Monodromy Groups of Lagrangian Tori in \mathbb{R}^{4}

Mei-Lin Yau

1. Introduction

In this paper we work in the standard symplectic 4 -space $\left(\mathbb{R}^{4}, \omega=\sum_{j=1}^{2} d x_{j} \wedge d y_{j}\right)$ unless otherwise mentioned. Let $L \stackrel{\iota}{\hookrightarrow}\left(\mathbb{R}^{4}, \omega\right)$ be an embedded Lagrangian torus with respect to the standard symplectic 2 -form ω. The Lagrangian condition means that the pull-back 2-form $\iota^{*} \omega=0 \in \Omega^{2}(L)$ vanishes on L. Gromov [7] proved that L is not exact-that is, the pull-back 1-form $\iota^{*} \lambda$ of a primitive λ of $\omega=d \lambda$ represents a nontrivial class in the cohomology group $H^{1}(L, \mathbb{R})$.

Let $\operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ denote the group of orientation-preserving diffeomorphisms with compact support on \mathbb{R}^{4} that are isotopic to the identity map. We are interested in studying various types of self-isotopies of L. It is well known that to a smooth isotopy $L_{s}, s \in[0,1]$, between two embedded tori L_{0}, L_{1} we may associate a family of maps $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ with $\phi_{0}=$ id such that $\phi_{s}(L)=L_{s}$. We will make no distinction between L_{s} and the associated maps ϕ_{s} from now on.

A path $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ with $0 \leq s \leq 1$ and $\phi_{0}=\mathrm{id}$ associates to a fixed torus L a family of tori $L_{s}: \phi_{s}(L)$ in \mathbb{R}^{4}. The family of maps $\phi_{t} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ is called a smooth self-isotopy of L if $\phi_{1}(L)=L$. Moreover, if all L_{s} are Lagrangian with respect to ω (ω-Lagrangian) then ϕ_{s} is called a Lagrangian self-isotopy of L. This is equivalent to saying that L is $\phi_{s}^{*} \omega$-Lagrangian. Suppose in addition that the cohomology class of $\iota^{*} \phi_{s}^{*} \lambda$ is independent of s; then ϕ_{s} is called a Hamiltonian self-isotopy of L. Equivalently, ϕ_{s} is Hamiltonian if it is generated by a Hamiltonian vector field. Each self-isotopy ϕ_{s} of L associates to an isomorphism

$$
\left(\phi_{1}\right)_{*}: H_{1}(L, \mathbb{Z}) \rightarrow H_{1}(L, \mathbb{Z})
$$

which is called a smooth (resp., Lagrangian, Hamiltonian) monodromy of L if ϕ_{t} is smooth (resp., Lagrangian, Hamiltonian). The group of all smooth monodromies of L is called the smooth monodromy group (SMG) of L and is denoted by $\mathcal{S}(L)$. Likewise, $\mathcal{L}(L)$ and $\mathcal{H}(L)$ denote, respectively, the Lagrangian monodromy group (LMG) and the Hamiltonian monodromy group (HMG) of L. It is easy to see that $\mathcal{H}(L) \subset \mathcal{L}(L) \subset \mathcal{S}(L)$. Although here we focus only on Lagrangian 2-tori, the groups $\mathcal{H}(L), \mathcal{L}(L)$, and $\mathcal{S}(L)$ are defined for any embedded Lagrangian submanifold L of any dimension.

[^0]The interest in such monodromy groups is to study the Lagrangian knot problem [6] from a different perspective. If L and L^{\prime} are smoothly isotopic, then clearly their smooth monodromy groups are isomorphic. Similar conclusions hold for the Lagrangian and the Hamiltonian cases as well. In [17] we studied $\mathcal{H}(L)$ for L either a monotone Clifford torus or a Chekanov torus. The latter was constructed (and called a special torus) by Chekanov in [3]. We proved that these two tori are distinguished by their spectrums associated to their Hamiltonian monodromy groups [17]. Another result concerning $\mathcal{H}(L)$ was obtained by Hu , Lalonde, and Leclercq in their preprint [8], where it was proved that the Hamiltonian monodromy group $\mathcal{H}(L)$ is trivial for any weakly exact Lagrangian submanifold L of a symplectic manifold. In this paper we focus instead on $\mathcal{L}(L)$ and $\mathcal{S}(L)$.

Recall from [13] that the Maslov class $\mu=\mu_{L} \in H^{1}(L, \mathbb{Z})$ of a Lagrangian torus $L \subset \mathbb{R}^{4}$ is nonzero with divisibility 2 . Clearly, an element $h \in \mathcal{L}(L)$ must satisfy $\mu \circ h=\mu$. Note that, in general symplectic manifolds, $h \in \mathcal{L}(L)$ must also preserve the linking class $\ell_{L} \in H^{1}(L, \mathbb{Z})$ (see [5] and Section 2) whenever defined. However, since $\ell_{L}=0$ for any embedded $L \subset \mathbb{R}^{4}$ [5], this requirement imposes no further restriction on $\mathcal{L}(L)$. Let G_{μ} denote the formal subgroup of all group isomorphisms $g: H_{1}(L, \mathbb{Z}) \rightarrow H_{1}(L, \mathbb{Z})$ such that $\mu \circ g=\mu$. Clearly $\mathcal{L}(L)$ is a subgroup of G_{μ}. Our first result is the following theorem.

Theorem 1.1. Assume that T is a Clifford torus. Then $\mathcal{L}(T)=G_{\mu}$.
The group G_{μ} is freely generated by two generalized reflections f_{0}, f_{1} (see (2)-(4) in Section 4) with $f_{i}\left(\gamma_{0}\right)=-\gamma_{0}$, where $\gamma_{0} \in H_{1}(T, \mathbb{Z})$ is a primitive class with $\mu_{T}\left(\gamma_{0}\right)=0$. Therefore, G_{μ} is isomorphic to the infinite dihedral group D_{∞} [9].

For the smooth counterpart, our next theorem is due to the vanishing of ℓ_{L}.
Theorem 1.2. Let $L_{s}=\phi_{s}\left(L_{0}\right)$ for $0 \leq s \leq 1$ and $\phi_{0}=\mathrm{id}$ be a smooth isotopy between two Lagrangian tori $L_{0}, L_{1} \subset \mathbb{R}^{4}$. Then, for any $\gamma \in H_{1}\left(L_{0}, \mathbb{Z}\right)$,

$$
\mu\left(\phi_{1 *}(\gamma)\right)-\mu(\gamma) \in 4 \mathbb{Z}
$$

in other words,

$$
\phi_{1}^{*} \mu-\mu \in H^{1}\left(L_{0}, \mathbb{Z}\right) \text { has divisibility } 4 .
$$

Thus $\mathcal{S}(L)$ is a subgroup of

$$
\mathcal{X}=\mathcal{X}_{L}:=\left\{g \in \operatorname{Isom}\left(H_{1}(L, \mathbb{Z})\right) \mid \mu_{L} \circ g-\mu_{L} \in 4 \cdot H^{1}(L, \mathbb{Z})\right\} .
$$

We determine $\mathcal{S}(L)$ for the case of a Clifford torus as follows.
Theorem 1.3. If T is a Clifford torus, then $\mathcal{S}(T)=\mathcal{X}_{T}$. In particular, $\mathcal{S}(T)$ is generated by $\mathcal{L}(T)$ and a reflection along a class $\gamma \in H_{1}(T, \mathbb{Z})$ with $\mu_{T}(\gamma)=2$.

It turns out that any smooth isotopy between a Lagrangian torus and a Clifford torus can be modified at either end by a self-isotopy to match the Maslov classes at both ends. We have the following result.

Proposition 1.4. Let $L \subset \mathbb{R}^{4}$ be an embedded Lagrangian torus smoothly isotopic to a Clifford torus T. Then there exists a smooth isotopy $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$,
$s \in[0,1]$, with $\phi_{0}=\mathrm{id}$ and $\phi_{1}(T)=L$, where ϕ_{1} preserves the corresponding Maslov classes; that is,

$$
\phi_{1}^{*} \mu_{L}=\mu_{T}
$$

Moreover, one can modify ϕ_{s} so that $\phi_{s}(T \backslash D)$ is Lagrangian for $s \in[0,1]$, where $D \subset T$ is an embedded disc.

However, at the present stage we do not know how to improve $\phi_{s}(T)$ to a genuine Lagrangian isotopy between T and L. To achieve that goal, it seems necessary (and perhaps enough) to have a better understanding of the isotopy of Lagrangian discs with prescribed boundary conditions.

We remark that Mohnke [12] showed that all embedded Lagrangian tori in \mathbb{R}^{4} are smoothly isotopic to a Clifford torus. Also, Ivrii [10] showed that any embedded Lagrangian torus in \mathbb{R}^{4} is Lagrangian isotopic to a Clifford torus. Both authors used pseudoholomorphic curve techniques [7] and methods of symplectic field theory $[1 ; 4]$.

The rest of the paper is organized as follows. In Section 2 we review necessary background on the Maslov class and the linking class. In Section 3 we discuss framings of the symplectic normal bundle of a loop in \mathbb{R}^{4} and also the change of framings under diffeomorphisms. Theorem 1.1 is proved in Section 4. Theorem 1.2 is proved in the beginning of Section 5; this is followed by the proof of Theorem 1.3, which consists of Propositions 5.3-5.4. Proposition 1.4 is proved in Section 6. We will use the convention $S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z}$ throughout the paper.

2. Maslov Class and Linking Class

Because we are concerned with monodromies of self-isotopies of a Lagrangian torus, we should first discuss two relevant classes in $H^{1}(L, \mathbb{Z})$: the Maslov class $\mu=\mu_{L}$ (see [11] for more details) and the linking class $\ell=\ell_{L}$. The latter is defined (and denoted by σ) in [5].

Maslov Class

The Maslov class μ is defined as follows. Given $\gamma \in H_{1}(L, \mathbb{Z})$, let $C \subset L$ be an immersed curve representing γ. Then the tangent bundle $T_{C} L$ over C is a closed path of Lagrangian planes and hence a cycle in the Grassmannian of Lagrangian planes in the symplectic vector space \mathbb{R}^{4}. In that case, $\mu(\gamma)$ is defined to be the Maslov index of the cycle $T_{C} L$.

Theorem 2.1 [13]. The Maslov class μ of a Lagrangian torus $L \subset \mathbb{R}^{4}$ is nontrivial and is of divisibility 2.

Example 2.2. Consider a Clifford torus

$$
T=T_{a, b}:=\left\{\left(a e^{i t_{1}}, b e^{i t_{2}}\right) \in \mathbb{C}^{2} \mid t_{1}, t_{2} \in S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z}\right\}
$$

Let $\gamma_{1} \in H_{1}(T, \mathbb{Z})$ be the class represented by the curve $\left\{\left(a e^{i t_{1}}, b\right) \in \mathbb{C}^{2} \mid\right.$ $\left.t_{1} \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$ and let $\gamma_{2} \in H_{1}(T, \mathbb{Z})$ be the class represented by $\left\{\left(a, b e^{i t_{2}}\right) \in \mathbb{C}^{2}\right.$ । $\left.t_{2} \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$. Then $\mu_{T}\left(\gamma_{1}\right)=2=\mu_{T}\left(\gamma_{2}\right)$.

The inequality $\mu_{L} \neq 0$ implies that the Lagrangian monodromy group $\mathcal{L}(L)$ can be only a proper subgroup of $\operatorname{Isom}\left(H_{1}(L, \mathbb{Z})\right) \cong \mathrm{GL}(2, \mathbb{Z})$.

Linking Class

The linking class $\ell=\ell_{L} \in H^{1}(L, \mathbb{Z})$ is defined as follows. Take v to be any nonvanishing vector field on L that is homotopically trivial; in other words, v is homotopic to some v^{\prime} in the space of nonvanishing vector fields on L such that v^{\prime} generates the kernel of a nonvanishing closed 1 -form on L. Let J be an ω-compatible almost complex structure on \mathbb{R}^{4}. Then $\ell(\gamma):=l k(C+\varepsilon J v, L)$ is defined to be the linking number with L of the push-off of C in the direction of $J v$, where $C \subset L$ is an immersed curve representing the class γ.

The class ℓ is independent of the choices involved. That $\ell(\gamma)$ is independent of J can be seen as follows. First of all, the space of ω-compatible almost complex structures is contractible and, since L is Lagrangian, $J v$ is transversal to L for any ω-compatible J. So in particular we can take J to be J_{0}, the standard complex structure on \mathbb{R}^{4}. Second, the independence of v follows from the observation that vector fields generating the kernels of nonvanishing closed 1-forms on L are homotopic as nowhere vanishing vector fields. Finally, if C and C^{\prime} are two representatives of γ then, since $H_{1}(L)$ is abelian, C and C^{\prime} are free homotopic. Hence $\ell(\gamma)$ is independent of the choices of v, J, and C with the prescribed conditions.

Example 2.3. Let $C \subset L$ be an embedded closed curve representing a nontrivial class $\gamma \in H_{1}(L, \mathbb{Z})$. Parameterize C by $t \in S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z}$ so that its tangent vector field $\dot{C}(t)$ is nonvanishing. Then $\dot{C}(t)$ extends to a homotopically trivial vector field v on L. For example, we can view L as an S^{1}-bundle over S^{1} with fibers representing the class $[C] \in H_{1}(L, \mathbb{Z})$, and C is one of the fibers. Then take v to be a nonvanishing vector field tangent to the fibers.

Theorem 2.4 [5]. The linking class $\ell_{L}=0$ for any embedded Lagrangian torus $L \subset \mathbb{R}^{4}$.

Remark 2.5. Given an embedded torus $L \subset \mathbb{R}^{4}$, we consider the set $\mathcal{J}^{+}(L)$ of almost complex structures J defined on $T_{L} \mathbb{R}^{4}$ such that $J(T L) \pitchfork T L$ and J is compatible with the orientation of \mathbb{R}^{4}. The homotopic class of such a J is isomorphic to $H^{1}(L, \mathbb{Z}) \cong \mathbb{Z}^{2}$. Similarly to ℓ_{L} for L being Lagrangian, each J associates to a linking class $\ell_{L}(J) \in H^{1}(L, \mathbb{Z})$ defined by linking numbers $\ell_{L}(J)(\gamma):=$ $l k(C+\varepsilon J v, L)$, where C and v are as defined previously.

Then $\ell_{L}\left(J_{0}\right)=\ell_{L}=0$ if L is Lagrangian and J_{0} is the standard complex structure (or any ω-compatible one). It will be shown later that the vanishing of ℓ implies, for ϕ_{s} as in Theorem 1.2, that $\left.\left(\left(\phi_{1}\right)_{*} J_{0}\right)\right|_{L_{1}}$ and $\left.J_{0}\right|_{L_{1}}$ are homotopic in $\mathcal{J}^{+}\left(L_{1}\right)$. Hence for any embedded oriented closed curve $C \subset L_{0}$ we have $\left(\phi_{1}\right)_{*} N_{C}^{\omega}=N_{\phi_{1}(C)}^{\omega}$ up to a smooth isotopy rel L_{1}, which leads to Theorem 1.2. Here N_{C}^{ω} is the symplectic normal bundle as defined in the beginning of the next section.

3. Loops in \mathbb{R}^{4} and Their Framings

Before moving on to Lagrangian tori in \mathbb{R}^{4}, it helps to have a closer look at loops in \mathbb{R}^{4}.

A loop in \mathbb{R}^{4} is an embedded 1-dimensional submanifold diffeomorphic to S^{1}. The pull-back of ω on a loop vanishes, so a loop is an isotropic submanifold. Take a loop $C \subset \mathbb{R}^{4}$. We fix an orientation of C, fix a trivialization of $C \cong S^{1}=$ $\mathbb{R} / 2 \pi \mathbb{Z}$, and write $\dot{C}(t)$ for the tangent vector of C at $C(t)$.

Symplectic Normal Bundle

Let us recall some basic properties of the normal bundle N of C. The bundle N splits as

$$
N=\left(T^{*} C\right) \oplus N^{\omega}
$$

where N^{ω}, called the symplectic normal bundle of C, is the trivial \mathbb{R}^{2}-bundle over C defined by

$$
N^{\omega}:=\left\{(C(t), v)\left|t \in S^{1}, v \in N\right|_{C(t)}, \omega(\dot{C}(t), v)=0\right\} .
$$

By Weinstein's isotropic neighborhood theorem (see $[11 ; 15 ; 16]$), there exists a tubular neighborhood $U \subset \mathbb{R}^{4}$ of C, a tubular neighborhood $V \subset N$ of the zero section of the normal bundle $C \subset \mathbb{R}^{4}$, and a symplectomorphism with $C \subset U$ identified with the zero section of N :

$$
\left(U \subset \mathbb{R}^{4}, \omega\right) \rightarrow\left(V \subset N=T^{*} C \times \mathbb{R}^{2}, \omega_{C} \times \omega_{\mathrm{can}}\right)
$$

Here $\omega_{\text {can }}=d x \wedge d y$ is the standard symplectic 2-form on $\mathbb{R}^{2}, \omega_{C}=d t \wedge d t^{*}$ is the canonical symplectic 2-form on $T^{*} C$, and t^{*} is the fiber coordinate of $T^{*} C$ dual to t. The symplectic normal bundle N^{ω} is identified with $\left\{(t, 0, x, y) \in S^{1} \times \mathbb{R} \times \mathbb{R}^{2}\right\}$.

Next we explore some properties of N^{ω} that will be applied in later sections.
Lagrangian Tori Associated to a Loop. Let

$$
D^{\omega} \subset N^{\omega}
$$

denote the associated symplectic normal disc bundle with fiber an open disc $\left\{(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2}<\varepsilon\right\}$ with some positive radius ε. With the symplectomorphism near C described as before, the boundary $L=L_{C}:=\partial D^{\omega}$ is an embedded Lagrangian torus in \mathbb{R}^{4} provided that $\varepsilon>0$ is small enough. Note that, for each sufficiently small ε, L_{C} with $\varepsilon>0$ fixed is unique up to a Hamiltonian isotopy.

It is well known that any two loops in \mathbb{R}^{4} are smoothly isotopic. The following proposition can be easily verified.

Proposition 3.1. Let $C_{s}, 0 \leq s \leq 1$, be a smooth isotopy of loops. Let D_{s}^{ω} denote the symplectic normal disc bundle of C_{s} with fiber radius $\varepsilon_{s}>0$, and let $L_{s}:=\partial D_{s}^{\omega}$. Then there exists an $\varepsilon>0$ such that L_{s} is a Lagrangian isotopy of
embedded Lagrangian tori provided that $0<\varepsilon_{s}<\varepsilon$. In particular, if $C_{0}=C_{1}$ as a set and $\varepsilon_{0}=\varepsilon_{1}$, then $D_{0}^{\omega}=D_{1}^{\omega}$ and we get a Lagrangian self-isotopy of $L_{0}=\partial D_{0}^{\omega}$.

In Section 4 we will use this observation to construct Lagrangian self-isotopies of a Clifford torus.

Framings of N^{ω}

Definition 3.2. To a nonvanishing section (i.e., a framing) σ of N^{ω} one can associate an S^{1}-family of Lagrangian planes

$$
\dot{C}(t) \wedge \sigma(t), \quad t \in S^{1}
$$

we denote the corresponding Maslov index by

$$
\mu_{C}(\sigma):=\mu(\dot{C}(t) \wedge \sigma(t)) \in 2 \mathbb{Z}
$$

Note that $\mu_{C}(\sigma)$ depends only on the orientation of C and the homotopy class of σ among framings of N^{ω}.

If we fix a trivialization $\Phi: N^{\omega} \rightarrow C \times \mathbb{R}^{2}=C \times \mathbb{C}^{1}$, then the homotopy classes of framings of N^{ω} can be identified with $\left[S^{1}, \mathbb{R}^{2} \backslash\{0\}\right]=\left[S^{1}, S^{1}\right]=\mathbb{Z}$. Hence, for a map $\theta: S^{1} \rightarrow S^{1}$ of degree m, the Maslov index associated to the section $\sigma^{\prime}(t):=e^{i \theta(t)} \sigma(t)$ is $\mu_{C}\left(\sigma^{\prime}\right)=\mu_{C}(\sigma)+2 m$. In particular, there is a framing σ^{0} of N^{ω} such that $\mu_{C}\left(\sigma^{0}\right)=0$. We call σ^{0} a 0 -framing of C, and it is unique up to homotopy. Likewise, for each $m \in \mathbb{Z}$ there is a framing σ^{m} of N^{ω}, with σ^{m} unique up to homotopy, such that $\mu_{C}\left(\sigma^{m}\right)=2 m$.

Definition 3.3. We call σ^{m} an m-framing of N^{ω} or an m-framing of C.
The homotopy classes of framings of N^{ω} are classified by the framing number $\mu_{C}(\sigma) / 2$.

Example 3.4. Let $C \subset L$ be a simple closed curve representing the class $\gamma \in$ $H_{1}(L, \mathbb{Z})$ of a Lagrangian torus. Let v be a nonvanishing section of $N_{C}^{\omega} \cap T_{C} L$. Then v is a $(\mu(\gamma) / 2)$-framing of N_{C}^{ω}.

Proposition 3.5. Let $C_{s}, s \in[0,1]$, be a smooth isotopy between loops C_{0} and C_{1}. Write $C_{s}=\phi_{s}\left(C_{0}\right)$, where $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ with $\phi_{0}=\mathrm{id}$. Let N_{s}^{ω} and σ_{s}^{m} denote, respectively, the symplectic normal bundle and the m-framing of C_{s}.
(i) If $\left(\phi_{1}\right)_{*} N_{0}^{\omega}=N_{1}^{\omega}$, then

$$
\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{m}\right)-\mu_{C_{1}}\left(\sigma_{1}^{m}\right)=\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{0}\right)-\mu_{C_{1}}\left(\sigma_{1}^{0}\right) \in 4 \mathbb{Z}
$$

(ii) If $\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{m}\right)=\mu_{C_{1}}\left(\sigma_{1}^{m}\right)=2 m$ then, up to a perturbation of ϕ_{s}, we may assume that $\left(\phi_{s}\right)_{*} N_{0}^{\omega}=N_{s}^{\omega}$ and $\left(\phi_{s}\right)_{*} \sigma_{0}^{m}=\sigma_{s}^{m}$.

Proof. (i) First consider the case $m=0$. Fix a trivialization $S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z} \rightarrow$ C_{0} for C_{0}. This trivialization, when composed with ϕ_{s}, becomes a trivialization
of C_{s}. By applying Weinstein's isotropic neighborhood theorem, we may symplectically identify a neighborhood of $C_{s} \in \mathbb{R}^{4}$ with a neighborhood of the zero section of the normal bundle N_{s} of C_{s}. We can trivialize $N_{s}=S^{1} \times \mathbb{R} \times \mathbb{R}^{2}$ with coordinates $\left(t, t^{*}, x, y\right)$ so that

- $C_{s}=S^{1} \times\{0\} \times\{0\}$,
- $N_{s}^{\omega}=S^{1} \times\{0\} \times \mathbb{R}^{2}$, and
- $\sigma_{s}^{0}(t)=(t, 0, \varepsilon, 0)$ for some $\varepsilon>0$.

Then, for each s, the differential $\left(\phi_{s}\right)_{*}(t)$ at $C_{0}(t)$ with $t \in S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z}$ can be viewed as a smooth loop in $\mathrm{GL}^{+}(4, \mathbb{R})$:

$$
\left(\phi_{s}\right)_{*}(t) \in\left(\begin{array}{cc}
1 & * \\
0 & \mathrm{GL}^{+}(3, \mathbb{R})
\end{array}\right), \quad\left(\phi_{0}\right)_{*}(t)=\mathrm{id}, \quad\left(\phi_{1}\right)_{*}(t) \in\left(\begin{array}{ccc}
1 & * & 0 \\
0 & c(t) & 0 \\
0 & * & \mathrm{GL}(2, \mathbb{R})
\end{array}\right)
$$

Note that, since $\left(\phi_{1}\right)_{*}(t)$ is an isomorphism, it follows that $c(t) \neq 0$ for $t \in S^{1}$. We view $\left(\phi_{0}\right)_{*}(t)=$ id as a constant loop in $\mathrm{GL}^{+}(4, \mathbb{R})$ parameterized by t. Then $\left(\phi_{s}\right)_{*}(t), 0 \leq s \leq 1$, when viewed as a family of parameterized loops in $\mathrm{GL}^{+}(4, \mathbb{R})$, is a free homotopy between $\left(\phi_{0}\right)_{*}(t)$ and $\left(\phi_{1}\right)_{*}(t)$. This implies that $\left(\phi_{1}\right)_{*}(t)$ is free homotopic to the trivial class of

$$
\pi_{1}\left(\mathrm{GL}^{+}(4, \mathbb{R})\right) \cong \pi_{1}\left(\mathrm{GL}^{+}(3, \mathbb{R})\right)=\mathbb{Z}_{2}
$$

The lower 3×3 block of the matrix form of $\left(\phi_{s}\right)_{*}(t)$ is invertible. We can therefore perturb ϕ_{s} by composing it with some suitable family of maps in $\operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$, each of them fixing C_{s} pointwise and with the condition $\left(\phi_{1}\right)_{*} N_{0}^{\omega}=N_{1}^{\omega}$ preserved under the perturbation, so that the perturbed ϕ_{s} satisfy

$$
\left(\phi_{s}\right)_{*}(t) \in\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{GL}^{+}(3, \mathbb{R})
\end{array}\right) \quad \text { with }\left(\phi_{0}\right)_{*}(t)=\mathrm{Id}
$$

and either $\left(\phi_{1}\right)_{*}(t)=A(t)$ or $\left(\phi_{1}\right)_{*}(t)=A^{\prime}(t)$, where

$$
A(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & \cos k t & -\sin k t \\
0 & 0 & \sin k t & \cos k t
\end{array}\right), \quad A^{\prime}(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & \cos k t & \sin k t \\
0 & 0 & \sin k t & -\cos k t
\end{array}\right)
$$

for some $k \in \mathbb{Z}$. Note that $A^{\prime}(t)$ is free homotopic to $A(t)$ by a 180° rotation along the subspace spanned by its second and third column vectors. We can interchange the two cases $\left(\phi_{1}\right)_{*}(t)=A(t)$ and $\left(\phi_{1}\right)_{*}(t)=A^{\prime}(t)$ by composing with ϕ_{1} such a rotation along C_{1}.

Now the equality $\left[\left(\phi_{1}\right)_{*}(t)\right]=0$ in $\pi_{1}\left(\mathrm{GL}^{+}(4, \mathbb{R})\right)$ implies that $k \in 2 \mathbb{Z}$. Hence $\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{0}\right)=2 k+\mu\left(\sigma_{1}^{0}\right)=2 k \in 4 \mathbb{Z}$.

The equality $\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{m}\right)-\mu_{C_{1}}\left(\sigma_{1}^{m}\right)=\mu_{C_{1}}\left(\left(\phi_{1}\right)_{*} \sigma_{0}^{0}\right)-\mu_{C_{1}}\left(\sigma_{1}^{0}\right)$ follows from the property that $\sigma_{s}^{m}(t)=e^{i m t} \sigma_{s}^{0}(t)$ up to homotopy.
(ii) The proof follows from the perturbation of ϕ_{s} constructed in (i).

4. Lagrangian Monodromy Group of a Clifford Torus

In general, the LMG $\mathcal{L}(L)$ must preserve both the Maslov class μ_{L} and the linking class ℓ_{L} whenever defined. However, for $L \subset \mathbb{R}^{4}$ the class $\ell_{L}=0$ is automatically preserved. In this section we determine the LMG of a Clifford torus in \mathbb{R}^{4}.

Identify $\mathbb{R}^{4} \cong \mathbb{C}^{2}$. For $a, b>0$, the Clifford torus $T_{a, b}$ is defined to be

$$
T=T_{a, b}:=\left\{\left(z_{1}, z_{2}\right)| | z_{1}\left|=a,\left|z_{2}\right|=b\right\} .\right.
$$

We fix a basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ of $H_{1}(T, \mathbb{Z})$ such that

- γ_{1} is represented by the cycle $\left\{\left(a e^{i t}, b\right) \mid t \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$ and
- γ_{2} is represented by the cycle $\left\{\left(a, b e^{i t}\right) \mid t \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$.

Then $\gamma_{1}=\binom{1}{0}$ and $\gamma_{2}=\binom{0}{1}$ when expressed as column vectors. We also denote $\gamma_{0}:=-\gamma_{1}+\gamma_{2}$. Then $\mu\left(\gamma_{0}\right)=0$ and $\gamma_{0}=\binom{-1}{1}$ as a column vector. Likewise, the Maslov class $\mu \in H^{1}(T, \mathbb{Z})$ is expressed as a row vector $\mu=\left(\begin{array}{ll}2 & 2\end{array}\right)$.

The mapping class group of T is then isomorphic to $\operatorname{GL}(2, \mathbb{Z})$, the group of 2×2 matrices with integral coefficients and with determinant ± 1. Let

$$
G_{\mu}:=\{g \in \mathrm{GL}(2, \mathbb{Z}) \mid \mu \circ g=\mu\}
$$

A direct computation shows that $G_{\mu}=G_{\mu}^{+} \sqcup G_{\mu}^{-}$, where

$$
\begin{align*}
& G_{\mu}^{+}=\left\{g_{n}: \left.=\left(\begin{array}{cc}
1-n & -n \\
n & 1+n
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\} \tag{2}\\
& G_{\mu}^{-}=\left\{f_{n}: \left.=\left(\begin{array}{cc}
1-n & 2-n \\
n & -1+n
\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\} \tag{3}
\end{align*}
$$

Elements of G_{μ}^{+}are of determinant 1, and elements of G_{μ}^{-}are of determinant -1 . Also, $g_{n}=\left(g_{1}\right)^{n}$ for g_{1} a generator of $G_{\mu}^{+} \cong \mathbb{Z}$. On the other hand, G_{μ}^{-}comprises elements of order 2 in G_{μ}. Geometrically, $g_{n}=\left(g_{1}\right)^{n}$ is the $(-n)$-Dehn twist along γ_{0} and each f_{n} is a generalized reflection with $f_{n}\left(\gamma_{0}\right)=-\gamma_{0}$. Note that

$$
f_{0}^{2}=e=f_{1}^{2}, \quad\left(f_{1} f_{0}\right)^{n}=g_{n}, \quad\left(f_{0} f_{1}\right)^{n}=g_{-n}=\left(g_{n}\right)^{-1}, \quad g_{n} f_{m}=f_{n+m}
$$

(here e denotes the identity element of G_{μ}). Therefore,

$$
\begin{equation*}
G_{\mu}=\left\langle f_{0}, f_{1} \mid f_{0}^{2}=e=f_{1}^{2}\right\rangle \cong D_{\infty} \tag{4}
\end{equation*}
$$

is freely generated by the two elements f_{0}, f_{1} of order 2 and is isomorphic to the infinite dihedral group D_{∞} [9].

Note that if $L_{s}=\phi_{s}(T), s \in[0,1]$, is a Lagrangian self-isotopy of T such that $L_{0}=L_{1}=T$ and $\phi_{0}=\mathrm{id}$, then the induced isomorphism $\left(\phi_{1}\right)_{*}: H_{1}(T, \mathbb{Z}) \rightarrow$ $H_{1}(T, \mathbb{Z})$ is an element of G_{μ}. That is, the LMG $\mathcal{L}(T)$ is a subgroup of G_{μ}.

Proposition 4.1. The LMGs of $T_{a, b}$ and $T_{a^{\prime}, b^{\prime}}$ are isomorphic.
Proof. Identify the ordered pairs (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ with the coordinates of two points in the first quadrant of the \mathbb{R}^{2}-plane. Take a smooth path $c(s)=$ $\left(c_{1}(s), c_{2}(s)\right), s \in[0,1]$, in the first quadrant so that $c(0)=(a, b)$ and $c(1)=$ $\left(a^{\prime}, b^{\prime}\right)$. Then $T_{c(s)}$ is a Lagrangian isotopy of Clifford tori between $T_{a, b}$ and $T_{a^{\prime}, b^{\prime}}$.

Theorem 4.2. The LMG of a Clifford torus T is $\mathcal{L}(T)=G_{\mu}$.
Proof. We will explicitly construct Lagrangian self-isotopies of T with monodromies f_{0} and f_{1}, respectively. Then $\mathcal{L}(T)=G_{\mu}$ by equation (4).

Case 1: The monodromy $f_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Recall that in [17] a Lagrangian selfisotopy for $T_{b, b}$ was constructed with monodromy f_{1} (denoted by \tilde{f}_{1} in [17]). For completeness we repeat the construction here. First let us consider the path in the unitary group $U(2)$ defined by

$$
A_{s}:=\left(\begin{array}{rr}
\cos \frac{\pi s}{2} & -\sin \frac{\pi s}{2} \\
\sin \frac{\pi s}{2} & \cos \frac{\pi s}{2}
\end{array}\right) \in \mathrm{GL}(2, \mathbb{C}), \quad 0 \leq s \leq 1
$$

Here A_{s} acts on \mathbb{C}^{2} and is the time-s map of the Hamiltonian vector field $X=$ $\frac{\pi}{2}\left(x_{1} \partial_{x_{2}}-x_{2} \partial_{x_{1}}+y_{1} \partial_{y_{2}}-y_{2} \partial_{y_{1}}\right)$ with $\omega(X, \cdot)=-d H$ for $H=\frac{\pi}{2}\left(x_{2} y_{1}-x_{1} y_{2}\right)$. Observe that $A_{1}\left(T_{a, b}\right)=T_{b, a}$ and $\left(A_{1}\right)_{*}=f_{1}$ on $H_{1}\left(T_{b, b}, \mathbb{Z}\right)$. Fix $\underset{\sim}{b}>0$ and modify H to get a C^{∞}-function \tilde{H} with compact support such that $\tilde{H}=H$ on $\left\{\left|z_{1}\right| \leq 2 b,\left|z_{2}\right| \leq 2 b\right\}$. Let ϕ_{s} be the time-s map of the flow of the Hamiltonian vector field associated to \tilde{H}. Then $\phi_{1}\left(T_{b, b}\right)=\left(T_{b, b}\right)$ and $\left(\phi_{1}\right)_{*}=\left(A_{1}\right)_{*}=f_{1}$ on $H_{1}\left(T_{b, b}, \mathbb{Z}\right)$. Now extend this self-isotopy of $T_{b, b}$ by conjugating it smoothly via a Lagrangian isotopy between $T_{a, b}$ and $T_{b, b}$ as described in Proposition 4.1. We may assume that the basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ of $T_{b, b}$ is transported to the basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ of $T_{a, b}$ along the latter isotopy. Readers can check now that the extended isotopy induces a Lagrangian self-isotopy of $T_{a, b}$ with monodromy f_{1}.

Case 2: The monodromy $f_{0}=\left(\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right)$. For $s \in[0,1]$ consider the family of diffeomorphisms $\Psi_{s}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$,

$$
\Psi_{s}\left(x_{1}, y_{1}, x_{2}, y_{2}\right):=\left(x_{1} \cos \pi s-y_{2} \sin \pi s, y_{1}, x_{2}, y_{2} \cos \pi s+x_{1} \sin \pi s\right)
$$

Note that $\Psi_{s} \in \mathrm{SO}(4, \mathbb{R})$ are rotations on the $\left(x_{1} y_{2}\right)$-plane with the $\left(y_{1} x_{2}\right)$-plane fixed. Consider the simple closed curve C_{0} defined by

$$
\left\{\left(x_{1}=0, y_{1}=0, x_{2}=b \cos t, y_{2}=b \sin t\right) \in \mathbb{R}^{4} \mid t \in[0,2 \pi]\right\}
$$

Define $C_{s}(t):=\Psi_{s}\left(C_{0}\right)(t)$ for $C_{s}, s \in[0,1]$, a smooth family of curves. Note that C_{1} equals C_{0} but with the reversed orientation. Recall from Proposition 3.1 that for $\varepsilon>0$ small enough, the Lagrangian torus boundary L_{s} of the symplectic, radius- ε normal disc bundle D_{s}^{ω} of C_{s} is embedded in \mathbb{R}^{4} with core curve C_{s}. Note that $L_{0}=T_{\varepsilon, b}=L_{1}$ as sets, so we obtain a Lagrangian self-isotopy of $T_{\varepsilon, b}$ for $\varepsilon>0$ small enough. This self-isotopy of $T_{\varepsilon, b}$ reverses the orientation of $T_{\varepsilon, b}$, so the corresponding monodromy f is an element of G_{μ}^{-}with determinant -1 when expressed as a matrix. Note that Ψ_{1} reverses the orientation of the core curve C_{0} of D_{0}^{ω}. Since $\gamma_{2} \subset \partial D_{0}^{\omega}=T_{\varepsilon, b}$ is longitudinal, this reversal implies that f sends γ_{2} to $-\gamma_{2}+m \gamma_{1}$ for some $m \in \mathbb{Z}$. Then a comparison with the formula for f_{n} in (3) yields $f=f_{0}=\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right)$ and $m=2$.

Now, similarly to what was done in Case 1, extend the Lagrangian self-isotopy of $T_{\varepsilon, b}$ into an Lagrangian self-isotopy of $T_{a, b}$ through Clifford tori. The corresponding monodromy is f_{0}. This completes the proof.

REMARK 4.3. If we take C_{0} to be the curve

$$
\left\{\left(x_{1}=a \cos t, y_{1}=a \sin t, x_{2}=0, y_{2}=0\right) \in \mathbb{R}^{4} \mid t \in[0,2 \pi]\right\}
$$

then Ψ_{s} will induce a Lagrangian self-isotopy of $T_{a, \varepsilon}$ with monodromy $f_{2}=$ $\left(\begin{array}{rr}-1 & 0 \\ 2 & 1\end{array}\right)$. The reader can check that $G_{\mu}=\left\langle f_{1}, f_{2} \mid f_{1}^{2}=e=f_{2}^{2}\right\rangle$. Hence $\mathcal{L}(T)=$ G_{μ} again.

5. Smooth Monodromy Group of a Clifford Torus

We start by proving Theorem 1.2.
Proof of Theorem 1.2. By the linearity of $\left(\phi_{1}\right)_{*}$ and μ, it is enough to prove the theorem for the case when $\gamma \in H_{1}\left(L_{0}, \mathbb{Z}\right)$ is primitive.

Fix a positive basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ for $H_{1}\left(L_{1}, \mathbb{Z}\right)$ with $\mu\left(\gamma_{1}\right)=2=\mu\left(\gamma_{2}\right)$. Given a primitive class $\gamma \in H_{1}\left(L_{0}, \mathbb{Z}\right)$, we have $\left(\phi_{1}\right)_{*}(\gamma)=n_{1} \gamma_{1}+n_{2} \gamma_{2}$ for some $n_{1}, n_{2} \in$ \mathbb{Z}. Let $C_{0} \subset L_{0}$ be an embedded curve representing the class γ, and let $C_{s}:=$ $\phi_{s}\left(C_{0}\right)$. We denote by N_{s} and N_{s}^{ω} (respectively) the normal bundle and the symplectic normal bundle of C_{s}. By assumption, C_{1} represents the class $n_{1} \gamma_{1}+n_{2} \gamma_{2}$.

Let σ_{0} denote a nonvanishing section of the \mathbb{R}^{1}-bundle $\left(T_{C_{0}} L_{0}\right) \cap N_{0}^{\omega}$ over C_{0}. Then σ_{0} is a $(\mu(\gamma) / 2)$-framing of N_{0}^{ω}. Extend σ_{0} to a smooth family σ_{s} with $0 \leq$ $s \leq 1$, so that σ_{s} is a $(\mu(\gamma) / 2)$-framing of N_{s}^{ω}. Let $m:=\mu(\gamma) / 2$.

Recall that J_{0} is the standard complex structure over $\mathbb{R}^{4} \cong \mathbb{C}^{2}$. Fix a trivialization for $N_{s} \cong S^{1} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ by taking $\left\{J_{0} \dot{C}_{s}(t), \sigma_{s}(t), J_{0} \sigma_{s}(t)\right\}$ as the basis of the fiber of N_{s} at $C_{s}(t)$, so that the coordinate $\left(t, t^{*}, x, y\right)$ represents the fiber $t^{*} J_{0} \dot{C}_{s}(t)+x \sigma_{s}(t)+y J_{0} \sigma_{s}(t)$.

Now let $\eta_{s}:=\phi_{s}\left(\sigma_{0}\right)$. Observe that η_{1} is a nonvanishing section of $N_{1}^{\omega} \cap T_{C_{1}} L_{1}$ and an $\left(n_{1}+n_{2}\right)$-framing of N_{1}^{ω}. Let $k:=n_{1}+n_{2}$.

Recall that σ_{1} is an m-framing of N_{1}^{ω}. Up to a homotopy of σ_{s} if necessary, we may assume the following:

- for each $s, \eta_{s}=\sigma_{s}$ at $t=0$;
- for $t \in S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}, \eta_{1}(t)=\sigma_{1}(t) \cos (k-m) t+J_{0} \sigma_{1}(t) \sin (k-m) t$.

Then, for each s, ϕ_{s} associates to a smooth map $\Phi_{s}: S^{1} \rightarrow \mathrm{GL}^{+}(4, \mathbb{R})$, where

$$
\begin{aligned}
& \Phi_{s}(t):=\left(\phi_{s}\right)_{*}(t) \in\left(\begin{array}{cc}
1 & * \\
0 & \mathrm{GL}^{+}(3, \mathbb{R})
\end{array}\right), \\
& \Phi_{0}(t)=\mathrm{id}, \Phi_{1}(t)=\left(\begin{array}{cccc}
1 & * & 0 & * \\
0 & * & 0 & * \\
0 & * & \cos (k-m) t & * \\
0 & * & \sin (k-m) t & *
\end{array}\right) .
\end{aligned}
$$

The second and fourth columns of Φ_{1} represent $\left(\phi_{1}\right)_{*}\left(J_{0} \dot{C}_{0}\right)$ and $\left(\phi_{1}\right)_{*}\left(J_{0} \sigma_{0}\right)$, respectively.

Extend \dot{C}_{0} to a homotopically trivial nonvanishing vector field u_{0} on L_{0}, and let $u_{s}:=\left(\phi_{s}\right)_{*} u_{0}$. Then $\left.u_{1}\right|_{C_{1}}=\dot{C}_{1}$. By continuity and $\ell_{L_{0}}=0$ we have

$$
\begin{equation*}
l k\left(C_{1}+\varepsilon \cdot\left(\phi_{1}\right)_{*} J_{0} u_{0}, L_{1}\right)=\operatorname{lk}\left(C_{0}+\varepsilon J_{0} u_{0}, L_{0}\right)=0 . \tag{5}
\end{equation*}
$$

Similarly, since $\ell_{L_{1}}=0$, it follows that

$$
\begin{equation*}
l k\left(C_{1}+\varepsilon J_{0}\left(\phi_{1}\right)_{*} u_{0}, L_{1}\right)=l k\left(C_{1}+\varepsilon J_{0} u_{1}, L_{1}\right)=0 . \tag{6}
\end{equation*}
$$

Note that (5) and (6) hold for any class $\left[C_{0}\right]$ and thus $\left[C_{1}\right]=\left(\phi_{1}\right)_{*}\left[C_{0}\right]$, which shows that $\left.\left(\phi_{1}\right)_{*} J_{0}\right|_{L_{1}}$ is homotopic to $\left.J_{0}\right|_{L_{1}}$ in $\mathcal{J}^{+}\left(L_{1}\right)$ as defined in Remark 2.5. In particular, $\left(\phi_{1}\right)_{*} J_{0} u_{0}$ is homotopic to $J_{0} u_{1}$ as nonvanishing sections of the normal bundle $N_{L_{1}}$ of $L_{1} \subset \mathbb{R}^{4}$. So up to an L_{1}-fixing isotopy we may assume that, along $C_{1},\left(\phi_{1}\right)_{*} J_{0} \dot{C}_{0}=J_{0} \dot{C}_{1}$ and $\left(\phi_{1}\right)_{*} N_{C_{0}}^{\omega}=N_{C_{1}}^{\omega}$. That is, $\Phi_{1}=\left(\phi_{1}\right)_{*}$ satisfies

$$
\Phi_{1}(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & 1 & 0 & 0 \\
0 & 0 & \cos (k-m) t & * \\
0 & 0 & \sin (k-m) t & *
\end{array}\right) \in \mathrm{GL}^{+}(4, \mathbb{R})
$$

Now Φ_{1} satisfies the hypothesis of Proposition 3.5(i) and so, by a similar argument as employed there, up to an L_{1}-fixing isotopy we have

$$
\Phi_{1}(t)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos (k-m) t & -\sin (k-m) t \\
0 & 0 & \sin (k-m) t & \cos (k-m) t
\end{array}\right) \in \mathrm{GL}^{+}(4, \mathbb{R})
$$

with

$$
\begin{equation*}
k-m \in 2 \mathbb{Z}, \tag{8}
\end{equation*}
$$

since the lower 3×3 block of Φ_{1} is free homotopic to id $\in \mathrm{GL}^{+}(3, \mathbb{R})$ with respect to the basis $\left\{J_{0} \dot{C}_{1}, \sigma_{1}, J_{0} \sigma_{1}\right\}$. This completes the proof.

Corollary 5.1. The $\operatorname{SMG} \mathcal{S}(L)$ of an embedded Lagrangian torus $L \subset \mathbb{R}^{4}$ is contained in the subgroup $\mathcal{X} \subset \operatorname{Isom}\left(H^{1}(L, \mathbb{Z})\right)$ defined by

$$
\mathcal{X}:=\left\{g \in \operatorname{Isom}\left(H_{1}(L, \mathbb{Z})\right) \mid \mu_{L} \circ g-\mu_{L} \in 4 \cdot H^{1}(L, \mathbb{Z})\right\} .
$$

Corollary 5.2. Let $L \subset \mathbb{R}^{4}$ be an embedded Lagrangian torus. Fix a positive basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ for $H_{1}(L, \mathbb{Z})$ with $\mu\left(\gamma_{1}\right)=2=\mu\left(\gamma_{2}\right)$. Then, with respect to $\left\{\gamma_{1}, \gamma_{2}\right\}, \mathcal{X}$ is represented as

$$
\mathcal{X}=\mathcal{X}^{o} \sqcup \mathcal{X}^{e} \subset \mathrm{GL}(2, \mathbb{Z})
$$

where

$$
\begin{align*}
\mathcal{X}^{o} & :=\left\{\left.\left(\begin{array}{cc}
1+2 p & 2 s \\
2 r & 1+2 q
\end{array}\right) \in \operatorname{GL}(2, \mathbb{Z}) \right\rvert\, p, q, r, s \in \mathbb{Z}\right\}, \tag{9}\\
\mathcal{X}^{e} & :=\left\{\left.\left(\begin{array}{cc}
2 r & 1+2 q \\
1+2 p & 2 s
\end{array}\right) \in \operatorname{GL}(2, \mathbb{Z}) \right\rvert\, p, q, r, s \in \mathbb{Z}\right\} . \tag{10}
\end{align*}
$$

Proof. Recall that $\mu=\mu_{L}$ has divisibility 2. Express γ_{1} and γ_{2} as column vectors $\binom{1}{0}$ and $\binom{0}{1}$, respectively. For $g=\left(g_{i j}\right) \in \mathcal{X}$, that $\mu\left(g\left(\gamma_{j}\right)\right)-\mu\left(\gamma_{j}\right) \in 4 \mathbb{Z}$ implies that both $2\left(g_{11}+g_{21}\right)-2$ and $2\left(g_{12}+g_{22}\right)-2$ are divisible by 4 . Hence (i) g_{11} and g_{21} have different parity and (ii) g_{12} and g_{22} have different parity. Since $\operatorname{det} g= \pm 1$, the two even-valued entries of g can lie in neither the same column nor the same row of g; hence either $g \in \mathcal{X}^{o}$ or $g \in \mathcal{X}^{e}$.

We now determine the group $\mathcal{S}(T)$ of a Clifford torus T. The proof is divided into three separate propositions.

Proposition 5.3. Recall the basis $\left\{\gamma_{1}, \gamma_{2}\right\}$ for $H_{1}\left(T_{a, b}, \mathbb{Z}\right)$. Each of the following four types of elements of $\operatorname{GL}(2, \mathbb{Z}) \cong \operatorname{Isom}\left(H_{1}\left(T_{a, b}, \mathbb{Z}\right)\right)$ can be realized as the monodromy of some smooth self-isotopy of $T_{a, b}$:
(i) a k-Dehn twist $\tau_{1}^{k}:=\left(\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right)$ along γ_{1} with $k \in 2 \mathbb{Z} \backslash\{0\}$;
(ii) a k-Dehn twist $\tau_{2}^{k}:=\left(\begin{array}{cc}1 & 0 \\ -k & 1\end{array}\right)$ along γ_{1} with $k \in 2 \mathbb{Z} \backslash\{0\}$;
(iii) the γ_{1}-reflection $\bar{r}_{1}:=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$;
(iv) the γ_{2}-reflection $\bar{r}_{2}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Proof. Because the specific values of $a, b>0$ are immaterial, we may take values of a, b that are convenient for the construction of a smooth self-isotopy. In the following we will denote a Clifford torus as T. Also, since the Lagrangian monodromy $f_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ swaps elements in (i) and (iii) with elements in (ii) and (iv), we need only prove the two cases (i) and (iii).

Let $C:=\left\{\left(0, b e^{i t}\right) \mid t \in[0,2 \pi]\right\} \subset \mathbb{R}^{4}$.
Case (i): $\tau_{1}^{k}(k \neq 0)$ is even. Let U be a tubular neighborhood of $C, U \cong$ $B^{3} \times S^{1}$. Parameterize U by $(\rho, \varphi, \theta, t)$ for $(\rho, \varphi, \theta) \in\left[0, \rho_{0}\right] \times S^{2}$ the spherical coordinates of the 3 -ball B^{3}, where ρ is the radial coordinate, (φ, θ) denotes the spherical coordinates on S^{2}, and $\left(\rho_{0}, \pi / 2, \theta, t\right)$ parameterizes the equator of the S^{2}-fiber over t. We also assume that $\left(\rho_{0}, \pi / 2, \theta, t\right) \in S^{1} \times S^{1}$ parameterizes T so that τ_{1}^{k} is represented by the map $\phi(\theta, t)=(\theta+k t, t)$. Extend ϕ over U to obtain

$$
\tilde{\phi}: U \rightarrow U, \quad \tilde{\phi}(\rho, \varphi, \theta, t)=\left(\rho, \psi_{t}(\varphi, \theta), t\right):=(\rho,(\varphi, \theta+k t), t) .
$$

As a loop in $\mathrm{SO}(3)$ parameterized by t, the maps ψ_{t} represent the trivial class of $\pi_{1}(\mathrm{SO}(3))$ since we assume that k is even. Then there exists between ψ_{t} and the constant loop id a smooth homotopy $\psi_{s, t} \in \mathrm{SO}(3)$ with $s, t \in[0,1] \times S^{1}$ such that $\psi_{0, t}=\mathrm{Id}=\psi_{s, 0}$ and $\psi_{1, t}=\psi_{t}$. This induces a smooth homotopy $\tilde{\phi}_{s}, s \in[0,1]$, between $\tilde{\phi}_{1}=\tilde{\phi}$ and $\tilde{\phi}_{0}=\operatorname{id}_{U}$ with

$$
\tilde{\phi}_{s}(\rho,(\varphi, \theta), t):=\left(\rho, \psi_{s, t}(\varphi, \theta), t\right) .
$$

Let X_{s} be the time-dependent vector field on U that generates the isotopy $\tilde{\phi}_{s}$; that is, $\frac{d \tilde{\phi}_{s}}{d s}=X_{s} \circ \tilde{\phi}_{s}$ and $\tilde{\phi}_{0}=$ id. Note that X_{s} is tangent to ∂U. Extend X_{s} over \mathbb{R}^{4} smoothly with compact support. Denote the time-1 map of the extended X_{s} as ϕ^{\prime}. Then $\phi^{\prime} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$ is isotopic to the identity map and $\left.\phi^{\prime}\right|_{L}=\phi$.

Case (iii): \bar{r}_{1}. Parameterize B^{3} by Cartesian coordinates (x_{1}, y_{1}, x_{2}) with $x_{1}^{2}+y_{1}^{2}+x_{2}^{2} \leq 1$ so that $T \subset U=B^{3} \times S^{1}$ is parameterized by $\left\{\left(x_{1}, y_{1}, 0, t\right) \mid\right.$ $\left.x_{1}^{2}+y_{1}^{2}=1\right\}$. Without loss of generality, we may assume that \bar{r}_{1} is represented by the map $\phi\left(x_{1}, y_{1}, 0, t\right)=\left(-x_{1}, y_{1}, 0, t\right)$ for $\left(x_{1}, y_{1}, 0, t\right) \in T$. Extend ϕ over U to get

$$
\tilde{\phi}: U \rightarrow U, \quad \tilde{\phi}\left(x_{1}, y_{1}, x_{2}, t\right)=\left(\psi\left(x_{1}, y_{1}, x_{2}\right), t\right):=\left(\left(-x_{1}, y_{1},-x_{2}\right), t\right)
$$

The map $\psi=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \in \operatorname{SO}(3)$ is isotopic to the identity map. Let ψ_{s} be a smooth path in $\operatorname{SO}(3)$ with $s \in[0,1], \psi_{0}=\mathrm{Id}$, and $\psi_{1}=\psi$. This path induces an isotopy $\tilde{\phi}_{s}: U \rightarrow U, s \in[0,1]$:

$$
\tilde{\phi}_{s}\left(\left(x_{1}, y_{1}, x_{2}\right), t\right)=\left(\psi_{s}\left(x_{1}, y_{1}, x_{2}\right), t\right)
$$

Now, just as in Case (i), we extend $\tilde{\phi}_{s}$ over \mathbb{R}^{4} with compact support to obtain $\phi^{\prime} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right)$, which is isotopic to the identity map, and $\left.\phi^{\prime}\right|_{L}=\phi$. This completes the proof.

Let

$$
\mathcal{R} \subset \mathrm{GL}(2, \mathbb{Z})
$$

be the subgroup generated by elements of $\mathcal{L}(T)=G_{\mu}$ and by τ_{j}^{2} and \bar{r}_{j} for $j=$ 1,2 . Clearly we have the following inclusions as subgroups:

$$
\mathcal{R} \subset \mathcal{S}(T) \subset \mathcal{X}
$$

We will show that $\mathcal{X} \subset \mathcal{R}$ and hence that $\mathcal{R}=\mathcal{S}(T)=\mathcal{X}$. To begin with, consider the subgroup $\mathcal{E} \subset \mathrm{GL}(2, \mathbb{Z})$ generated by τ_{1}^{2} and τ_{2}^{2}. It is shown by Sanov [14] that \mathcal{E} is free (see also [2]) and that

$$
\mathcal{E}=\left\{\left.\left(\begin{array}{cc}
1+4 p & 2 s \\
2 r & 1+4 q
\end{array}\right) \in \mathrm{GL}(2, \mathbb{Z}) \right\rvert\, p, q, r, s \in \mathbb{Z}\right\} .
$$

Proposition 5.4. The group \mathcal{X} is contained in \mathcal{R}, so $\mathcal{R}=\mathcal{S}(T)=\mathcal{X}$.
Proof. Since $\mathcal{X}^{e}=f_{1} \mathcal{X}^{o}$ and $f_{1} \in \mathcal{R}$, it suffices to prove that if $h \in \mathcal{X}^{o}$ then $h \in \mathcal{R}$. Our strategy here is to show that for $h \in \mathcal{X}^{o}$ there exists a suitable element $g \in \mathcal{R}$ such that $g h \in \mathcal{E}$. Then $h=g^{-1}(g h) \in \mathcal{R}$.

Write $h=\left(\begin{array}{cc}1+2 p & 2 s \\ 2 r & 1+2 q\end{array}\right)$. We divide the proof into four cases according to the parity of p and q.
(i) If both p and q are even, then we already have $h \in \mathcal{E} \subset \mathcal{R}$.
(ii) If both p and q are odd, then

$$
\begin{aligned}
\left(\bar{r}_{1} \bar{r}_{2}\right) h & =\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1+2 p & 2 s \\
2 r & 1+2 q
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-2(1+p) & -2 s \\
-2 r & 1-2(1+q)
\end{array}\right) \in \mathcal{E} .
\end{aligned}
$$

Hence $h \in \mathcal{R}$ because $\bar{r}_{1}, \bar{r}_{2} \in \mathcal{R}$.
(iii) If p is odd and q is even, then

$$
\bar{r}_{1} h=\left(\begin{array}{rc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1+2 p & 2 s \\
2 r & 1+2 q
\end{array}\right)=\left(\begin{array}{cc}
1-2(1+p) & 2 s \\
-2 r & 1+2 q
\end{array}\right) \in \mathcal{E}
$$

and again we have $h \in \mathcal{R}$.
(iv) The case of p even and q odd is similar; simply observe that $\bar{r}_{2} h \in \mathcal{E}$.

Thus we have proved that $\mathcal{X} \subset \mathcal{R}$ and hence $\mathcal{S}(T)=\mathcal{X}=\mathcal{R}$.

Proposition 5.5. The group $\mathcal{S}(T) \subset \mathrm{GL}(2, \mathbb{Z})$ is generated by f_{1}, f_{2}, and \bar{r}_{1}.
Proof. Recall that $\mathcal{S}(T)=\mathcal{R}$ is generated by \bar{r}_{j} and τ_{j}^{2} with $j=1,2$ and by elements of G_{μ}. The group G_{μ} is generated by f_{1} and f_{0}. Observe that

$$
\tau_{1}^{2}=\bar{r}_{2} f_{0}, \quad \tau_{2}^{2}=f_{2} \bar{r}_{1}=f_{1} f_{0} f_{1} \bar{r}_{1}, \quad \bar{r}_{2}=f_{1} \bar{r}_{1} f_{1}
$$

So indeed $\mathcal{S}(T)$ is generated by the three elements $f_{0}, f_{1}, \bar{r}_{1}$ of order 2 . Note that $\left(\bar{r}_{1} f_{1}\right)^{-1}=f_{1} \bar{r}_{1}=-\bar{r}_{1} f_{1}$ and $\left(\bar{r}_{1} f_{1}\right)^{2}=\left(f_{1} \bar{r}_{1}\right)^{2}=-e$. The element $-e$ commutes with every element of $\mathcal{S}(T)$.

This concludes the proof of Theorem 1.3.

6. Proof of Proposition 1.4

We divide the proof into two steps. In Step 1 we show that there exists a smooth isotopy ϕ_{s} with $\phi_{1}(T)=L$ such that $\phi_{1}^{*} \mu_{L}=\mu_{T}$. In Step 2 we modify ϕ_{s} so that $\phi_{s}(T \backslash D)$ is Lagrangian for all t.

Step 1. Let $\psi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right), s \in[0,1]$, be a smooth isotopy with $\psi_{0}=\mathrm{id}$ and $\psi_{1}(L)=T$. Then $\psi_{1}^{*} \mu_{L}-\mu_{T} \in 4 \cdot H^{1}(T, \mathbb{Z})$ by Theorem 1.2, from which it follows that $\psi_{1}^{*} \mu_{L}=\mu_{T} \circ g$ for some $g \in \mathcal{X}_{T}$. Since $\mathcal{X}_{T}=\mathcal{S}(T)$ by Proposition 5.4, there exists a smooth self-isotopy ψ_{s}^{\prime} of T with $\left(\psi_{1}^{\prime}\right)_{*}=g^{-1}$ and hence $\left(\psi_{1}^{\prime}\right)^{*}\left(\psi_{1}^{*} \mu_{L}\right)=\left(\psi_{1}^{\prime}\right)^{*}\left(\mu_{T} \circ g\right)=\mu_{T}$.

Now define

$$
\phi_{s}= \begin{cases}\psi_{2 s}^{\prime} & \text { for } 0 \leq s \leq 1 / 2 \\ \psi_{2 s-1} \circ \psi_{1}^{\prime} & \text { for } 1 / 2 \leq s \leq 1\end{cases}
$$

Then we have $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right), \phi_{0}=\mathrm{id}, \phi_{1}(T)=L$, and $\phi_{1}^{*} \mu_{L}=\left(\psi_{1} \circ \psi_{1}^{\prime}\right)^{*} \mu_{L}=$ $\left(\psi_{1}^{\prime}\right)^{*} \psi_{1}^{*} \mu_{L}=\mu_{T}$.

Let $L_{s}:=\phi_{s}(T)$ for $s \in[0,1]$. Then $L_{0}=T$ and $L_{1}=L$.
Step 2. We can improve the smooth isotopy L_{s} so that it is indeed a Lagrangian isotopy outside a disc.

Lemma 6.1. Let $L_{s}=\phi_{s}\left(L_{0}\right), s \in[0,1]$, be a smooth isotopy between a Clifford torus $T=L_{0}$ and a Lagrangian torus $L=L_{1}$ with $\phi_{s} \in \operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right), \phi_{0}=\mathrm{id}$, and $\phi_{1}^{*} \mu_{L}=\mu_{T}$. Then there exist a smooth isotopy $L_{s}^{\prime}=\phi_{s}^{\prime}\left(L_{0}^{\prime}\right)$ between $T=$ L_{0}^{\prime} and $L=L_{1}^{\prime}$ and a disc $D \subset T$ such that $L_{s}^{\prime} \backslash \phi_{s}^{\prime}(D)$ is Lagrangian for all $s \in[0,1]$.

Proof. Take two simple curves $\gamma, \gamma^{\prime} \subset T$ that generate $H_{1}(T, \mathbb{Z})$, and suppose that γ intersects with γ^{\prime} at exactly one point $p \in T$. Fix an orientation of T. We orient γ and γ^{\prime} so that the homological intersection $\gamma \cdot \gamma^{\prime}$ is 1 . Denote $\gamma_{s}:=\phi_{s}(\gamma)$ and $\gamma_{s}^{\prime}:=\phi_{s}\left(\gamma^{\prime}\right)$ with induced orientations. Also let $p_{s}:=\phi_{s}(p)$.

We start with γ_{s}. Let $2 m=\mu_{T}\left(\gamma_{0}\right)=\mu_{L}\left(\gamma_{1}\right)$. Let $\sigma_{s}^{m} \subset N_{s}^{\omega}$ denote the m-framing of the symplectic normal bundle N_{s}^{ω} of γ_{s}, so $\mu_{\gamma_{s}}\left(\sigma_{s}^{m}\right)=2 m$. Clearly we may take σ_{0}^{m} to be a nonvanishing section of the normal bundle $N_{\gamma / T}$ of $\gamma=$ $\gamma_{0} \subset T$. Likewise we may take $\sigma_{1}^{m}=\left(\phi_{1}\right)_{*}\left(\sigma_{0}^{m}\right)$ because $\phi_{1}^{*} \mu_{L}=\mu_{T}$.

Now trivialize the normal bundle N_{s} of γ_{s} as $N_{s}=S^{1} \times \mathbb{R} \times \mathbb{R}^{2}$ with coordinates $\left(t, t^{*}, x, y\right)$ so that (i) $\gamma_{s}=S^{1} \times\{0\} \times\{0\}$, (ii) $N_{s}^{\omega}=S^{1} \times\{0\} \times \mathbb{R}^{2}$, and (iii) $\sigma_{s}^{m}(t)=(t, 0, \varepsilon, 0)$ for some $\varepsilon>0$. This is exactly the same setup used in the proof of Proposition 3.5(i) except that σ_{s}^{0} is replaced by σ_{s}^{m} here. With respect to the trivialization of N_{s} the differential of ϕ_{s} along γ_{s} defines a loop with base point Id in the subgroup $A \subset \mathrm{GL}^{+}(4, \mathbb{R})$ comprising matrices of the form $\left(\begin{array}{l}1 \\ 0 \mathrm{GL}^{+}+ \\ (3, \mathbb{R})\end{array}\right)$. Note that ϕ_{0} and ϕ_{1} correspond to the constant loop. Thus the total of the family ϕ_{s} corresponds to a smooth map $\Phi: I^{2} / \partial I \cong S^{2} \rightarrow A$ with $I^{2}=$ $[0,1]_{s} \times[0,2 \pi]_{t}$ and $\Phi(s, t):=\left(\phi_{s}\right)_{*}(t)$. Since $\pi_{2}(A, \mathrm{Id}) \cong \pi_{2}(\mathrm{SO}(3, \mathbb{R}), \mathrm{Id})=$ 0 , there exists a smooth homotopy $\Xi:\left(I^{2} / \partial I^{2}\right) \times[0,1] \rightarrow A$ such that $\Xi(\cdot, 0)=$ $\Phi, \Xi(\cdot, 1)=\operatorname{Id}$, and $\Xi(p, u)=\operatorname{Id}$ for $p \in \partial I^{2}$ and for all $u \in[0,1]$.

This implies that, for each s, there is: a tubular neighborhood $U_{s} \subset \mathbb{R}^{4}$ of γ_{s}; a smooth family of maps $\phi_{s, u} \in \operatorname{Diff}_{0}^{+}\left(\mathbb{R}^{4}\right)$ with $\phi_{s, 0}=\phi_{s}, \phi_{s, u}=\phi_{s}$ on γ_{s}, and $\mathbb{R}^{4} \backslash U_{s}$; and $\phi_{i, u}=\phi_{i}$ for $i=0,1$ such that $\phi_{s, 1}(T)$ is Lagrangian along γ_{s}-in other words, $T_{\gamma_{s}} \phi_{s, 1}(T)$ is Lagrangian. By a further perturbation if necessary, we may assume that there exists a tubular neighborhood $V \subset T$ of γ_{0} such that $\phi_{s, 1}(V)$ is Lagrangian.

Now apply the same argument to γ_{s}^{\prime} and $\phi_{s, 1}$ as we did to γ_{s} and ϕ_{s}. The result is (i) an open neighborhood $Q \subset T$ of $\gamma \cup \gamma^{\prime}$ with $D:=T \backslash Q$ diffeomorphic to a 2-disc and (ii) a new isotopy $L_{s}^{\prime}=\phi_{s}^{\prime}(T)$ of $T=L_{0}$ and $L=L_{1}$ with $\phi_{s}^{\prime} \in$ $\operatorname{Diff}_{0}^{c}\left(\mathbb{R}^{4}\right), \phi_{0}^{\prime}=\mathrm{id}$, such that $Q_{s}:=\phi_{s}^{\prime}(Q) \subset L_{s}^{\prime}$ is Lagrangian for $s \in[0,1]$. We may assume that the $C_{s}:=\partial Q_{s}$ are smooth for all s. Finally, take $D=T \backslash Q$. \square

This completes the proof of Proposition 1.4.

References

[1] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888.
[2] J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris Sér. I Math. 241 (1955), 1689-1691.
[3] Y. V. Chekanov, Lagrangian tori in a symplectic vector space and global symplectomorphisms, Math. Z. 223 (1996), 547-559.
[4] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., Special Volume, part II (2000), 560-673.
[5] Y. Eliashberg and L. Polterovich, New applications of Luttinger's surgery, Comment. Math. Helv. 69 (1994), 512-522.
[6] -_, The problem of Lagrangian knots in four-manifolds, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2.1, pp. 313-327, Amer. Math. Soc., Providence, RI, 1997.
[7] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[8] S. Hu, F. Lalonde, and R. Leclercq, Homological Lagrangian monodromy, preprint, 2010, arXiv:0912.1325v3.
[9] J. E. Humphreys, Reflection groups and coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990.
[10] A. Ivrii, Lagrangian unknottedness of tori in certain symplectic 4-manifolds, Ph.D. thesis, Stanford Univ., 2003.
[11] D. McDuff and D. Salamon, Introduction to symplectic topology, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1998.
[12] K. Mohnke, How to (symplectically) thread the eye of a (Lagrangian) needle, preprint, 2003, arXiv:math.SG/0106139v4.
[13] L. Polterovich, The Maslov class of the Lagrange surfaces and Gromov's pseudoholomorphic curves, Trans. Amer. Math. Soc. 325 (1991), 242-248.
[14] I. N. Sanov, A property of a representation of a free group, Dokl. Akad. Nauk SSSR 57 (1947), 657-659.
[15] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Adv. Math. 6 (1971), 329-346.
[16] ——, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., 29, Amer. Math. Soc., Providence, RI, 1977.
[17] M.-L. Yau, Monodromy and isotopy of monotone Lagrangian tori, Math. Res. Lett. 16 (2009), 531-541.

Department of Mathematics
National Central University
Chung-Li
Taiwan
yau@math.ncu.edu.tw

[^0]: Received November 17, 2010. Revision received November 28, 2011.
 Research supported in part by National Science Council Grant no. 97-2115-M-008-009.

