z) <

b

a
Im(z) + 1

}
. (2.1)

This expression will be helpful later.
Let VP be the set of vertices of the contact graph of P̃ that correspond to disks

whose centers lie in P . The notation in the following discussion can get messy,
so to help, we adopt the convention that if v is a vertex of the contact graph of a
packing, say P , then we write P(v) to denote the disk to which v corresponds.
Similarly, if S is a subset of vertices of the contact graph of P , then P(S) is the
collection of disks of P corresponding to vertices of S. Then, for example, the
image of P̃(VP ) under the action by 〈1, τ 〉 is all of P̃ , and furthermore no two
disks of P̃(VP ) are identified under this action.

Let VP+1 be the set of vertices of the contact graph of P̃ that correspond to
disks whose centers lie in P + 1, and similarly VP+τ , VP+1+τ . Note that then
VP , VP+1, VP+τ , VP+1+τ are pairwise disjoint. Let Q̃ be the subpacking of P̃
consisting only of those disks corresponding to vertices in VP ∪ VP+1 ∪ VP+τ ∪
VP+1+τ . This Q̃ will act as our “fundamental domain” for the packing P̃ .

We now construct an elementary statement in the same style as in the proof of
Theorem 1. Enumerate the vertices v1, . . . , v4n of the contact graph G(Q̃) of Q̃.
Label the vi so that

• the disks of Q̃ having centers in P are exactly Q̃(v1), . . . , Q̃(vn),
• those having centers in P + 1 are Q̃(vn+1), . . . , Q̃(v2n),
• those having centers in P + τ are Q̃(v2n+1), . . . , Q̃(v3n), and
• those having centers in P + 1 + τ are Q̃(v3n+1), . . . , Q̃(v4n).

Fix free variables x1, . . . , x4n, y1, . . . , y4n, r1, . . . , r4n, which will correspond to
the centers and radii of the disks of Q̃ in the natural way. It will be helpful no-
tationally to fix two additional free variables a, b, which will stand for the real
and imaginary parts of τ , and three additional free variables x0, y0, r0, which
will eventually be set equal to xi , yi , ri for some i, namely that i for which ṽi

corresponds to our distinguished disk D̃0 ∈ Q̃ ⊂ P̃ .

• Define Ri , Ei , Fi for G(Q̃) as we did for G in the proof of Theorem 1.



Obtaining Algebraic Circle Packings 543

• Let vi be the vertex of G(Q̃) corresponding to the disk D̃0 ∈ Q̃ ⊂ P̃ . Let Z

be the elementary predicate xi = x0 ∧ yi = y0 ∧ ri = r0 ∧ x0 = 0 ∧ y0 = 0. We
do this for notational convenience and to encode the normalization that D̃0 is
centered at the origin.

• Recall that the disks D̃0 + τ and D̃0 +1 both lie in Q̃. Suppose that the vertices
of G(Q̃) corresponding to these two translates of D̃0 are vj and vk , respectively.
Then let T be the elementary predicate xj = a ∧ yj = b ∧ xk = 1 ∧ yk = 0.
This statement further encodes the normalizations on our packing and picks
out τ = a + b

√−1 for us. (We write
√−1 to avoid overloading the variable i,

which we use frequently as an indexing variable.)
• Let W be the elementary predicate expressing that τ = a + b

√−1 lies in the
fundamental region V of the modular group, in terms of only a and b. It is clear
how to do this given the equation defining V , although to write it out would be
messy and unilluminating, so we leave it to the dedicated reader.

• Enumerate the pairs of disks of Q̃ that are identified under the action of 〈1, τ 〉.
Suppose that there are p such pairs. For the ith such pair Q̃(vj ), Q̃(vk), with
1 ≤ i ≤ p, we have that Q̃(vj ) = Q̃(vk) + s + tτ for some pair of integers s

and t . Then let Ui be the elementary predicate rj = rk ∧xj = xk +s+ ta∧yj =
yk + tb. These statements encode the desired action of 〈1, τ 〉 on our packing.
Note that s and t are not variables in Ui , but are actual integers.

• For 1 ≤ i ≤ n, let Ki be the elementary predicate expressing that (xi, yi) ∈ P ,
in terms of only xi , yi , a, b. Again, it is clear how to do this, given the equation
defining P . Similarly,
– for n + 1 ≤ i ≤ 2n, let Ki express that (xi, yi) ∈ P + 1,
– for 2n + 1 ≤ i ≤ 3n, let Ki express that (xi, yi) ∈ P + a + b

√−1, and
– for 3n + 1 ≤ i ≤ 4n, let Ki express that (xi, yi) ∈ P + 1 + a + b

√−1.
• Then, let S be the elementary statement:

∃x1, . . . , x3n, y1, . . . , y3n, r1, . . . , r3n : R1 ∧ · · · ∧ R3n ∧ E1 ∧ · · · ∧ Em

∧ F1 ∧ · · · ∧ F� ∧ U1 ∧ · · · ∧ Up

∧ K1 ∧ · · · ∧ K3n ∧ Z ∧ T ∧ W.

Clearly, S is true when quantified over R because the centers and radii of the disks
of the packing Q̃ satisfy S. Then by Tarski’s Theorem 1.2 the statement S is true
when quantified over R∩ Q̄ as well. We wish to show that there is a unique tuple
of values for the xi, yi, ri ∈ R making the constituent predicates of S true, and it
will then follow that in fact these must lie in R∩ Q̄, completing the proof.

Suppose that x1, . . . , x3n, y1, . . . , y3n, r1, . . . , r3n, x0, y0, r0, a, b ∈ R is any so-
lution to the statement S. That is, if we plug in these values for the variables
into S, then all of its constituent predicates evaluate to true. Let D̃0 be the circle
packing in C having n disks, so that the ith disk of D̃0 has center (xi, yi) and
radius ri . Now, the disks of D̃0 + 1 are exactly those whose centers and radii are
(xi, yi), ri for n + 1 ≤ i ≤ 2n, so the disks of D̃0 and D̃0 + 1 are pairwise in-
teriorwise disjoint. Similarly, the disks of D̃0 are pairwise interiorwise disjoint
from those of D̃0 + a + b

√−1 and of D̃0 + 1 + a + b
√−1. It follows that
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D̃ = ⋃
λ∈〈1,a+b

√−1〉 D̃0 + λ is a circle packing in C that is invariant under the

action of 〈1, a + b
√−1〉. Furthermore, it is clear that D = D̃/〈1, a + b

√−1〉 has
the same contact graph as our initial packing P . Finally, by construction of S we
have that D̃ is normalized so that some lift of D(v0) is centered at the origin, with
a + b

√−1 ∈ V . It follows that D̃ = P̃ , and Theorem 2 is proved. �

We conclude the section with a brief discussion of the main difficulty in applying
this approach to prove Theorem 3:

The natural approach is to try to follow the proof of Theorem 2. Then the xi ,
yi , ri can be taken to represent hyperbolic centers and radii in the Poincaré disk
model of hyperbolic space. It turns out that it is possible to express algebraically
that the hyperbolic distance between (xi, yi) and (xj , yj ) is ri + rj ; see our proof
of Theorem 3 in Section 4, so this is not an obstruction. It is also possible to
algebraically normalize the lift P̃ of our packing P in R, where R is a compact
complete constant curvature −1 Riemann surface. Suppose that R = H2/� for
� ⊂ PSL2 R = Isom+ H2, so that P̃/� = P . Then the elements of � are matrices
over R, and it is possible to express the action of such a matrix on a point z ∈
H2 ∼= D algebraically in terms of its matrix entries and the coordinates of z.

The difficulty in making the proof go through is in picking out generators for
the quotient group � so that H2/� ∼= R. In our proof of Theorem 2 given immedi-
ately above, we were fortunate to be able to pick these generators to be 1 and τ ∈ V .
In our setting, if we wish to write down an elementary sentence S, which is to have
precisely one solution over R, expressing the existence of P̃ and our selected gen-
erators for �, then we need a normalization on our generating set that identifies it
uniquely. This normalization needs to be expressible via a finite list of elementary
predicates in the variables we quantify over in S. It is not clear how to do this.

The proof in Section 4 follows a similar strategy to the one we have described
here. However, the reason that the proof in Section 4 goes through is that it ex-
presses the existence of the desired normalized circle packing P̃ via polynomial
equations defining an algebraic variety, and in that setting we may encode all of
the infinitely many contacts between the disks of P̃ . This is not possible in the
present setting since elementary sentences must be finite.

3. Approach via Hyperbolic Geometry and Proposition 1.3

We begin the section with a proof of Theorem 1 using Proposition 1.3. This sec-
tion relies on some basic, standard tools and facts from hyperbolic geometry. For
a general reference on hyperbolic geometry, see, for example, [Rat06]. After the
proof of Theorem 1, we sketch the proof of Proposition 1.3 for the convenience
of the reader. Finally, we briefly remark on the potential difficulty of applying this
approach to Theorems 2 and 3.

Proof of Theorem 1. Let G be a finite simple planar graph. We show that there is
a circle packing D in C having a contact graph G, so that all Euclidean centers
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Figure 1 We first get that θ1 = θ2, θ3 = θ4, θ5 = θ6 because these
are pairs of vertical angles. On the other hand, we get that θ2 = θ3,
θ4 = θ5, θ6 = θ7 because any pair of round circles that cross meet
at the same angle at their two intersection points. We conclude that
θ1 = θ7 = π/2

and radii of disks of D, as well as all tangency points of pairs of disks of D, are
algebraic numbers.

First, let X be a triangulation of S2, so that the 1-skeleton of X has G as a
subgraph. We will find a circle packing in C realizing X, which has the algebraic-
ity properties described in the previous paragraph, and obtain D as a subpacking,
completing the proof.

We recall a notational convention from the previous section that if v is a vertex
of the contact graph of the circle packing P , then P(v) denotes the disk of P
corresponding to the vertex v.

Let P be any circle packing in Ĉ realizing X. Then all of the connected compo-
nents of Ĉ\⋃

D∈P D are curvilinear triangles, and furthermore these triangles are
in natural bijection with the set of faces F of X. We now construct the so-called
dual circle packing to P , denoted P∗. For each such triangle Tf corresponding
to the face f = 〈v1, v2, v3〉 ∈ F , let P∗(f ) denote the closed disk containing Tf ,
whose boundary circle passes through the three corners of Tf , that is, the three
tangency points between pairs of the disks P(v1), P(v2), P(v3). Then P∗ is de-
fined to be the collection of disks {P∗(f )}f ∈F . It is well known that the boundary
circle ∂P∗(f ) is orthogonal to all three of ∂P(v1), ∂P(v1), ∂P(v2), see Figure 1.
It follows that the disks of P∗ are pairwise interiorwise disjoint and thus that
P∗ is a circle packing in Ĉ. Furthermore, the two packings P and P∗ together
completely cover Ĉ.

We now wish to define the reflection group associated to the packing P . We
first establish some conventions and notation. For the rest of this proof, we identify
the Riemann sphere Ĉ with the boundary at infinity of the hyperbolic 3-space H3.
Recall that this identification is consistent with the identification of the group of
Möbius transformations PSL2 C with the group of orientation-preserving isome-
tries Isom+ H3 of H3. Every circle C in Ĉ is now the boundary of a totally geo-
desic copy of H2 in H3. Denote by σC the reflection of H3 along this hyperbolic
plane. The induced boundary map of σC on Ĉ is inversion along the circle C in
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the sense of projective geometry. Note that σC /∈ Isom+ H3 since it is orientation-
reversing.

Then the reflection group associated to P , which we will denote by �̂ ⊂
IsomH3, is the group generated by all the reflections σC for C ∈ ⋃

D∈P∪P∗ ∂D.
The following lemma is well known, but we sketch its proof for the convenience
of the reader.

Lemma 3.1. The group �̂ is discrete, and the associated orbifold H3/�̂ has finite
volume.

Proof. Given a round closed disk D in Ĉ, let HD be the hyperbolic half-space
whose closure in H3 ∪ Ĉ = H3 ∪ ∂∞H3 is equal to D. Let 
 denote the clo-
sure, in H3, of the complement of

⋃
D∈P∪P∗ HD . Then 
 is a polyhedron in H3

with finitely many faces, and �̂ is the group of isometries of H3 generated by
reflections along the faces of 
. The fact that the circles of P meet those of P∗
orthogonally implies that the dihedral angles of 
 are all equal to π/2. In par-
ticular, it follows from Poincaré’s polyhedron theorem (see [EP94]) that �̂ is a
discrete group with fundamental domain 
.

We still need to prove that 
 has finite volume. The cusps of 
 are in bijec-
tion with the tangency points of pairs of disks of P and, equivalently, with the
tangency points of pairs of disks of P∗. Let p be such a tangency point. Then
there are two disks of P and two of P∗ whose boundary circles pass through p.
Call these disks D1, D2, D3, D4. For a moment, we consider the hyperbolic space
H3 = C × R+ in the upper half-space model, normalized so that p = ∞. In this
model, under this normalization, each of the hyperbolic half-spaces HD1 , HD2 ,
HD3 , HD4 becomes the intersection of C × R+ with a vertical Euclidean half-
space. Furthermore, because the disks of P meet those of P∗ orthogonally, we in
fact have that H3 \ ⋃4

i=1 HDi
is an open rectangular column. A straightforward

computation shows that the hyperbolic volume contained in this column above
any fixed Euclidean height is finite. Thus, 
 has finite volume in a neighborhood
of any of its cusps. But it has finitely many cusps, and the complement in 
 of
some small open neighborhoods of its cusps is compact. It follows that 
 has
finite volume, concluding the proof of Lemma 3.1. �

Next, let � denote the group of orientation-preserving elements of �̂. Then � ⊂
PSL2 C ∼= Isom+C is an index 2 subgroup of �̂. It follows from Lemma 3.1 that
� is discrete and that H3/� has finite volume.

We can now apply Proposition 1.3. Then there is a g ∈ PSL2 C such that
g�g−1 ⊂ PSL2 Q̄. Noting that the reflection group associated to the circle pack-
ing gP = {gD}D∈P is exactly g�̂g−1, we conclude that we may assume without
loss of generality that � ∈ PSL2 Q̄. It will also be helpful to assume, again without
loss of generality, that ∞ lies outside of the disks of P , so P is a packing in C.

The condition that a point z is fixed by an element γ ∈ PSL2 Q̄ is algebraic in z

and the matrix entries of γ ∈ PSL2 Q̄. Thus, we get that any fixed point of γ ∈ � is
algebraic. On the other hand, if p is a tangency point between some pair of disks
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D1,D2 ∈ P , then p is fixed by σ∂D1σ∂D2 ∈ �. We conclude that all tangency
points between disks of P are algebraic. It is then a simple computation to show
that the Euclidean centers and radii of the disks of P are algebraic: this is because
there is a unique triple of pairwise tangent disks whose tangency points are p1,
p2, p3, and the conditions defining this triple are algebraic in the Euclidean x-
and y-coordinates of their centers, their Euclidean radii, and the coordinates of
p1, p2, p3. This concludes the proof of Theorem 1. �

Proposition 1.3 is a particular case of a more general result of Raghunathan
[Rag72]. We now sketch the proof of Proposition 1.3 in the case that � is co-
compact:

Proof sketch of Proposition 1.3. Consider � as an abstract group and denote
the embedding of � inside PSL2 C by ρ0. We consider ρ0 as an element
of Hom(�,PSL2 C). The group PSL2 C is an affine algebraic group defined
over Q. In particular, Hom(�,PSL2 C) is also an affine algebraic variety defined
over Q. Hence, the Galois group Gal(C/Q) acts on Hom(�,PSL2 C). The variety
Hom(�,PSL2 C) has only finitely many irreducible components, and the action
of the Galois group permutes them. It follows that every irreducible component
of Hom(�,PSL2 C) is invariant by a finite index subgroup of Gal(C/Q). This
implies that each one of the irreducible components is defined over a finite ex-
tension of Q and hence defined over Q̄. Let V be the irreducible component of
Hom(�,PSL2 C) containing ρ0. Since V is defined over Q̄ and Q̄ is algebraically
closed, we get that V contains an element ρ defined over Q̄. It follows from the
Mostow rigidity theorem that ρ and ρ0 are conjugated, and this concludes the
proof of Proposition 1.3 in the case that � is cocompact. In the general (finite
covolume) case, one has to replace the variety Hom(�,PSL2 C) with the subvari-
ety consisting of representations that map parabolic elements to elements whose
trace squared is 4. The argument then is concluded using Prasad’s extension of
the Mostow rigidity theorem to the finite volume setting. �

Finally, we discuss the main difficulty in applying this approach to the settings
of Theorems 2 and 3. The natural approach to take is to construct a packing P
in a compact Riemann surface R, lift it to the universal cover (either C or H2)
of R, obtain algebraicity in the universal cover, and then apply known rigidity
results to obtain algebraicity in the quotient. However, the reflection group of the
lifted packing in the universal cover will not have finite covolume in H3, and thus
Proposition 1.3 does not apply. Furthermore, the finite covolume hypothesis is
essential in the proof of Proposition 1.3.

4. Approach via Real Algebraic Geometry and Lemma 1.4

We begin by applying Lemma 1.4 to prove Theorem 1. This lemma was previ-
ously applied by McCaughan [McC96, Chapters 8, 9] to prove Theorems 2 and 3,
and we give these proofs in what follows. He did not observe that the same lemma



548 L. Louder, A. M. Mishchenko, & J. Souto

works to prove Theorem 1 as well, but there is essentially nothing new in the ar-
gument we give. After these three proofs, we sketch a proof of Lemma 1.4 for the
convenience of the reader.

Proof of Theorem 1. Let G be a finite simple planar graph. We wish to show the
existence of a circle packing D in C, so that all Euclidean centers and radii of the
disks of D are algebraic. It will follow that the points of tangency between disks
of D are algebraic.

Let X be a triangulation of S2 the 1-skeleton of which has G as a subgraph. Let
P be a circle packing in C realizing X by the Koebe–Andreev–Thurston theorem.
We will show that P can be taken to have the algebraicity properties described in
the preceding paragraph, and we may obtain our desired D as a subpacking of P ,
completing the proof of the theorem.

We now apply some normalizations to P . First, pick some face 〈v1, v2, v3〉
of X. Normalize P so that P(v1), P(v2), P(v3) are disks of Euclidean radius
1 having Euclidean centers (−1,0), (1,0), (0,

√
3), respectively, and so that the

rest of the disks of P lie in the bounded curvilinear triangular region formed
between P(v1), P(v2), P(v3). The resulting packing P is the unique one having
the contact graph X and satisfying these normalization conditions.

Suppose that there are n vertices of X. Let V be the algebraic variety in R3n

defined by equations of the form (xi − xj )
2 + (yi − yj )

2 = (ri + rj )
2 for every

pair of vertices vi , vj of X sharing an edge, together with the extra equations
r1 = r2 = r3 = 1, x1 = −1, y1 = 0, x2 = 1, y2 = 0, x3 = 0, y3 = √

3. Let v be the
3n-tuple consisting of the centers and radii of the disks of P . Then v ∈ V.

We wish to argue that v is isolated in V under the subspace topology from R3n.
Then Theorem 1 will be proved by Lemma 1.4. First, note that v is well separated
from points of V where some radius ri is negative or zero because there are finitely
many ri , and all of them are positive in v. Suppose that vi is a sequence of points
of V converging to v such that every radius coordinate of every vi is positive.
Pass to a subsequence such that |vi+1 − v| < |vi − v| for all i. We claim that then
eventually vi = v.

To see why, let Pi be the collection of disks having centers and radii given by
the coordinates of vi in the natural way. Note first that if vj and vk are vertices
of X with no edge between them, then eventually Pi (vj ) and Pi (vk) are disjoint
because their limiting disks are disjoint. On the other hand, if 〈vj , vk〉 is an edge
of X, then the disks Pi (vj ) and Pi (vk) are tangent for every i by the construction
of V. Thus, Pi is eventually a circle packing realizing X. Furthermore if i is big
enough, then the disks of Pi are sufficiently close to their partners in P so that the
disks of Pi lie in the bounded curvilinear triangular region formed between P(v1),
P(v2), P(v3). Thus, we get that eventually Pi = P by the essential uniqueness of
P , concluding the proof. �

Proof of Theorem 2. Let X be a triangulation of the 2-torus, and let T be a flat
torus and P a circle packing in T realizing X by the discrete uniformization The-
orem 1.1. We wish to show that T is similar to the quotient of C by 〈1, τ 〉 with τ an
algebraic number. Our proof will also show that then, supposing that T = 〈1, τ 〉,
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we have that the radii of the disks of P are algebraic. This proof uses ideas similar
to those in the proof of Theorem 2 of Section 2.

Suppose without loss of generality that T = C/〈1, τ 〉, and let P̃ be a 〈1, τ 〉-
periodic packing in C, so that P̃/〈1, τ 〉 = P . Normalize P̃ so that, say, some
distinguished disk D0 of P has a lift in P̃ centered at the origin. In this setting it
is not necessary that we apply enough normalizations to P̃ and τ so that they are
uniquely determined by our normalizing conditions.

Define a fundamental parallelogram P ⊂ C for the action by 〈1, τ 〉 as in the
proof of Theorem 2 in Section 2; see equation (2.1). Let VP be the set of vertices
of the contact graph of P̃ corresponding to circles having the Euclidean center
in P .

Enumerate the vertices v1, . . . , vn of VP . Fix variables x1, . . . , xn, y1, . . . , yn,
r1, . . . , rn, and two free variables a and b, which will serve as the real and imag-
inary parts of τ . Let V ⊂ R3n+2 be the real algebraic variety in these variables
defined by equations as follows:

• Every disk D of P̃ may be written D = P̃(vi) + t + sτ for some vi ∈ VP and
integers s and t . (If D has center in P , then t = s = 0.) Suppose that the distinct
disks D1, D2 of P̃ meet. Write D1 = P̃(vi) + t1 + s1τ and D2 = P̃(vj ) + t2 +
s2τ . Then add [(xi + t1 +s1a)− (xj + t2 +s2a)]2 +[(yi +s1b)− (yj +s2b)]2 =
(ri + rj )

2 to the defining equations of V. Do this for every pair of distinct disks
of P̃ that meet.

• To encode our normalization from above, let vj ∈ VP be the vertex of the disk
of P̃(VP ) that is a lift of our distinguished disk D0. Then add xj = 0, yj = 0
to the defining equations of V.

Let v be the (3n + 2)-tuple given, in the natural way, by the radii and coordi-
nates of the centers of the disks of P̃(VP ) and by the real and imaginary parts of τ .
Then clearly v ∈ V. Furthermore, we argue, essentially as in the proof of Theo-
rem 1 given earlier in this section, that v is an isolated point of V in the subspace
topology from Rn, concluding the proof of Theorem 2 by Lemma 1.4. �

Proof of Theorem 3. Let X be a triangulation of a genus g surface for g ≥ 2, let
R be a complete compact constant curvature −1 Riemann surface, and let P be
a circle packing in R realizing X. We wish to show that R is isometric to H2/�

for some � ⊂ PSL2(R ∩ Q̄) ⊂ PSL2 R = Isom+H2. Along the way, we will also
end up showing that the hyperbolic radius of any disk of P is the logarithm of an
algebraic number.

The proof proceeds essentially as in the proof of Theorem 2 given in this sec-
tion. First, let P̃ be a circle packing in H2 such that the quotient of H2 by some
discrete group of isometries of H2 is R and such that the image of P̃ under this
quotient map is exactly P . Pick once and for all a distinguished vertex v0 of X

and a neighbor u0 of v0 in X and normalize P̃ so that some lift D̃v0 ∈ P̃ of P(v0)

is centered at the origin and so that the neighboring lift D̃u0 of P(u0) is centered
along the positive real axis. This fixes P̃ uniquely.
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Let � ⊂ PSL2 R be the group of isometries of H2 such that P̃/� = P . Let
γ1, γ

−1
1 , . . . , γg, γ

−1
g be a set of generators for �. Fix P ⊂ H2 to be a fundamental

domain for the action by �, so that P contains both the origin and the hyperbolic
center of D̃u0 . We ask that no two points of P are identified by the action by �

and that P tiles H2 under the action of �.
Let VP be the set of vertices of the contact graph of P̃ corresponding to disks

whose hyperbolic centers lie in P . Enumerate the vertices v1, . . . , vn of VP and fix
real variables x1, . . . , xn, y1, . . . , yn, R1, . . . ,Rn. Here (xi, yi) will represent the
hyperbolic centers of the disks in the Poincaré disk model of hyperbolic space,
and Ri = eri , where ri represent their hyperbolic radii. Fix 8g additional real
variables that will represent the matrix entries of the 2g matrices γi , γ

−1
i . Let V ⊂

R3n+8g be the real algebraic variety in all of these variables defined by equations
as follows:

• Every disk D of P̃ may be written D = αP̃(vi) for some vi ∈ VP and α ∈ �.
In particular, the action of γ sends the hyperbolic centers of disks to hyperbolic
centers. Suppose that the distinct disks D1, D2 of P̃ meet. We wish to express,
via a previous polynomial equation in our variables, that the distance between
the hyperbolic centers z1 and z2 of D1 and D2 is exactly ri + rj . To do this,
recall that if z1, z2 ∈ D ∼= H2, then the hyperbolic distance between z1 and z2
may be expressed as d(z1, z2) = arcosh(1 + δ(z1, z2)), where

δ(z1, z2) = 2
|z1 − z2|2

(1 − |z1|2)(1 − |z2|2) ,
arcosh(x) = ln

(
x + √

x + 1
√

x − 1
)
.

Therefore, the expression ed(z1,z2) = eri+rj = RiRj may be simplified to a
polynomial. Furthermore, z1 = α1(xi +yi

√−1), and similarly for z2. Plugging
these expressions for z1, z2 into our formula, we may again simplify to a poly-
nomial expression in the xi , yi , Ri and the variables representing the matrix
entries of the γi , γ −1

i . Add the resulting polynomial to the defining equations
of V for every such pair of distinct disks of P̃ that meet.

• As before, encode our normalization on P̃ as follows: let vi be the vertex of
VP corresponding to D̃v0 , and similarly vj for D̃u0 . Add the polynomials xi =
yi = yj = 0 to our defining equations for V.

The conclusion of the proof proceeds as in the proof of Theorem 2. �

Proof sketch of Lemma 1.4. Let V be a variety in n variables defined over a field
k ⊂ R, and let v = (v1, . . . , vn) be a point of V that is isolated in the subspace
topology from Rn on V. We wish to show that then vi are algebraic over k.
Note that if α is any field homomorphism k(v1, . . . , vn) → R that fixes k, then
α(v) ∈ V.

Suppose for contradiction that some vi fails to be algebraic over k. Then we
may write k(v1, . . . , vn) = k(y1, . . . , ym, z), where the y1, . . . , ym are independent
transcendentals over k, and z is algebraic over k(y1, . . . , ym). In particular, every
vi is equal to some rational function in the variables y1, . . . , ym, z.
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Let p be the minimal polynomial for z over k(y1, . . . , ym). Then p is irre-
ducible over k(y1, . . . , ym), and thus ∂p/∂z �= 0 at (y1, . . . , ym, z). Then by the
implicit function theorem, in a neighborhood of (y1, . . . , ym, z) we may write the
z-coordinate of the vanishing set of p as a smooth function of the y1, . . . , ym-
coordinates.

Therefore, choose (ŷ1, . . . , ŷm) to be close to (y1, . . . , ym), so that p(ŷ1, . . . ,

ŷm, ẑ) = 0 for ẑ close to but unequal to z. We may ensure in our choice that the
ŷi are independent transcendentals over k. Then α fixing k and sending yi �→ ŷi

and z �→ ẑ is a field homomorphism from k(y1, . . . , ym, z) = k(v1, . . . , vn) to R,
which sends v to another point of V and which can be arranged by our choices
earlier in this paragraph to send v as close to itself as desired. This contradicts the
hypothesis that v is isolated in V. �
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