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Dirac Operators with Periodic δ-Interactions:
Spectral Gaps and Inhomogeneous

Diophantine Approximation

Kazushi Yoshitomi

1. Introduction and Summary

Let κ ∈ (0, 2π), � = {0, κ} + 2πZ, m ≥ 0, and β ∈ R \ {0}. Let σ1 and σ3 stand
for the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

We are concerned with the spectrum of the Dirac operator H in (L2(R))2, which
is defined as

(Hf )(x) = −iσ1
d

dx
f(x) + mσ3f(x), x ∈ R \ �;

Dom(H ) = {(
f1
f2

) ∣∣ f1 ∈H1(R), f2 ∈H1(R \ �),
f2(x + 0) − f2(x − 0) = −iβf1(x) for x ∈�

}
.

The operator H is self-adjoint, and the spectrum of H has the band structure.
The purpose of this paper is to establish a relationship between the asymptotic
behavior of the spectral gaps of H and the number-theoretical properties of pa-
rameters involved in H.

In order to formulate our main result, we describe basic spectral properties of
the operator H. Toward this end, we first introduce the discriminant of H, which
plays the most fundamental role in the analysis of the spectrum of H (cf. [8; 11;
14; 16, Sec. XIII]). For a parameter λ ∈ R , let M(λ, x) ∈ M2(C) stand for the
solution to the equations{ (−iσ1

d
dx

+ mσ3
)
Y(x) = λY(x), x ∈ R \ �,

Y(x + 0) = ( 1 0
−iβ 1

)
Y(x − 0), x ∈�,

subject to the initial condition

Y(+0) = I,

where I is the 2 × 2 identity matrix. We call M(λ, x) the monodromy matrix of
H. The discriminant of H is defined as
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d(λ) = TrM(λ, 2π + 0).

We have λ ∈ σ(H ) if and only if |d(λ)| ≤ 2. The basic spectral properties of H
are summarized as follows, which we demonstrate in Section 2.

Proposition 1.1. (i) There exists a unique pair of real sequences {λ+
j }∞j=−∞ and

{λ−
j }∞j=−∞ such that :

(a) {λ+
j }∞j=−∞ gives all the zeros of d(·) − 2 repeated according to multiplicity,

while {λ−
j }∞j=−∞ gives all the zeros of d(·) + 2 repeated according to multi-

plicity;
(b) λ−

2j ≤ λ−
2j+1 < λ+

2j+1 ≤ λ+
2j+2 < λ−

2j+2 for all j ∈ Z; and

(c)
−m = λ+

−1 < λ+
0 if β > −2πm,

−m = λ+
−1 = λ+

0 if β = −2πm,
λ+

−1 < λ+
0 = −m if β < −2πm.

(ii) The spectrum of H is expressed as

σ(H ) =
∞⋃

j=−∞
Bj ,

where

Bj =
{

[λ+
j , λ−

j ] for j even,

[λ−
j , λ+

j ] for j odd.

We call the closed interval Bj the j th band of σ(H ). Let Gj be the open interval
between Bj and Bj+1:

Gj =
{

(λ−
j , λ−

j+1) for j even,

(λ+
j , λ+

j+1) for j odd.
(1.1)

We call Gj the j th gap of σ(H ). We denote by |Gj | the length of Gj .

We also introduce some notation. Let
τ = 2π − κ,

κ0 = τ

κ
,

θ = 1 − κ0

π
tan−1

(
2

β

)
,

X = 2(τ − κ)mβ

π2(β2 + 4)
,

W = 2π2|β|√4 + β2

4π2 + β2κτ
,

where tan−1(·) stands for the inverse function of
(−π

2 , π
2

) � y �→ tan y ∈ R.

Henceforth, we assume that κ0 is irrational. Throughout this paper we employ the
following convention for the sake of brevity. A sentence that contains either ±
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or ∓ is meant to express two sentences, one for the upper signs and the other for
the lower signs. For example, a ± b < ∓c means two inequalities a + b < −c

and a − b < c. For a real number x, let ‖x‖ stand for the difference, taken posi-
tively, between x and the nearest integer; that is, ‖x‖ = min{|x − n| | n∈ Z}. For
α ∈ R \ Q and γ ∈ R , we define

M±(α, γ ) = lim inf
q→∞ q‖±qα + γ ‖ and

M(α, γ ) = min{M+(α, γ ),M−(α, γ )},
where q runs through N. These are called approximation constants in the theory
of Diophantine approximation. We also define

A±(α, γ ) = {q(qα + γ + p) | ±q ∈ N, p ∈ Z}.
By A′±(α, γ ) we designate the set of the accumulation points of A±(α, γ ). Let
A′(α, γ ) = A′+(α, γ ) ∪ A′−(α, γ ). The sets A′±(α, γ ) and A′(α, γ ) are closely re-
lated with the approximation constants; we have

min{|x| | x ∈A′
±(α, γ )} = M±(α, γ ), (1.2)

min{|x| | x ∈A′(α, γ )} = M(α, γ ). (1.3)

Our main result is the following theorem, which we prove in Section 3.

Theorem 1.2.{
lim
k→∞ fk

∣∣ {fk}∞k=1 is a convergent subsequence of {j |G±j |}∞j=1

}
= {W |y + X| | y ∈A′

±(κ0, θ)}. (1.4±)

We also obtain the following result, which gives the aforementioned relationship
more instantly.

Corollary 1.3. If m = 0, then

lim inf
j→∞ j |G±j | = WM±(κ0, θ).

We note thatM±(α, γ ) andM(α, γ ) are called inhomogeneous approximation con-
stants when γ is not of the form γ = qα + p for integers q,p. We also note that
if γ = qα + p for some integers q,p, then the approximation constants reduce
to the homogeneous one: M+(α, γ ) = M−(α, γ ) = M(α, 0). Because (1.2) and
(1.3) as well as Corollary 1.3 generally involve the inhomogeneous approximation
constants, it is useful to recall here their basic properties.

Remark 1.4. (a) The most fundamental result in the theory of inhomogeneous
Diophantine approximation is the Minkowski theorem, which states that if α ∈
R \ Q and if γ ∈ R is not of the shape γ = qα + p for integers q,p, then
M(α, γ ) ≤ 1

4 .

(b) Grace [9] has proved that the Minkowski theorem is optimal in the follow-
ing sense: there exist an irrational α0 and a γ0 not of the form qα0 +p for integers
q,p such that M(α0, γ0) = 1

4 .
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(c) Cassels [4] has shown that if α ∈ R\Q and if γ ∈ R is not of the form qα+p

for integers q,p, then M+(α, γ ) ≤ 4
11 except when α and γ have the forms

α = Aω + B

Cω + D
, (AD − BC)γ = −3ω − 7 + 14E + 14Fω

14|Cω + D| ,

where A, B, C, D, E, and F are integers with AD − BC ∈ {1, −1} and ω =√
7. Moreover, Cassels proved that, in this exceptional case, M+(α, γ ) = 27

28
√

7(
> 4

11 > 1
4

)
.

For further results in the inhomogeneous approximation theory, we refer to [5,
Chap. III; 7; 12; 17, Chap. IV, Sec. 9; 19] and the references therein. For the basic
results in the homogeneous approximation theory, we consult [5; 13; 17].

Turning our attention to the Diophantine matters involved in Theorem 1.2, we
establish the following two theorems.

Theorem 1.5. Let {ai}∞i=1 be a sequence of positive even integers that satisfies
ai → ∞ as i → ∞. Put

α = 1

a1+
1

a2+
1

a3+ · · ·

and γ = 1
2 (α − 1). Then

A′
±(α, γ ) =

{
2j − 1

4

∣∣∣ j ∈ Z
}
.

Theorem 1.6. Suppose that α is a real quadratic irrationality—that is, sup-
pose there exist integers a, b, and c such that aα2 + bα + c = 0, a �= 0, d :=
b2 − 4ac > 0, and d is not a square. Let p, q, and r be integers such that p ≥ 1.
Put γ = qα+r

p
and

F = {k ∈ Z \ {0} | there exists (x, y)∈ Z2 such that ax 2 + bxy + cy2 = k,

x ≡ −r (modp), and y ≡ q (modp)}.
Then

A′(α, γ ) =
{
± k

p2
√
d

∣∣∣ k ∈F

}
for α = −b ∓ √

d

2a
.

We note that the pair α, γ in Theorem 1.5 has been utilized in the proof of the opti-
mality of the Minkowski theorem; see [5, Chap. III, Thm. IIB] and [17, Chap. IV,
Sec. 9, Thm. 2]. Theorem 1.6 gives a representation of A′(α, γ ) in the case where
both α and γ belong to a quadratic number field, which is useful for the compu-
tation of A′(α, γ ) (see Example 5.3). We prove Theorems 1.5 and 1.6 in Sections
4 and 5, respectively.

One of the motivations for our work here stems from [21], where we discussed
the Schrödinger operator formally expressed as

L = − d 2

dx 2
+

∞∑
l=−∞

(β1δ
′(x − κ − 2πl) + β2δ

′(x − 2πl)) in L2(R)
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and obtained a connection between the asymptotic nature of its spectrum and the
theory of homogeneous Diophantine approximation. We emphasize that the spec-
trum of the Dirac operator H has a richer structure than that of the Schrödinger
operator L, in the sense that Theorem 1.2 relates the asymptotic behavior of the
spectrum of H to either the inhomogeneous or homogeneous approximation the-
ory according as the shape of θ.

We also stress that the proof of the main result in this paper is entirely different
from that in [21]. The proof in [21] relies heavily on the fact that the discrimi-
nant of L, denoted by D(λ), has a simple leading term β1β2λ sin κ

√
λ sin τ

√
λ,

which enabled us to approximate the zeros of D(λ) − 2 and D(λ) + 2 by those
of sin κ

√
λ sin τ

√
λ. In the case of the Dirac operator H, however, the situation

is considerably complicated because the discriminant of the operator H does not
admit such a simple approximation, since all the terms in d(λ) have an equal mag-
nitude; see (2.1). We eliminate this difficulty by using a new geometric argument.
In order to introduce it, we sketch the proof of Theorem 1.2. Developing the old
ideas of Meissner [15] and Hochstadt [10], we obtain a geometric characterization
of the gaps in Lemma 3.6. Utilizing this characterization, we reduce the problem
to the analysis of a geometric relation between a straight line L and a quasi-lattice
{Vq,p}; see Lemmas 3.8 and 3.10. Combining these results with the precise asymp-
totic expansion of the pointsVq,p (see Lemmas 3.3 and 3.4), we complete the proof.

The relativistic δ-interaction was first introduced by Gesztesy and Šeba [8].
Among other things they studied the Dirac operator in (L2(R))2 of the form

(Df )(x) = −icσ1
d

dx
f(x) + c2

2
σ3f(x), x ∈ R \ aZ,

Dom(D) = {(
f1
f2

) ∣∣ f1 ∈H1(R), f2 ∈H1(R \ aZ),

f2(x + 0) − f2(x − 0) = −(iβ/c)f1(x) for x ∈ aZ
}
,

where a, c > 0 and β ∈ R \ {0}, and proved that the length of the j th gap of σ(D)

admits the asymptotic expansion of the form

2c

a
tan−1 |β|

2c
+ O(j−1) as j → ±∞. (1.5)

Our work here is motivated by [8] as well as [21]. In contrast to (1.5), our results
involve number-theoretical objects. We note that there are many works concern-
ing relativistic point interactions; see [1; 2; 3; 8; 11; 18] and the references therein.

Acknowledgment. The author thanks the referee for valuable suggestions that
improved the manuscript.

2. Proof of Proposition 1.1

Let
f±(λ) = √

λ ± m.

By a direct calculation, we get
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d(λ) = 2 cos τf+(λ)f−(λ) cos κf+(λ)f−(λ)

+ 2β
f+(λ)
f−(λ)

sin τf+(λ)f−(λ) cos κf+(λ)f−(λ)

+ 2β
f+(λ)
f−(λ)

cos τf+(λ)f−(λ) sin κf+(λ)f−(λ)

−
(

2 − β2

(
f+(λ)
f−(λ)

)2)
sin τf+(λ)f−(λ) sin κf+(λ)f−(λ). (2.1)

We have d(−m) = 2 and d ′(−m) = 4π(2πm+ β). Furthermore, we infer that if
d ′(−m) = 0 then

d ′′(−m) = −4π2 + 4m2π2

3
(3κτ − 4π2) ≤ −4π2 − 4m2π4

3
< 0.

Using these relations and the standard argument employed in the proof of [16,
Thm. XIII.89(e)] (see also [8; 11; 20]), we have the implication.

3. Proof of Theorem 1.2

First, we reduce the function d(λ)−2. We define x(λ) = f+(λ)f−(λ) and r(λ) =
f+(λ)/f−(λ). By a straightforward computation we obtain

d(λ) − 2 = −4 cos2 τ

2
x(λ) cos2 κ

2
x(λ)

(
tan

τ

2
x(λ) + tan

κ

2
x(λ) − βr(λ)

)
×
(

tan
τ

2
x(λ) + tan

κ

2
x(λ) + βr(λ) tan

τ

2
x(λ) tan

κ

2
x(λ)

)
, (3.1)

provided that cos τ
2x(λ) cos κ

2x(λ) �= 0. Let µ stand for the inverse function of
[m, ∞)� λ �→ κ

2x(λ)∈ [0, ∞); that is,

µ(y) =
√(

2
κ
y
)2 + m2, y ∈ [0, ∞).

Let d̃(y) = d(µ(y)) and h(y) = r(µ(y)). It then follows that

d̃(y) − 2 = −4 cos2 κ0y cos2 y(tan κ0y + tan y − βh(y))

× ((1 + βh(y) tan y) tan κ0y + tan y) (3.2)

if cos κ0y cos y �= 0. We define

Z1 = {−π
2 + nπ

∣∣ n∈ N
}
,

Z2 = {y ∈ [0, ∞) \ Z1 | 1 + βh(y) tan y = 0};
F1(y) =

{
tan−1(tan y − βh(y)), y ∈ [0, ∞) \ Z1,
π
2 , y ∈Z1,

(3.3)

F2(y) =




tan−1 tan y
1+βh(y) tan y , y ∈ [0, ∞) \ (Z1 ∪ Z2),

tan−1 1
βh(y)

, y ∈Z1,
π
2 , y ∈Z2.

(3.4)

We obtain the following result.
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Lemma 3.1. We have d̃(y) − 2 = 0 if and only if either −κ0y ≡ F1(y) (modπ)
or −κ0y ≡ F2(y) (modπ).

Proof. In the case where cos κ0y cos y �= 0, we have the claim by (3.1). Using the
continuity of d̃ and (3.1), we obtain

d̃(y) − 2 =
{ −4 cos κ0y(βh(y) sin κ0y + cos κ0y) if cos y = 0,

−4 cos y(cos y + βh(y) sin y) if cos κ0y = 0.

This combined with βh(y) �= 0 yields the claim for cos κ0y cos y = 0.

Next, we reduce the function d(λ) + 2. We have

d̃(y) + 2 = 4 sin2 κ0y cos2 y(cot κ0y − tan y + βh(y))

× ((1 + βh(y) tan y) cot κ0y − tan y)

provided that sin κ0y cos y �= 0. Combining this with cot s = −tan
(
s + π

2

)
, we

obtain the following implication.

Lemma 3.2. We have d̃(y) + 2 = 0 if and only if either −κ0y ≡ F1(y) + π
2

(modπ) or −κ0y ≡ F2(y) + π
2 (modπ).

The next step is to analyze the intersection points of the curves x = F1(y) and
x = F2(y) in the yx-plane. Toward this end, we investigate the roots of F1(y) =
F2(y), or

tan y = 1
2

(
βh(y) ± √

β2h(y)2 + 4
)
. (3.5±)

We define

ξ± = tan−1

(
β ± √

β2 + 4

2

)
.

Lemma 3.3. There exists an n0 ∈ N such that, for any integer n ≥ n0, equa-
tion (3.5±) has a unique root ξ±

n on the interval
(−π

2 + nπ, π
2 + nπ

)
. Moreover,

we have

ξ±
n = ξ± + nπ + κmβ

2π(β2 + 4)
· 1

n
+ o

(
1

n

)
as n → ∞. (3.6±)

Proof. Let K±(y) stand for the right-hand side of (3.5±). Put L±(y) = tan y −
K±(y). A straightforward calculation gives

h(y) = 1 + mκ

2
· 1

y
+ O

(
1

y2

)
, (3.7)

h′(y) = O
(

1

y2

)
(3.8)

as y → ∞, so that

K ′
±(y) = 1

2
βh′(y) ± β2h(y)h′(y)

2
√
β2h(y)2 + 4

= O
(

1

y2

)
as y → ∞.
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Combining this with L′±(y) = 1 + tan2 y − K ′±(y), we infer that there exists an
n0 ∈ N such that L′±(y) ≥ 1

2 on
(−π

2 + nπ, π
2 + nπ

)
for any integer n ≥ n0. For

each integer n, we have L±(y) → −∞ as y ↓ −π
2 + nπ while L±(y) → ∞ as

y ↑ −π
2 + nπ. So, we get the first assertion.

Next, we prove (3.6+). By (3.5+) we have

tan ξ+
n − tan ξ+

= 1

2

{
β(h(ξ+

n ) − 1) +
√
β2 + 4

(√
1 + β2

β2 + 4
(h(ξ+

n )2 − 1) − 1

)}
. (3.9)

Combining this with the first assertion, (3.7), and
√

1 + x = 1 + O(x) as x → 0,
we deduce that tan ξ+

n − tan ξ+ = O(
1
n

)
as n → ∞; from this it follows that

|ξ+
n − (ξ+ + nπ)| ≤ |tan ξ+

n − tan(ξ+ + nπ)| = O
(

1

n

)
. (3.10)

We define C = κmβ/{2π(β2 + 4)} and fn = ξ+
n − (

ξ+ + nπ + C
n

)
. We infer by

(3.10) that fn = O(
1
n

)
, whereupon

LHS of (3.9) = tan

(
ξ+ + C

n
+ fn

)
− tan ξ+

= (1 + tan2 ξ+)
(
C

n
+ fn

)
+ o

(
1

n

)
. (3.11)

Using the first claim, (3.7), and
√

1 + x − 1 = 1
2x + o(x) as x → 0, we have

RHS of (3.9) = 1

2
β · mκ

2ξ+
n

+ β2

2
√
β2 + 4

· mκ

2ξ+
n

+ o

(
1

n

)

=
(
β + β2√

β2 + 4

)
κm

4π
· 1

n
+ o

(
1

n

)
. (3.12)

By (3.11) and (3.12) we obtain

fn =
(

1

1 + tan2 ξ+

(
β + β2√

β2 + 4

)
κm

4π
− C

)
1

n
+ o

(
1

n

)
. (3.13)

Substituting tan ξ+ = (
β +√

β2 + 4
)
/2 and C = κmβ/{2π(β2 + 4)} for (3.13),

we have fn = o
(

1
n

)
, from which (3.6+) follows. In a similar fashion, we get

(3.6−).

In the next lemma, we analyze the x-coodinates of the intersection points.

Lemma 3.4.

F1(ξ
±
n ) = −ξ∓ − κmβ

2π(β2 + 4)
· 1

n
+ o

(
1

n

)
as n → ∞. (3.14±)
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Proof. First, we prove (3.14+). By (3.7) and Lemma 3.3 we have

tan ξ+
n − βh(ξ+

n )

= tan ξ+ + (1 + tan2 ξ+)(ξ+
n − nπ − ξ+) − β − κmβ

2π
· 1

n
+ o

(
1

n

)

= tan ξ+ − β − κmβ

2π

(
−1 + tan2 ξ+

β2 + 4
+ 1

)
1

n
+ o

(
1

n

)

= tan ξ+ − β + κmβ tan ξ−

2π
√
β2 + 4

· 1

n
+ o

(
1

n

)
.

Hence, we obtain

F1(ξ
+
n ) = tan−1(tan ξ+ − β) + 1

1 + (tan ξ+ − β)2
· κmβ tan ξ−

2π
√
β2 + 4

· 1

n
+ o

(
1

n

)
,

from which (3.14+) follows. Likewise, we get (3.14−).

Next, we investigate the asymptotic behavior of (F1)
′(y) and (F2)

′(y) as y → ∞.

We introduce a parameter c > 0 and put J ±(c, n) = [
ξ±
n − c

n
, ξ±

n + c
n

]
.

Lemma 3.5.

(F1)
′(y) = 1 + tan2 y

1 + (tan y − β)2
+ O

(
1

y

)
as y → ∞, (3.15)

(F2)
′(y) = 1 + tan2 y

(1 + β tan y)2 + tan2 y
+ O

(
1

y

)
as y → ∞, (3.16)

max
y∈J±(c,n)

∣∣∣∣(F1)
′(y) − 2 + β2 ± β

√
β2 + 4

2

∣∣∣∣ = O
(

1

n

)
as n → ∞, (3.17)

max
y∈J±(c,n)

∣∣∣∣(F2)
′(y) − 2

2 + β2 ± β
√
β2 + 4

∣∣∣∣ = O
(

1

n

)
as n → ∞. (3.18)

Proof. We have

(F2)
′(y) = 1 + tan2 y − βh′(y) tan2 y

(1 + βh(y) tan y)2 + tan2 y
.

Combining this with (3.7) and (3.8), we get (3.16). Similarly, we obtain (3.15). It
follows by (3.16) and Lemma 3.3 that

max
y∈J±(c,n)

∣∣∣∣(F2)
′(y) − 1 + tan2 ξ±

(1 + β tan ξ±)2 + tan2 ξ±

∣∣∣∣ = O
(

1

n

)
. (3.19)

Substituting tan ξ± = (
β ±√

β2 + 4
)
/2 for (3.19), we arrive at (3.18). Likewise,

we obtain (3.17).

Next, we give a geometric characterization of the gaps. We introduce some func-
tions needed for that purpose. For integers n ≥ n0, we put
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ξ2n−1 = ξ−
n and ξ2n = ξ+

n .

For integers p, q with q ≥ 2n0 − 1, we define F̃1,q,p : [ξq , ξq+1] → R as follows.
When q is odd, we put

F̃1,q,p(y) = F1(y) + π
2p, y ∈ [ξq , ξq+1].

We set

F̃1,q,p(y) =
{
F1(y) + π

2 (p − 1), y ∈ [
ξq , q

2π + π
2

]
,

F1(y) + π
2 (p + 1), y ∈ ( q

2π + π
2 , ξq+1

]
when q is even. Since

tan y − βh(y) → ∓∞ as y → q

2π + π
2 ± 0 for q even,

the function F̃1,q,p is continuous on [ξq , ξq+1]. Arguing as in the proof of Lemma
3.3, we see that there exists an integer n1 ≥ n0 such that, for any integer n ≥ n1,
the equation 1+ βh(y) tan y = 0 admits a unique root yn in

(−π
2 + nπ, π

2 + nπ
)
.

Furthermore, we obtain

yn = nπ + tan−1

(
− 1

β

)
+ o(1) as n → ∞.

This together with Lemma 3.3 yields that there exists an integer n2 ≥ n1 such that
yn < ξ−

n if β > 0 and n ≥ n2 while ξ+
n < yn if β < 0 and n ≥ n2. We define

y∗
2n−2 = yn if β > 0 and n ≥ n2, with y∗

2n = yn if β < 0 and n ≥ n2. For inte-
gers p, q with q ≥ 2n2, we define F̃2,q,p : [ξq , ξq+1] → R as follows. If q is odd,
we put

F̃2,q,p(y) = F2(y) + π
2p, y ∈ [ξq , ξq+1].

If q is even, we define

F̃2,q,p(y) =
{
F2(y) + π

2 (p − 1), y ∈ [ξq , y∗
q ],

F2(y) + π
2 (p + 1), y ∈ (y∗

q , ξq+1].
Because

tan y

1 + βh(y) tan y
→ ∓∞ as y → y∗

q ± 0 for q even,

the function F̃2,q,p is continuous on [ξq , ξq+1].
We also introduce some geometric objects. For j = 1, 2, we denote byCj,q,p the

curve x = F̃j,q,p(y), y ∈ [ξq , ξq+1]. We infer by the first assertion of Lemma 3.3
that

F̃1,q,p(y) = F̃2,q,p(y) if and only if y ∈ {ξq , ξq+1}. (3.20)

It follows from Lemma 3.5 that there exist C > 0 and n3 ∈ N with n3 ≥ 2n2

such that

(F̃j,q,p)
′(y) ≥ C on [ξq , ξq+1] for any q ≥ n3, p ∈ Z, and j = 1, 2.

Let Vq,p stand for the point (ξq , F̃1,q,p(ξq)). By Bq,p we designate the region
bounded by the parallelogram with verticesVq,p,Vq+1,p,Vq+1,p+1, and Vq,p+1. We
note that
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Vq+1,p+1 = F̃1,q,p(ξq+1).

For P,Q∈ R2, we denote by PQ the line segment whose endpoints are P and Q;
that is, PQ = {tQ + (1 − t)P | t ∈ [0,1]}. We also note that the slope of the seg-
mentVq,pVq+1,p, which we denote by sq , is independent of p. By Lemmas 3.3 and
3.4 and since ξ+ − ξ− = π

2 , we have sq → 0 as q → ∞. Hence there exists an
integer N ≥ n3 such that |sq| < min{κ0,C} for any integer q ≥ N. Accordingly,
we have

(y, F̃j,q,p(y))∈Bq,p on (ξq , ξq+1)

for integers q,p with q ≥ N and for j = 1, 2. Let

B̃q,p = Bq,p \ (Vq,p+1Vq+1,p+1 ∪Vq+1,pVq+1,p+1).

ByLwe designate the line x = −κ0y. Let η stand for the projection R2 � (y, x) �→
y ∈ R. The geometric characterization is stated as follows.

Lemma 3.6. Assume that B̃q,p ∩ L �= ∅ and q ≥ N. Then the following claims
hold.

(i) For j = 1, 2, the curve Cj,q,p and the line L admit a unique intersection point
Wj,q,p.

(ii) By Iq,p we designate the closed interval whose endpoints are η(W1,q,p) and
η(W2,q,p). We have η(W1,q,p) = η(W2,q,p) if and only if Vq,p ∈L. If Vq,p /∈
L, then |d̃(y)| ≥ 2 on Iq,p while |d̃(y)| < 2 on η(B̃q,p ∩ L) \ Iq,p.

Proof. (i) Since B̃q,p ∩ L �= ∅ and |sq| < κ0, we have F̃j,q,p(ξq) ≤ −κ0ξq and
F̃j,q,p(ξq+1) > −κ0ξq+1, so that the curve Cj,q,p and the line L possess an inter-
section point. Since x = F̃j,q,p(y) is strictly increasing and since x = −κ0y is
strictly decreasing, such an intersection point is unique.

(ii) The first assertion follows from (3.20). Let us prove the second one. We
observe that F̃j,q,p(y) ≡ Fj(y) (modπ) on [ξq , ξq+1] if q − p is odd, while
F̃j,q,p(y) ≡ Fj(y) + π

2 (modπ) on [ξq , ξq+1] if q − p is even. First, we consider
the case where q − p is odd. Combining our observation with Lemma 3.1, we get
d̃(η(W1,q,p)) = d̃(η(W2,q,p)) = 2. Furthermore, we infer by Lemma 3.2 that the
function d̃(y)+ 2 admits no zero in η(B̃q,p ∩L). These statements together with
Proposition 1.1 imply the second claim. Similarly, we get the second assertion in
the case where q − p is even.

LetM be the greatest integer for whichL∩B̃N,M �= ∅. IfGj �= ∅, we put G̃j = Gj ;
otherwise we set G̃j = Bj ∩Bj+1. We see by Lemma 3.6 that there exists a unique
integer K for which µ(IN,M) = G̃K. Let us prove the following implication.

Lemma 3.7. Suppose that B̃q,p ∩ L �= ∅ and q ≥ N. Then

µ(Iq,p) = G̃K+(q−N)−(p−M).

Proof. We put ? = {(i, j)∈ Z2 | N ≤ i ≤ q, p ≤ j ≤ M} and

L̃ = L ∩
⋃

(i,j)∈?
B̃i,j . (3.21)
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We observe the interval L̃ in two ways. Let ?′ = {(i, j)∈? | B̃i,j ∩L �= ∅}. The
intervals B̃i,j ∩L, (i, j)∈?′, form a subdivision of the interval L̃. This combined
with Lemma 3.6 yields

µ(Iq,p) = G̃K+#?′−1, (3.22)

where #?′ stands for the number of the elements of ?′. On the other hand, we see
from (3.21) that such a subdivision is also obtained by dividing L̃ by the segments
Vi,pVi,M+1 (N + 1 ≤ i ≤ q) and the broken lines

q⋃
s=N

Vs,jVs+1,j (p + 1 ≤ j ≤ M).

Thus, we get
#?′ = q − N − p + M + 1.

Combining this with (3.22), we get the assertion.

We define

a =




2 + β2 + β
√
β2 + 4

2
if β > 0,

2 + β2 − β
√
β2 + 4

2
if β < 0.

We note that a > 1. We introduce a parameter α > 0. The following lemma plays
the most important role in proving Theorem 1.2.

Lemma 3.8. (i) There exist Ñ ∈ N and Cα > 0 such that if q ≥ Ñ, B̃q,p ∩ L �=
∅, and dist(Vq,p,L) ≤ α/q, then(

a2 − 1

(a + κ0)(1 + aκ0)
− Cα

q

)
|κ0ξq + F̃1,q,p(ξq)|

≤ |η(W1,q,p) − η(W2,q,p)|

≤
(

a2 − 1

(a + κ0)(1 + aκ0)
+ Cα

q

)
|κ0ξq + F̃1,q,p(ξq)|.

(ii) There exist N̂ ∈ N and Cα > 0 such that if q ≥ N̂, B̃q,p ∩ L �= ∅, and
dist(Vq+1,p+1,L) ≤ α/q, then(

a2 − 1

(a + κ0)(1 + aκ0)
− Cα

q

)
|κ0ξq+1 + F̃1,q,p(ξq+1)|

≤ |η(W1,q,p) − η(W2,q,p)|

≤
(

a2 − 1

(a + κ0)(1 + aκ0)
+ Cα

q

)
|κ0ξq+1 + F̃1,q,p(ξq+1)|.

In the proof of this lemma, we use the following elementary assertion.

Proposition 3.9. Let c > 1 and d ∈ R. We designate the lines x = cy, x =
1
c
y, and x = −κ0y + d in the yx-plane by l1, l2, and n, respectively. Let D be

the distance between the line n and the origin. For j = 1, 2, we denote by pj the
y-coordinate of the intersection point of lj and n. It then holds that
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|p1 − p2| = D(c2 − 1)
√

1 + κ 2
0

(c + κ0)(1 + cκ0)
.

Proof of Lemma 3.8. First, we prove (i) in the case where β > 0. We put

Jq =
[
ξq , ξq +

√
1 + κ 2

0

κ0
· α
q

]
.

For i = 1, 2, we define

a+
i,q = max{(Fi)

′(y) | y ∈ Jq},
a−
i,q = min{(Fi)

′(y) | y ∈ Jq}.
We also define j = j(q) = 1 and k = k(q) = 2 for q even, while j = j(q) = 2
and k = k(q) = 1 for q odd. It follows by Lemma 3.5 that there exists an integer
Ñ ≥ N such that if q ≥ Ñ, then a−

k,q ≤ a+
k,q < 1 < a−

j,q ≤ a+
j,q . We define bq =

max{a+
j,q ,1/a−

k,q} and cq = min{a−
j,q ,1/a+

k,q}. For q ≥ Ñ and y ∈ Jq , we have

F̃1,q,p(ξq) + cq(y − ξq) ≤ F̃j,q,p(y) ≤ F̃1,q,p(ξq) + bq(y − ξq),

F̃1,q,p(ξq) + 1

bq
(y − ξq) ≤ F̃k,q,p(y) ≤ F̃1,q,p(ξq) + 1

cq
(y − ξq).

Combining these inequalities with Proposition 3.9, we get

(c2
q − 1)

√
1 + κ 2

0

(cq + κ0)(1 + cq κ0)
dist(Vq,p,L) ≤ |η(W1,q,p) − η(W2,q,p)|

≤ (b2
q − 1)

√
1 + κ 2

0

(bq + κ0)(1 + bq κ0)
dist(Vq,p,L) (3.23)

provided q ≥ Ñ, Bq,p ∩ L �= ∅, and dist(Vq,p,L) ≤ α/q. On the other hand,
we infer by Lemma 3.5 that bn = a + O(

1
n

)
and cn = a + O(

1
n

)
as n → ∞.

Combining these with (3.23), we get (i) in the case where β > 0. In a simi-
lar fashion, we obtain (i) in the case where β < 0. An analogous argument also
gives (ii).

We pick a µ for which 1 < µ < a. Let us prove the following claim.

Lemma 3.10. There exist J > 0, K > 0, and N ′ ∈ N such that the following
statements hold.

(i) If q ≥ N ′, B̃q,p ∩ L �= ∅, and dist({Vq,p,Vq+1,p+1},L) ≤ J, then

|η(W1,q,p) − η(W2,q,p)|

≥ (µ2 − 1)
√

1 + κ 2
0

(µ + κ0)(1 + µκ0)
dist({Vq,p,Vq+1,p+1},L). (3.24)

(ii) If q ≥ N ′, B̃q,p ∩ L �= ∅, and dist({Vq,p,Vq+1,p+1},L) ≥ J, then

|η(W1,q,p) − η(W2,q,p)| ≥ K. (3.25)
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Proof. First, we consider the case where β > 0. It follows by Lemma 3.5 that
there exist an η > 0 and an n4 ∈ N such that, for any integer q ≥ n4 and for any
integer p,

min{(F̃j,q,p)′(y) | y ∈ [ξq , ξq + 2η]} ≥ µ,

max{(F̃k,q,p)
′(y) | y ∈ [ξq , ξq + 2η]} ≤ 1

µ
,

min{(F̃k,q,p)
′(y) | y ∈ [ξq+1 − 2η, ξq+1]} ≥ µ,

max{(F̃j,q,p)′(y) | y ∈ [ξq+1 − 2η, ξq+1]} ≤ 1

µ
,

where j = j(q) = 1 and k = k(q) = 2 for q even, while j = j(q) = 2 and
k = k(q) = 1 for q odd. We designate the lines x = µy, x = 1

µ
y, and x =

−κ0y + κ0η + η

µ
by l1, l2, and l3, respectively. For i = 1, 2, let si be the y-

coordinate of the intersection point of li and l3. We note that s2 = η. Let J stand
for the distance between l3 and the origin. A discussion similar to that in the proof
of Lemma 3.8 then gives (3.24), provided B̃q,p ∩L �= ∅, dist({Vq,p,Vq+1,p+1},L) ≤
J, and q is sufficiently large.

We note that there exists a unique continuous function H1(y) on
[
ξ+, ξ+ + π

2

]
such that H1(ξ

+) = −ξ− and tanH1(y) = tan y − β for y ∈ [
ξ+, ξ+ + π

2

] ∖ {
π
2

}
.

We also note that there exists a unique continuous function H2(y) on
[
ξ+, ξ+ + π

2

]
such that H2(ξ

+) = −ξ− and

tanH2(y) = tan y

1 + β tan y
for y ∈ [

ξ+, ξ+ + π
2

] ∖ {
π
2 , tan−1

(− 1
β

) + π
}
.

We have

p := min
{
H1(y) − H2(y)

∣∣ y ∈ [
ξ+ + s1

2 , ξ+ + π
2 − s1

2

]}
> 0.

We define H ∗
1 (y) = H1(y) − p

4 and H ∗
2 (y) = H2(y) + p

4 for y ∈ [
ξ+ + s1

2 ,
ξ+ + π

2 − s1
2

]
. Let

I = [
κ0
(
ξ+ + s1

2

) + H ∗
1

(
ξ+ + s1

2

)
, κ0

(
ξ+ + π

2 − s1
2

) + H ∗
2

(
ξ+ + π

2 − s1
2

)]
.

For t ∈ I, we designate the line x = −κ0y + t by l(t). For i = 1, 2, we denote by
Si(t) the y-coordinate of the intersection point of the line l(t) and the curve x =
H ∗

i (y). We define K = min{S2(t) − S1(t) | t ∈ I }. We have K > 0. Integrating
both sides of (3.15) and those of (3.16) on [ξq , t] for t ∈ [ξq + s1, ξq+1 − s1], we
infer that there exists an n5 ∈ N such that, for any even integer q ≥ n5,

F̃1,q,p(y) ≥ H ∗
1

(
y − q

2
π

)
+ π(p − 1)

2
on [ξq + s1, ξq+1 − s1],

F̃2,q,p(y) ≤ H ∗
2

(
y − q

2
π

)
+ π(p − 1)

2
on [ξq + s1, ξq+1 − s1].

Therefore, we have (3.25) provided that B̃q,p ∩L �= ∅, dist({Vq,p,Vq+1,p+1},L) ≥
J, and q is sufficiently large and even. Likewise, we obtain (3.25) if B̃q,p ∩L �= ∅,
dist({Vq,p,Vq+1,p+1},L) ≥ J, and q is sufficiently large and odd. Thus we obtain
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the assertion of the lemma in the case where β > 0. In a similar fashion, we ob-
tain the claim in the case where β < 0.

We are now in a position to complete the proof of Theorem 1.2. We put

A =
{

lim
k→∞ fk

∣∣ {fk}∞k=1 is a convergent subsequence of {j |Gj |}∞j=1

}
,

θ̂ = 2

π
(κ0 − 1)ξ+.

Let us first prove the inclusion

{W |y + X| | y ∈A′
+(κ0, θ̂ )} ⊂ A. (3.26)

We pick a y ∈A′+(κ0, θ̂ ) arbitrarily. Then there exists a sequence {(q(n),p(n))}∞n=1
in N × Z such that q(n) → ∞ and q(n)(κ0q(n) + θ̂ + p(n)) → y as n → ∞.

This combined with Lemmas 3.3 and 3.4 and ξ+ − ξ− = π
2 yields

lim
n→∞ q(n)(κ0ξq(n) + F̃1,q(n),p(n)(ξq(n))) = π

2
(y + X). (3.27)

We pick an α > 0 for which
∣∣π

2 (y + X)
∣∣ < α

√
1 + κ 2

0 . It follows by (3.27)
that dist(Vq(n),p(n),L) ≤ α/q(n) for sufficiently large n. Moreover, we get
B̃q(n),p(n) ∩ L �= ∅ in the case where κ0ξq(n) + F̃1,q(n),p(n)(ξq(n)) ≤ 0; other-
wise we get B̃q(n)−1,p(n)−1 ∩ L �= ∅. Using (3.27) and Lemmas 3.7 and 3.8, we
obtain

lim
n→∞ q(n)|µ−1(GK+(q(n)−N)−(p(n)−M))| = a2 − 1

(a + κ0)(1 + aκ0)
· π

2
|y + X|,

so that

lim
n→∞(K + (q(n) − N) − (p(n) − M))|GK+(q(n)−N)−(p(n)−M)| = W |y + X|.

Thus, we get the inclusion (3.26).
Next, we prove the reverse inclusion of (3.26). Let {j(k)}∞k=1 be a subsequence

of {j}∞j=1 for which {j(k)|Gj(k)|}∞k=1 converges. Let (q(k),p(k))∈ N × Z be such
that µ(Iq(k),p(k)) = G̃j(k). We have q(k) → ∞ as k → ∞. Since j(k) ≥ q(k) for
sufficiently large k, the sequence {q(k)|Iq(k),p(k)|}∞k=1 is bounded. This together
with Lemma 3.10 implies that

{q(k) dist({Vq(k),p(k),Vq(k)+1,p(k)+1},L)}∞k=1

is a bounded sequence, so that there exists a subsequence {k(l)}∞l=1 of {k}∞k=1 that
satisfies at least one of the following:

(i) the sequence {q(k(l))(κ0ξq(k(l)) + F̃1,q(k(l)),p(k(l))(ξq(k(l))))}∞l=1 converges;
(ii) the sequence {(q(k(l))+1)(κ0ξq(k(l))+1 + F̃1,q(k(l)),p(k(l))(ξq(k(l))+1))}∞l=1 con-

verges.

Let us consider case (i). Because of Lemmas 3.3 and 3.4, we see that the sequence
{q(k(l))(κ0q(k(l))+ θ̂ +p(k(l)))}∞l=1 converges. Designating its limit by y0, we
infer, as in the previous discussion, that
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lim
l→∞ j(k(l))|Gj(k(l))| = W |y0 + X|,

whence
lim
k→∞ j(k)|Gj(k)| ∈ {W |y + X| | y ∈A′

+(κ0, θ̂ )}. (3.28)

Similarly, we get (3.28) in case (ii). Therefore, we have the reverse inclusion of
(3.26). Inasmuch as 2ξ+ ≡ −tan−1

(
2
β

)
(modπ), we haveA′+(κ0, θ̂ ) = A′+(κ0, θ).

Hence, we arrive at (1.4+). In a similar fashion, we obtain (1.4−). This completes
the proof of Theorem 1.2.

4. Proof of Theorem 1.5

We use basic results in the theory of regular continued fractions (cf. [5; 13, Vol. I;
17]). Let a0 = 0. We define {pi}∞i=−2 and {qi}∞i=−2 by the recurrence relations

pk = akpk−1 + pk−2 (k ≥ 0), p−2 = 0, p−1 = 1;
qk = akqk−1 + qk−2 (k ≥ 0), q−2 = 1, q−1 = 0.

It holds for k ≥ 1 that
1

a1+
1

a2+ · · · 1

ak
= pk

qk
.

For k ≥ 0, the integers q2k−1 and p2k−2 are even, while q2k−2 and p2k−1 are odd.
Let

Dk = qkα − pk

for k ≥ −1. We note that D−1 = −1, D0 = α, and Dk+1 = ak+1Dk + Dk−1 for
k ≥ 0. We also define ξn = qn−1/qn and ζn = −Dn−2/Dn−1. It then holds that

ξn = 1

an+
1

an−1+ · · · 1

a1
,

ζn = an + 1

an+1+
1

an+2+ · · · .

Since (−1)nqn+1Dn = (1 + ξn+1ζ
−1
n+2)

−1 (with 0 < ξn+1 < a−1
n+1 and 0 < ζ−1

n+2 <

a−1
n+2) and since an → ∞ as n → ∞, we arrive at

(−1)nqn+1Dn → 1 as n → ∞. (4.1)

Moreover, we note that 1
2 < (−1)nqn+1Dn < 1 for all n∈ N.

We also use the Sós theory for the inhomogeneous Diophantine approximation
(see [17; 19]). We have

−γ =
∞∑
j=0

1

2
aj+1Dj ,

which is called the α-expansion of −γ. For integers k, r with k ≥ 1 and 1 ≤ r ≤
1
2ak+1 + 1, we define
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Qk,r =
k−1∑
j=0

1

2
aj+1qj + (r − 1)qk ,

Pk,r =
k−1∑
j=0

1

2
aj+1pj + (r − 1)pk.

The numbers Qk,r are called the adjacent multiples in [19]. We note that

Qk,r =
(
r − 1

2

)
qk + 1

2
qk−1 − 1

2
,

Pk,r =
(
r − 1

2

)
pk + 1

2
pk−1 − 1

2
.

We also note that if r = 1
2ak+1 + 1, then Qk,r = Qk+1,1. Put

L =
{

2j − 1

4

∣∣∣ j ∈ Z
}
.

Let us prove the following implication.

Lemma 4.1.
A′

+(α, γ ) ⊃ L.

Proof. We have

Qk,r (Qk,r α − Pk,r + γ )

=
{(

r − 1

2

)
qk + 1

2
qk−1 − 1

2

}{
1

2
Dk−1 +

(
r − 1

2

)
Dk

}

= 1

2
qkDk−1

(
r − 1

2
+ 1

2
ξk − 1

2qk

)
(1 − (2r − 1)ζ−1

k+1).

This combined with (4.1) implies that

(−1)k−1Qk,r (Qk,r α − Pk,r + γ ) → 1

2

(
r − 1

2

)
as k → ∞, (4.2)

from which we obtain the assertion.

Next, we demonstrate the reverse inclusion. We pickM > 1arbitrarily. We choose
a positive integer p such that p > 8M. We also pick an integer k0 ≥ 4 such that
ak > 8M for all k ≥ k0. Let k ≥ k0 and 1 ≤ r ≤ ak+1/2. We pick an integer x
satisfying Qk,r < x < Qk,r+1. Since 0 < Qk,r+1 − x < qk , the Ostrowski rep-
resentation theorem (see [17, Chap. II, Sec. 4]) implies that there exist integers
c1, c2, . . . , ck such that

Qk,r+1 − x =
k−1∑
j=0

cj+1qj ,

(c1, c2, . . . , ck) �= (0, 0, . . . , 0), 0 ≤ cj ≤ aj for j ≥ 2, 0 ≤ c1 < a1, and cj = 0 if
cj+1 = aj+1. Let n be the least positive integer such that cn �= 0. It follows that
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‖αx + γ ‖ =
∥∥∥∥

k−1∑
j=n−1

cj+1Dj +
(

1

2
ak+1 − r

)
Dk − 1

2
Dk − 1

2
Dk+1

∥∥∥∥.
We define

S(x) =
k−1∑

j=n−1

cj+1Dj +
(

1

2
ak+1 − r

)
Dk − 1

2
Dk − 1

2
Dk+1.

In the following Lemmas 4.2, 4.3, and 4.4 we analyze the shape of x such that
x|S(x)| < M.

Lemma 4.2. If x|S(x)| < M, then n ≥ k − 1.

Proof. Seeking a contradiction, we suppose that n ≤ k − 2. In the case where n

is odd, we have

S(x) ≥ cnDn−1 + (an+1 − 1)Dn +
∞∑
j=1

an+2j+1Dn+2j − 1

2
Dk − 1

2
Dk+1

= (cn − 1)Dn−1 − Dn − 1

2
Dk − 1

2
Dk+1

≥ −Dn − 1

2
Dk − 1

2
Dk+1

≥ |Dk−2| − 1

2
|Dk|

>
1

2
|Dk−2|,

since D2j > 0 and D2j−1 < 0 for j ≥ 0 and since cn+1 ≤ an+1 −1. Likewise, we
obtain −S(x) > 1

2 |Dk−2| in the case where n is even. In each of the cases, we get

x|S(x)| > 1
2akqk−1 · 1

2 |Dk−2| > 1
8ak > M,

which is a contradiction. Thus, the assertion follows.

Lemma 4.3. If x|S(x)| < M and n = k − 1, then ck−1 = 1, ck > ak − p, and
r < p.

Proof. First, we prove that ck−1 = 1 by contradiction. Suppose that ck−1 ≥ 2.
Then

|S(x)| = ∣∣ck−1Dk−2 + ckDk−1 + (
1
2ak+1 − r − 1

2

)
Dk − 1

2Dk+1

∣∣
>
∣∣2Dk−2 + (ak − 1)Dk−1 − 1

2Dk

∣∣
= ∣∣Dk−2 − Dk−1 + 1

2Dk

∣∣
> |Dk−2|,

so that
x|S(x)| > 1

2qk|Dk−2| > 1
2akqk−1|Dk−2| > 1

4ak > M,

which is a contradiction. So, we get ck−1 = 1.
Next, we show that ck > ak −p. Seeking a contradiction, we suppose that ck ≤

ak − p. Then
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x|S(x)| > ∣∣Dk−2 + (ak − p)Dk−1 − 1
2Dk

∣∣(r − 1
2

)
qk

= ∣∣−pDk−1 + 1
2Dk

∣∣(r − 1
2

)
qk

> p|Dk−1|qk
(
r − 1

2

)
> M,

which is a contradiction. We therefore have ck > ak −p. Likewise, we get r < p.

An argument parallel to that in the proof of Lemma 4.3 gives the following result.

Lemma 4.4. If x|S(x)| < M and n = k, then ck < p and r < p.

We are now ready to complete the proof of Theorem 1.5. For 1 ≤ t < p and 1 ≤
s < p, we have

lim
j→∞(Qj,s+1 − tqj−1)‖(Qj,s+1 − tqj−1)α + γ ‖ =

(
1

2
+ s

)(
t − 1

2

)
and

lim
j→∞(Qj,s+1 − qj−2 − (aj − t)qj−1)‖(Qj,s+1 − qj−2 − (aj − t)qj−1)α + γ ‖

=
(
t + 1

2

)(
s − 1

2

)
.

By a method similar to that in the proof of [17, Chap. II, Sec. 4, Thm. 1], we have
either ‖αx + γ ‖ ≥ 1

2D2 or ‖αx + γ ‖ = |S(x)|. In the former case, we have
x‖αx + γ ‖ ≥ 4−1qkD2 > 8−1ak > M. Combining these with (4.2) and Lem-
mas 4.2–4.4, we obtain A′+(α, γ )∩ (−M,M) ⊂ L. Since this inclusion holds for
any M > 0, we get A′+(α, γ ) ⊂ L. This together with Lemma 4.1 implies that
A′+(α, γ ) = L. Since

q(αq + γ + p) = q

q + 1
(−q − 1){α(−q − 1) + γ + (−p + 1)}

for q ∈ N and p ∈ Z, we have A′−(α, γ ) = A′+(α, γ ). This completes the proof of
Theorem 1.5.

5. Proof of Theorem 1.6

We give a proof of Theorem 1.6 for α = −b−√
d

2a only, because the proof for the
other case proceeds similarly. We define f(x, y) = ax 2 + bxy + cy2 and α ′ =
−b+√

d

2a . First, we prove the following assertion.

Lemma 5.1.

A′(α, γ ) ⊂
{

k

p2
√
d

∣∣∣∣ k ∈F

}
. (5.1)

Proof. We pick a w ∈A′(α, γ ) arbitrarily. Then there exists a sequence

{(yn, xn)}∞n=1 ⊂ (Z \ {0}) × Z
for which

yn(αyn + γ − xn) → w and |yn| → ∞
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as n → ∞. We note that

αyn + γ − xn = 1
p
{(pyn + q)α − pxn + r}.

Let
sn = a{(pyn + q)α ′ − pxn + r}{(pyn + q)α − pxn + r}.

Noticing that xn/yn → α as n → ∞, we get

lim
n→∞ sn = lim

n→∞ a

{(
p + q

yn

)
α ′ − p

xn

yn
+ r

yn

}
yn{(pyn + q)α − pxn + r}

= p2
√
dw.

On the other hand, it holds for all n ∈ N that sn = f(pxn − r,pyn + q) ∈ Z.

Hence, there exists an m∈ N such that sn = sm for all integers n ≥ m. Therefore,
we get p2

√
dw = sm, whence w ∈ {

k/
(
p2

√
d
) | k ∈ F

}
. We thus obtain the

assertion.

By (X1,Y1)we denote the fundamental solution of the Pell equationX2 −dY 2 = 1
(cf. [13, Vol. I, Chap. 8, Sec. 2]). For n ∈ Z \ {1}, we define (Xn,Yn) ∈ Z2 by the
equation

Xn + Yn
√
d = (

X1 + Y1

√
d
)n
. (5.2)

We recall that the sequences {(Xn,Yn)}∞n=−∞ and {(−Xn, −Yn)}∞n=−∞ provide all
the solutions of X2 − dY 2 = 1. The following lemma plays a key role in proving
Theorem 1.6.

Lemma 5.2. There exists an s ∈ N such that Xsj ≡ 1 (modp) and Ysj ≡ 0
(modp) for all j ∈ Z.

Proof. It follows by the pigeonhole principle that there exist t ∈ Z and s ∈ N such
that Xt ≡ Xt+s (modp) and Yt ≡ Yt+s (modp). On the other hand, we infer by
(5.2) that, for all n∈ Z,

Xn+1 = X1Xn + dY1Yn,

Yn+1 = Y1Xn + X1Yn.

Thus, we have Xj ≡ Xj+s (modp) and Yj ≡ Yj+s (modp) for all j ∈ Z. We get
(X0,Y0) = (1, 0) and so, a fortiori, X0 ≡ 1 (modp) and Y0 ≡ 0 (modp). The
conclusion then follows.

We are now in a position to complete the proof of Theorem 1.6. It suffices to prove
the reverse inclusion of (5.1). We achieve this by combining Lemma 5.2 with the
standard technique employed in [13, Vol. I, Thm. 8-10]. We pick a k ∈F arbitrar-
ily. Then there exists (t, u)∈ Z2 such that

f(t, u) = k, t ≡ −r (modp), u ≡ q (modp).
We define

x ′
n = Xns − bYns , y ′

n = 2aYns

for n ∈ Z. It then holds that f(x ′
n, y ′

n) = a. For n ∈ Z, we also define (xn, yn) ∈
Z2 by the equation

2axn + byn + yn
√
d = 1

2a

(
2at + bu + u

√
d
)(

2ax ′
n + by ′

n − y ′
n

√
d
)

(5.3)
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or
xn = tx ′

n + (bt + cu)(y ′
n/a),

yn = ux ′
n − ty ′

n.
(5.4)

Using f(x ′
n, y ′

n) = a, f(t, u) = k, and (5.3), we have f(xn, yn) = k. By
Lemma 5.2 we get x ′

n ≡ 1 (modp) and y ′
n/a ≡ 0 (modp). These combined

with (5.4) imply that

xn ≡ t ≡ −r (modp) and yn ≡ u ≡ q (modp).

Since f(xn, yn) = a(xn − αyn)(xn − α ′yn) = k, we obtain

yn(αyn − xn) = kyn

a(α ′yn − xn)
. (5.5)

By (5.2) we have Xn − Yn
√
d → 0 as n → ∞, so that 2ax ′

n + by ′
n − y ′

n

√
d → 0

as n → ∞. This combined with (5.3) implies that αyn − xn → 0 as n → ∞;
from this, together with (5.5), we get

yn(αyn − xn) → k√
d

as n → ∞.

Writing ŷn = 1
p
(yn − q) and x̂n = 1

p
(xn + r), we have (x̂n, ŷn)∈ Z2 and

ŷn(αŷn + γ − x̂n) → k

p2
√
d

as n → ∞,

so that k/
(
p2

√
d
)∈A′(α, γ ). Therefore, we obtain the reverse inclusion of (5.1).

This completes the proof of Theorem 1.6.

Example 5.3. Let us consider the case where α = 1/
√

2 and γ = 1/2. We take
a = 2, b = 0, c = −1, p = 2, q = 0, and r = 1. It then follows by Theorem 1.6
that

A′
+

(
1√
2

,
1

2

)
= A′

−

(
1√
2

,
1

2

)
=
{

k

8
√

2

∣∣∣∣ k ∈F

}
.

The ideal theory in quadratic number fields (cf. [6]) implies that F is the set of
numbers of the form

ε · 2s2
l∏

j=1

p
αj
j ,

where ε = 1 or −1, s is an odd integer, l is a positive integer, αj ∈ {0,1} for 1 ≤
j ≤ l, pj is prime for 1 ≤ j ≤ l, and, for each j ∈ {1, 2, . . . , l}, either pj ≡ 1
(mod 8) or pj ≡ −1 (mod 8). This implies, in particular, that

M+
(

1√
2

,
1

2

)
= M−

(
1√
2

,
1

2

)
= 1

4
√

2
.
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