Isomorphic Classification of the
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1. Introduction

Let K C R be a compact set such that K = int K. By £(K) we denote the space
of infinitely differentiable Whitney functions on K. This is the space of functions
f: K — Rextendable to C°-functions on R equipped with the topology defined
by the sequence of norms

I fllg =1flg + sup{ |(R3f)(l)(x)| cx — yli—q .
x’yGK’x#)’aiSq},q=0,1,...,
where lf[q = sup{ |f(j)(x)| :x €K, j<g}and
4. fk)
RIf(x) = f(x) = TIf(x) = f(x) = ) f k!(y)

k=0

(x — y)F

is the Taylor remainder. With

Ug={felK):|Ifllg =1}

the sequence (U,) need not decrease, but the sets eU, with ¢ > 0 and g € N con-
stitute a basis of neighborhoods of zero in £(K). It was shown in [20] by Tidten
and in [25] by Vogt that the space £(K) is isomorphic to the space

s = {x = (&)t llxlly = Y [Ealn? < 00 Vg }
n=l1

of rapidly decreasing sequences if and only if there is a continuous extension op-
erator L: £(K) — C*®(R).

LetN = {1,2,...}and Z* = {0, 1, 2, ...}. We consider compact sets of the
following type. For two sequences (a,), (b,) suchthat0 < --- < b4 < a, <
by <--- <b <1,letl, =[a,, b,]and K = {0} U2, I,. By ¥ we de-
note the length of I,,; h, = a, — b, is the distance between I, and I, ;. In what
follows we restrict ourselves to the case

Va0, By O, ¥ <h,, neN, (1)
30 eN:h, >b2%,, neN 2)

Received October 21, 1996. Revision received April 28, 1997.
Michigan Math. J. 44 (1997).

555



556 ALEXANDER P. GONCHAROV & MEFHARET KOCATEPE

An equivalent form of (2) is
30 eN:h, >b2, neN. (3)
In fact, (3) trivially implies (2). On the other hand, if (2) holds, then
bn = buy1 + hu + Y < B¢ + 2k, < 3R)/°,

which implies (3).

We list here some identities about Taylor polynomials and remainders that will
be used in this paper. The proofs of these identities can be found, for example,
in [15]:

) o
(R{NP) = RO = fO) - Z / _(y)), - @
RIR{ f(x) = RY f(x) 5
Tf(x) — T2f(x) = TIRLS)(x). (©)

If f € C?'a, bl and x, y € [a, b], then for some &, n € [a, b] we have

. (x — y)q—i (x . y)q—i—f-l
() — (D —_ f@ — f£(g+1D

(RIf)YV(x) = (f1CE) — 0% 7Y = 147 (n) @it Dl (7N

The next lemma can be derived easily from Lemma 1 in [21]; see also Lemma 1
in [9].

LEMMA 1. Let I be any closed interval in R with length(I) > 8y and let p <
k < r be given. Then there exist two constants Cy, C, such that

If P < C187P|f, + C28"F|fl, YfeC™(), V8 €(0,8] Vxel.

LEMMA 2. Let K C Rbeacompact set containing r+ 1 distinct points xq, . . . , X,
suchthatxg < x1 < ---<xpandh :=x; —x90 <xp—x1 < +++ < Xp — Xp_1 =:
H.Let f €& (K),1 <k <vr. Then

|f O < C3h7*|flo+ CaH™ I f 1,
where C3 and C4 depend only on k and r.

Here £7(K) is the Banach space of r-times differentiable Whitney functions
equipped with the norm || - ||,.

Proof. We will use the Vandermonde determinant

V(ag,ai,...,a,) = H(aj —a;)

i<j
and elementary symmetric functions. For 1 < k < n,
St = Sk(ay, ...,ap) =aax...ap+---+apgy1 ... ay

is the sum of ('} ) terms, where each term is the product of k factors without repe-
tition. Then
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2 k—1 k+1 n
- n
a2 a2 ¢ a2 a2 a2
’ 2 k=1 k+l n
Ap—1 an—] o au—l an—l U an-—l
=ay...an-1S—k(a1,...,ap_1)V(ay, ..., an_1).

To show this, we denote the above determinant by B;. We consider the expression
a...a,V(ay,...,a,) asapolynomial in x = a,:

a...a,Viay,...,a,)

=a1...anl_[(aj—a,-)

i<j
=ai...apV(ay,...,ap_1) an(an —a1)...(an — ap—1)
«
_ n—1 n—2 n-3
=aay(a, - Siai,...,ap_1)a, “+ Sa, " +---

+ (D", a4 (DS

= ...} (—l)n_kOlSn_k(al, .. .,an—l)a,]; + -

We note that neither « nor S,_;(aq, ..., a,—1) contains a,. On the other hand,
clearly
k n
a] s e al .« al

a...a,V(ay,...,a,) =

k n

a, ... a, ... a;

When we expand this determinant with respect to the kth column, we see that

none of the minors of a{‘, ...,a*_, contain the term a,’: . So this expansion be-

* Pn-—-1
comes - - - + (—1)**"a* B;, where By does not contain any a,. So, in the two dif-
ferent expansions of a,...a,V(ay,...,a,), we compare the coefficients of a,’j
and obtain

(=) *aS,_ = (=)™ By,

which gives the desired result.
Let us use the notation 77, (x) = (x —xg)(x —x1) - - (x — x,), h; = x; — X;_1,

fi(k) = PO, fi = f(xi), and F; = f; — fo — Ry f(x;) fori =0,1,...,r.
Consider the system of equations

(9] (r)
fo(l)(x,'—‘)(:())—l""'-i—%(x,' —xO)k_I_" '+':_)—'(xi—x0)r = F'i, [ = 1’ N
in the “unknowns" fo(k)/k!, k=1,...,r.Let A = V(x¢, x1,...,Xx,) and
x1—x9 ... (x1—x0)* 1 F (x;—x0)*! ... (x1 —x0)
Ay =
Xrp — X0 ... (xr - xO)k_] F, (xr - xO)k+1 s (xr - -xO)r

Let M; denote the minor corresponding to the (i, k)th entry. Then
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r
Ap =) (-1Y™FM,
i=1

with
M; = (x1 — x0) ... (xi—1 — X0)(Xix1 — Xx0) ... (Xp — x0) Sy (- - HV(-- 1),
where --- in S,_¢(---) and V(---) is x; — x0, ..., Xi—1 — X0, Xiz1 — X0, +- .,
X, — Xp. Since
Vo) = (=1)'- ,V(xla---,lxr)(xi —xo),
7T} (Xi)

we have Ve )

X0y s

= (T Sy
) (x;)

and, by Cramer’s rule,

f(k) Sr—x(-+4)
1"+"§:F k=12, ..
( ) ]r(l) 1’ b} ’r

Setting hj = x; — xj_ for j =1,...,r, we have

i=1

|7fr,(xi)| = |(x;i —x0) ... (x;i —xi—)(xi — xiq1) ... (x; —x)|
= +---+h)ha+ -+ k)
cohihipi(hipr Fhigo) o hip -+ By)
> hhiyr ... by

Next we estimate | S, _; (- - -)|. The termin S, _ (- - -) with maximal absolute value
is (x, —xg) . . . (Xg+1 — X0), and the number of terms in S, _;(- - -) is (::]1() . Hence

(r—1n!
Sr_k (-9 < h,(r—Dh,_1...(k+ Dh
|Sr—k( )l—(k-—l)!(r—k)!r (r—Dhr—y ... (k+ Dhppq
(r—D!r!
= koo Py
k—-—D@r—k)'k!
C:k
which implies
Sr—k hk+1hk+2 R hr
ml )| = bk by

We also have
|Fi| = | f(x:) — f(x0) — R, f(xd| < 2| flo+ N fllrlxi — x0l"
<2lflo+ N fll-Chi+---+h) <2|flo+ I fI,i"AL.
Thus

hip h hTh .h
k+170k+2 - + ”f"r ,l k+1 - r
hihiyi ... hy h; hz+1 -y

Crk.

F:S,_
| k| 1 f1oCo

r
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Now

hk+]hk+2 oo hr 1 —k
T R N
i1 ... Iy 1722 k

since i1; ... hkhk+1 oohe < h::h,'.H ... h, and

h;—i h;_i _ yr—k — e s
h;:hk_}.] ...hr < { hiv1..hi =< hf—i - hi < hr k if i < k,
Mihivr - he U gy < TR = pE <R i > k.
Thus
| f®(x0)| < CslflohT* + Call fII I,
where

C3=k!2rCpi and Cya=k!Crr Yy i". O

i=l1

Now Lemma 1 (the case p = 0) can be deduced from Lemma 2. In fact, one can
take r + 1 equidistant points on I with the step # = §/r and use equivalence of
the norms | - |, and || - ||, on the interval.

LEMMA 3. Given positive integers N, p, k such that k < pN, there is a con-
stant C(N, p, k) with the following properties: For any closed interval I C R
with length(I) = 8¢ and for any set of points ay,...,ay € I, let G(x) =
[TV (x — a,)?. Then

IG®(x)| < C(N, p, k)N ™" vx e I
Proof. Let

bjp+1= ip+2 = = Ojpyp = Qjt1, j=0,1,...N—1.
Then

pN
G(x) =[] -5
i=l1
and, by induction,
GOx) = Y c][x-by,
|Al=Np—k scA

where A isasubsetof {1, 2, ..., Np}and | A| is the number of elements of A. This
proves the lemma. 0

II. Spaces £(K) and the Property D,

Now we consider a linear topological invariant introduced by Vogt [26] and Tidten
[22] (and called DN, by them) and by Goncharov and Zahariuta [7; 36; 11].

Let ¢: R, — R, be an increasing function, ¢(¢) > t. A Fréchet space X with
a fundamental increasing system of seminorms (| - || P);O:O has the property D,, if
dpeZ,, Vg eN,Ir e N,m > 0, C > 0 such that

C
IIfIIqS¢m(t)llflip+7llfllr, t>0, feX.
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Examples of continua of families of pairwise nonisomorphic spaces C* [22; 11]
and Whitney functions [12] were found by means of these invariants.
The invariant D, appeared as a generalization of the class D (see [31]) or the
property DN [23]. In the case ¢(t) = t, Dggoincides with €2, [35] or DN [24].
For each n, we define J, = min{ j : bpy; < {I/n } and assume that either (J,) is
bounded or J,, — 00 as n — 00.

THEOREM 1. Let J, < J for each n. Then E(K) has property D, if and only if
M, Vn, Y, ="M BD). ®

Proof. We suppose that J and M are natural numbers.

Necessity. We have p from D,. Welet u = Q(p+ 1) andg = (J + 1)u and
find r, m, C according to D,. We fix n and define

(12 ' (x — a))”, x < ba,

—_ — S=n
S =1 { 0, X = ap1.
Since b, j, < ¥, we have b,y < ¥, for all n.

Because f is a polynomial of degree g on [0, b,], we trivially have || f|l; >
| flg = | f9]o = gq!. Next we find upper bounds for || f1|,, and || f],.

Upper bound for | fll,. Let x < b,y ;. Then f(x) = x*G(x), where G(x) is

the product of the other terms. For k < p,

k
O = Z(’f ).u o (p =i+ DGR ()
i=0

and so
k

k . —i —i

|f(k)(x)| < Z( ; )u...(u, —i+ l)b,’:+_,|G(k )(x)|-
i=0

By Lemma 3, |G*)(x)| < C(J, u, k — i)b#J_kH. Since b;ijb,‘; attains its max-

imum value at i = k, we obtain

1 ®Px)| < r.bES )

with A, =C pb,‘f J, where C,, does not depend on n.
Ifxel,,n<l<n+J—1,then writing f(x) = (x —a;)*H(x) where H(x)
is the product of the other terms and arguing as above yields

k

FO@) = Z(’j)u =i+ Dlx — T HE D))
i=0
k

< Z(’l‘)u (=i FDYPTICU, k= DRI TR,

i=0

Since ¥, 'b! attains its maximum value at i = k, we obtain

1 FO)] < At (10)
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We therefore have
IfP@) < Aa¥p* P <A 2 ifx <byyorxel,n<I<n+J-1
Next we consider s
P o\G) S NyHe
|(Ry f)*(x)]

|x — y|P~*

A, = , X, yeK, x#y, i <p.

Ifx,y<bp,yorx,yel;(n <l <n-+J —1), then by (7) we have

(x —y)P~!
(p—i) "’

where 0 < & < b, or & € I;. Therefore, in this case A, < 2kn1/f,?.
Ifxelhandyel, (n <Il,m <n-+J —1), then

RPfOx) = (fPE) — fP(y)

Ix - yl = max{h;, hm} = maX{%, wnl}s
and from (10) we see that

- O 4 DO x =yl

A . .
P= |x ___ylp—l j=i (J _l)! Ix _y‘p—l

v X”: i1
o lp—l j=i (J - l)' ,ﬁ_]

< AW TP edg BT < AN YRR < AN, g 2.

m
Clearly, the same estimate holds if/ > nandm <n—1lorm >nand/ <n-—1.
Ifx <b,,;andy € I, withn <m <n+ J — 1, then by hypothesis |x — y| >
hati-1 > b2, ; and so (9) implies that

SO bt

— ylp=i — 7" 4 0(p—i)
|x — ¥l bl

< habgpy < Mat 2.

Similarly, since |x — y| > h,, > ¥, fori < j < p we have

ERKEY]

X —ylpT = Aty S At

Thus, by (4), A, <41,y 2. Thecase y < byyyandx € Ly, n <m <n+J —1,
can be treated in exactly the same way. If x e ;  <n—-1)ory e I, (m <
n — 1), then the value of A, may only be reduced.

Hence we have that || f]l, < anan < Y, forn > n,, since A, — 0 and
0>1

Upper bound for || fll,. By Lemma 3, | f®(x)| < C(J + 1, u, k)b for
k < g and O otherwise. Thus,

|flr <maxC(J + 1, u, k) = C,.
k<q

Clearly R;f(x) = 0 when x, y < b,,. If either x > a,_; or y > a,_, then, since
|x — y| = hn_1, by (4) we have
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r

1 1
< A1 <4C,h",.
=1 ( +Z(j—i)!)lx—yl'” = A€l

j=i

I(R] /)P ())|
lx — yI"~

Thus
I fll- <5C;h,”

n—1-
Now, replacing f by f, in D,, we obtain
C -r m
q! = ‘pm(t)lbln + TSthn—l =9 (t)Wn + W

for large enough n and arbitrary ¢. Lett = h,” fl. Since g > 2 we obtain ¢, >
@™ (h;"7"), and it follows that the asymptotic inequality (8) holds with M =
max{m, r 4+ 1}. Increasing the value of M if necessary, we get (8) for all n.

Sufficiency. Let p =0and R = 2MQ, where Q is taken from (3). For a given
qg > 1,letr =2q and m = Mgq + 1. It is enough to prove the implication
1

e™(tR)

ifllo <7z, Ifll- =t = Ifllg <1 where 7=

for each fixed f € £(K). In fact, tUy NtU, C U, implies
Ifllo £l
‘E‘ b

t

1
Ifllg SmaX[ } Ssam(tR)IIfllo-F;IIfIIr

(i.e. Dy,) since R does not depend on g (see e.g. [9]).
Fix any ¢ such that > > 1/b;. Find n such that b,,; < t~2 < b,. Then h,, >
b€ > 1/t>2 and, by the hypothesis, we have

def 1
1:['irH-I > a0 = W
It is clear that

1
Sot? <1 and < (11)

oo»oal =

Let us first estimate
B:=|fP@)Pe ™, ek, k<gq.
If z > a, 1, then one can apply Lemma 1 and (11) and get

B < (C185%T + Co857% 012400 = C1(8t*)7* 8,77 + Crt? @1+,
Thus,

B < Cit7 '+ Cpt' 2, (12)
If 7 < buy then we consider the Taylor expansion of f®*) at the point a = a,41:
g+l i—k
®(y — W& =D g+1 o\ ()
FP@ =2 fO@ =5 + RN,

i=k

We apply Lemma 1 to the terms ¥ (a). Since [z —a| < a < b,+1 < t™2, we have
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q-+1 ) ) t2(q—i) 2 +1-k)
B < Ci18,'t + Cr8;'t g~
_;( 1807 + Cody ™) gy Il
q+1 )
<) (C1otHT™'8 9t + Cot* 4™y 4 471
— (i —k)!
< (Cit7 1+ Gty e 417!
Thus, for some C5 we have
IfP@IP4™P <Cs/t, zeK, k<q. (13)
It follows immediately that
| flg < Cs/t.
Next we estimate
((RSF)P()|

A, = , X, Y€K, x#y, i <gq.

|x — yla—*
If |[x — y| <72, then
(x . y)q+1—i

® — +1 £y (g+1)
REHO@ = RENHO0) + 0T

and it follows that

Ag = (IS llg+1 + 1 flg+Dlx — ¥yl = 2/t
If | x — y| > t~2, then by (4) and (13) we have

i i ! |x — ¢

Ag <1fO@Ilx =yl + k}ﬂ:nﬂ’"wnﬁ
. » A 29-0  Cs(e+1)

@ x) (2@ ®(yy| L 5
< [fPEET 4+ k§=i NG s —

Therefore, for large enough ¢ we obtain || f||, < 1 and so the space £(K) has the
property D,,. L]

REMARK. In the proof of sufficiency, we did not use the restriction about (J,,).
In the particular case ¢(¢) = ¢, condition (8) implies that the space £(K) has the
property DN = Q,. However our proof above gives also the next corollary.

COROLLARY 1. [f there exists an M > 0 such that i, > hf_ | Jor all n, then
E(K) has property DN = D,.

Proof. 1t is sufficient to show that, for an arbitrary f € £(K) and large enough ¢,

Iflo <t %, 0F1-<t? = Nfll, <1,

where R does not depend on g. With R = 2MQ + 1, r = 2q, §¢ =t *M2, and
T = t~R4 we see that (11) holds and the proof of the sufficiency of Theorem 1
can be repeated. O
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COROLLARY 2. Let there exist J such that J, < J for all n. Then the following
are equivalent:

(@) £(K) has DN = Dy;
(b) £(K) has DN = ;
() AIM > 0: v, = k™ | foralln.

Proof. (a) trivially implies (b), and (b) is equivalent to (c) by Theorem 1. (il

THEOREM 2. Letlim,_, o J, = 00.Then E(K) has D, if and only if the following
condition holds:
IM > 0: ¢, > o MMy va. (14)

Proof.
Necessity. By D, we have p. Letq = p + 1, and let

| x—an)i/qt if x € I,
f=tn= { 0 otherwise.
It can be easily checked that || f|, < 4¢,, || flly = 1, and || f||, < 4h,”. Now in
D, welett = 8Ch, " and obtain 1 < 8¢™(t)y, which gives (14).

Sufficiency. Suppose again that M in (14) is a natural number. Let Q be as in
(3). Let p =0, R=2MQ, and, forany g > 1, letr =2q, m = MQq + 1, and
T = @™ (t®). We will show that, for any f € £(K) with || fllo < T and || f]l, < ¢
with ¢ large enough, we have || f]; < 1.

Given ¢ large enough, find n such that b, ; < ¢t~2 < b,. Then s, > ¢ M%) &
30 and

Sot> <1, 8%t <t (15)

Now we can repeat (with some modifications) the proof of Theorem 1. Consider
the same B. If z > a, then, applying Lemma 1 and (15), we get (12). In order to
find an upper bound for B when z < b, , we consider the following special point
x0 = byiry1. Choosing xy = byypy1-1, kK = 0,1,...,r, we can use Lemma 2.
Since J, — oo asn — oo, wehave h = x; — xg9 > h,y, > b,%r, > w,? for large
enough n. Thus 2~' < §;°. On the other hand, H = x, — X,_| < byy; < 172
Therefore, fori < g + 1,

| F ORI < (€385 %t + Car 2Dy 2a=D
< C3(821%)9718, %%t + C4t' 720D < (C3+ C)t~L. (16)
Now for any z € K, z < b,41, one can use the expansion

q+1 i —k
: (z — x0)'
f(k)(z) — Z f(J)(xO)—(i—_(;c)!—

i=k

+ (RIF £)B(2).

By using |z — x¢| < b,41 < t~2 and (16), we get
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q+1 l
%0 5q- 1—k 2(g—k
B<Z|f">< G+ 1 Nl = xol* 400
q+1 $—26—k)+2(q—k) o2k
< Zlf“)( oI’ rersTmmil U U
C +C t
<2 et
t t2

Therefore, for some Cg,
If®@)IP4™ < Cs/t, z€K, k=q,

which trivially gives the bound for | f|,. Arguing as in Theorem 1 with the same
Ag, we see that || fll; < 1if ¢ > fo. Thus the space £(K) has property D,. U

CoroLLARY 1. IfE(K) has the property DN = Dy then there is an M > 0 such
that ¥, > hM forall n.

COROLLARY 2. Let J, — oo as n — 00. Then the following are equivalent:

(a) £(K) has property DN = Dy;

(b) £(K) has property DN = Q;

() IM > 0: ¥, > hM for all n;

(d) IM >0:y, > h " foralln.
Proof. (a) trivially implies (b), which is equivalent to (c) by Theorem 2. To prove
(c) = (d), observe that b, > 1, since J, — oo. Hence

2
Yy = WM > pM2 5 MO > MO

n—1 = "“n-—1

Finally, (d) = (a) is exactly Corollary 1 to Theorem 1. O
In [21] Tidten introduced the following geometric property of compact sets in R.

DEFINITION. Leta > 1. A compact set K C R is said to belong to the class («)
if there exist §o > 0 and C > 0 such that, for any point y € K, there is a sequence
(xj) in K with the following properties:

1) |y —x40,

(ii) |y — x| = do,
(i) Cly — xj4+1l = |y — x;|* forall j.

In our case we have the following.

ProPOSITION 1. There exists an o« > 1 such that K € (&) if and only if the
Jollowing condition holds:

M > 0: v, > hM | vn.

Proof. Suppose K € («). Find ng such that b, < 8¢ for all n > ngy. Given n >
no, let (x;) be the corresponding sequence for y = b,. Then x; > a,,_;. Let x; 4
be the first term of this sequence in 7,. Then
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Cyn > Cly — xip1| = |y — x:i|* > h® > b%2,

On the other hand, let x;.; be the first term of the same sequence in [0, b,] N K.
Since x; > a,_1, we have

Cby = Cly = xpal = |y — xel® = by ;.

Thus we have that C#2+!y, > 72,

For the proof of sufficiency we do not need condition (3). Without loss of gen-
erality, we may assume that M > 1. Let o = M, §p = %1//1, and C =2-3M Let
y € K be given. If y = 0, we see that the sequence (x;) = (b;) is suitable because

bj = bjy1 + hj + Y < bjpr + 20y < by + 29,70 <3674

If y € I, for some n, thenletx; = b; (j =1,2,...,n —1) and let x,, be the end-
point of I, that is farther from y. Then (x;);>n4+1 C I, can be constructed trivially,
and for j = 1,...,n —2 we have |y — xj11| :==d > ;1. On the other hand,

ly —xjl =d +h; + ¥ <d +2h; <d + 29,0} <3d"™.

In turn,
|y —xp| = ¥,/2 and |y —Xp_1] < Yn+hoo1+¥n1 < Yn+2h,1 <3y, M.
Thus K € (M). L

We note that the restriction k,, > b,? cannot be omitted for the necessity part. One
can construct a compact set K € (1) such that

In i,

lim sup = 00.

n—soo INh,

For an arbitrary compact set K C R, Tidten [21] has proved that
K e() = £K) has DN = K € () for some o > 1.

In our case, we have the following criterion.

THEOREM 3. Let the compact set K C R be as in Section I. Then the following
are equivalent:

(a) £(K) has DN = Dy;

(b) da>1: K € (x);

(c)AM >0:v¢, > hfy_lforalln.

Proof. Tt follows from [21] that (a) implies (b). By Proposition 1, (b) is equiva-
lent to (c). By Corollary 1 to Theorem 1, we have that (c) implies (a). Ll

Because the property DN is equivalent (on the one hand) to existence of a lin-
ear continuous extension operator £(K) — C*°(R) [20] and (on the other hand)
to the isomorphism of £(K) to the space of rapidly decreasing sequences s [25],
conditions (b) and (c) of Theorem 3 are geometric characterizations of the above
properties for the space £(X) when K satisfies (2).
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ITI. Linear Topological Invariant 8

The use of geometrical linear topological invariants as a tool for the isomorphic
classification of nonnormed Fréchet spaces and linear topological spaces first ap-
peared in the works of Pelczynski [19] and Kolmogorov [14]. Later, Bessaga,
Pelczynski, and Rolewicz [2] and Mitiagin [16] considered the approximative and
diametral dimensions that are more convenient for regular Kothe spaces. In [30;
32], Zahariuta introduced some general characteristics as generalizations of Miti-
agin’s invariants in [17; 18], and in [33; 34] considered new geometrical invari-
ants in terms of synthetic neighborhoods. Further use of geometrical invariants
appeared in [3; 4; 5; 6; 7; 10; 11; 13; 29; 34]. Interpolational linear topological in-
variants such as DN and €2 and their variations were introduced and used by Vogt
and Wagner in [23; 24; 27; 28] to characterize the subspaces and quotient spaces
of stable power series spaces.

Let E be a linear space, and let U and V be two absolutely convex sets in E.
Following ideas of Zahariuta about synthetic neighborhoods [33], we consider

BU,V) =min{dimL : U c V 4+ L}.

It is clear that if U; C U, and V; D Vs, then B(Uy, Vi) < B(Us, V»). Now let
X be a Fréchet space with a fundamental system of neighborhoods (U,), and let
t,7 € R,. In what follows, t - coand 7 =t(t) - 0.Given0 < p < g <,
we set U = tU, N tU, and define

Bz, t; Uy, U, Uy) = B0, U,) =min{dim L : U c U, + L}.

PROPOSITION 2. Let X and Y be isomorphic Fréchet spaces with fundamental
system of neighborhoods (Up) and (V,), respectively. Then

Vp 3p1 Vg, q Yr dr; e :
B(t,t; Vp,, Vg, Vi) < B(z, 85 Up, Uy, Uy) Vi, 7 >0.

and vice versa.

Proof. Let T: X — Y be an isomorphism. Then, with the above order of quanti-
fiers and for some C > 1, we have

1
Vo CCTW,),  5TW,) CVypy Vi € CTW,).

Then we have
ﬁ(rs t; Vp[s Vqu Vrl) S ﬂ(f, t; CT(Up)a

1 1
ET(Uq)a CT(UI‘)) = ﬁ(r, t; Up9 'C—EUq’ Ur) I:]

When X is a Schwartz space and U, is precompact with respect to U,, it is easy
to see that B is finite and

B(z,t; Uy, Uy, U = |{n: d, (U, U,) > 1},
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where d,, ((;' , Ug) denotes the nth Kolmogorov diameter of U with respect to U,
and where, for a set S, by | S| we denote the number of elements of S if it is finite
and oo if it is an infinite set.

Invariants D, and 8 are closely related as described in the following proposition
(for a proof see [8, Prop. 2]).

PROPOSITION 3. Let X be a Fréchet space with a fundamental system of neigh-
borhoods (Up), and let ¢ be as in the definition of property D,. Then the following
are equivalent:

(a) X has the property D,;
(b) 3(p, R), Vg, A(r,m, t0) : B(z,t; Uy, Uy, U,) =0 forallt > ty, where v =
@t R).

‘We will find upper and lower bounds for 8 when X = £(K) with K as defined in
Section 1.
Let p,g,r be such that 0 < p < g and gQ < r, where Q satisfies (2). Let
8¢ =4(e+ 1)Ct and T = o(t~%/"~9); more precisely,
18y 14Cy(e +1) < 1.
Here, C; and C5 are as in Lemma 1. We choose n; and N; as follows:
ny =min{n : Y, < 8o}, Ny = min{n : b,792 < 1/4et }. a7

Then we have

VAT o [ ———
! 4Cy(e + 1)t

Assumen; < Nj.Forn=1,2,...and j =0,1,...,r, let
x//jl, xeKNIo, b,l,

0, otherwise on K.

V-1 = 80, by %der <1.  (18)

(x — an)j/j!a x el,,

eni(x) =
7 (%) {O, xekK\ I,;

Enj (.?C) = {

Upper Bound for B

Obviously, if there is a subspace L of dimension m such that U C U, + L, then
B < m. Let

L =span({Eyn,;: j=0,...,r}U
{exj:k=ni,nm+1,...,Ny—1; j=0,1,...,r}.
(If ny = N, then the second set in the union is empty.) Then dimL =

(r+1)(Ny —n; +1). Given f € £(K), let

r Ni—1
g=>_ [f‘f’(O)EM,- + > f‘f"(ak)ek,-].
k=n1

j=0

Clearly g € L. If for each f € U (ie., I/, < 7and | f|l, < t) we show that

Il f — gllg <1, then it will follow that U C U; + L and so B(7,t) < dim L. Now
we write f — g more explicitly. Let z € ;. Then
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f() if j < mny,
f@@)—g@ =4 Ry f(2) if ny =j <Ny, (19)

Ry f(2) if Ny < j.
Up-1. UppérbOLtndfor |f —glg. Leti <g,ze€l;,and j € N.
(1.1) j = Ny. Then (f — g)(z) = R{ f(z) and so, by (18),
If =P = (R NHP@DI < 1 f:2"7 < IFNl-by," < by ? < 1/2.
(12)n; < j <Ny —1.Then (f — g)(z) = R;jf(z) and so, by (18),

If —P@I < Ifllrlz —a "™ <ty <ty 77 < 1/2.

(1.3) j < ny. Then g(z) = 0. Since ¢¥; = ¥,,,—1 = 8¢, fori > p we may apply
Lemma 1 and obtain
1 1 1

= + < .
—Met+ 1) Ale+1) T2

| fO@) < C18,7 Pt + C284 1

Ifi < pthen |fP@)| =<I|Ifl, <7t =<3
Thus | f — gly < 3.

Up-2. Upper bound for A,; = |(RY(f — NP X®)|lx —y|"™1,i < q.
(2.1) x,y < bn,. Then g(x) = Ty f(x) and, by (19),
RI(f — 8)(x) = f(x) — g(x) — TR f)(x)
= T f(x) + R, f(x) — T f(x) — TZ(RH ) (x).

Now, by (6),
T) f(x) — Tg f(x) = TJ(R§ f)(x)
and so
q (k) (x )’)k
RI(f —g)(x) = R, f(x) + Z (RGP (y)—"—
k=qg-+1
k—i
= (R{(f =N = R NHPV(x) + Z (R NPy )(—(_L?),—,
k=g+1 .

which implies

— yl|k—i \ ]
i = (1701 =51+ 3 1y HEE T Yix -y

k=q+1 (k —i)!
_ ! _xlx — ylF 1
<t _ r—q v’ k
<tlx —y| +k;1 y & — )1
<thy 11+ i ). thy e < 1.
- M Wty k= D1) M "=

2.2) x,y € I;, withn; < j < N; — 1. Then, exactly as in the proof of (2.1),
we have
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k
RY(f —8&)(x)=Rjf(x) + Z (R, NG )( )
k=qg+1
_ k=i
= RIS - O = BHOD + Y R NP0 Y
k=q+1 (k —i)!

Since [x — y| < ¢¥j < ¥y, and |y — aj| < ¥,,, we have, as in (2.1),
Agi =ty e < 1/2.
(2.3) x, y € I;, with j < ny. Then, by (19) and (7)

Agi =R HPWlx -y = £ 9 - fP)

(g — )'
for some & € I;. We may apply Lemma 1 (since v; > 8o) and derive
1 1

—g+ r—
Agi S2(C18,7 Pt 4+ C28y ) < T1 %7

Next we consider cases in which x and y lie in different intervals.
24)xeandy € I,, withn; <I,m < N;. Then ¢; < |x — y| and ¥, <
|x — y|, since ¥ < hy for all k. Hence

RI(f — g)(x) = R, f(x) = TJ(R], f)(x),

and this gives
(k—1)!

q—k 1
e
¥l "ok =Dt

q

—i - —k k—

Agi <ty Hx =y 7+ E ty, e =y
k=i

_ 1/’l - r—gq . Klfm
_t(lx—yl) Vi +k§=:,.’(|x

r—q 1
<ty il +e) < 5.

25)xeljand y € I,,, where eithern; <! < Njand Ny <morn; <m <
Nj and N; < [. Proofs are similar, so let us give the proof only for the case n; <
[ < Ny, N1 <m:

RI(f —8)(x) = R, f(x) — T/(Ro f)(x)
1

. i-q r=kyye oyt~
= Agi <ty |x — +Zty |x — I 7Y

<ty”
kZ_: 0" = z>'
since |x — y| > hy,—;. Now we remember that 4, > bn ) for all » and estimate
the term inside the summation as
r—k
b N

hq_k < b r—k—Q(q—k) < br Q‘I (20)
Ni—1

Ny
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Then
Agi <tYl=? 41y %%e < 1/2.

26)xejandy € I,, withl < ny andny < m < N;. Then g(x) = 0 and
¥ > 8g. Hence
RI(f —g)(x) = f(x) = TR, f)(x)

and
1

q
Aqi S 1FO@Ix =70+ 3t e =y o=,
k=i -

Ifi < pthen
Agi <8+ 1yl e < 1/2,
since [x —y| = hy -1 = Yy —1 = pand ¥, < |[x —y|.Ifi > p weuse Lemma 1;
Agi < (C185" Pt 4+ C2857 ) |x — y|'™1 + 1yl e
<G8yt + Gy Tt 18y e < 1/2.
27N xeljand y € I,, with! < n; and N; < m. Then
RI(f — 8)(x) = f(x) = TRy f)(x)

|x — yl1

. . q
= Agi < 1fPWIllx — yI™ +kX=;I(R6f)""(y)I h

Now we can treat the first term as in (2.6) and the summation term as in (2.5),
yielding again A, ; < %
28)xeljandye I,, withm <n;andn; <[ < Nj. Then g(y) =0, ¢, >

80, and |x — y| > §¢. Hence

RI(f —8)(x) = R, f(x) — T} f(x)

r—i T T O e
= Agi <tlx—allx =y Y IS )
k=i ( —l)'
Now ) )
r—1i Br—l _
ﬁrsttermftw’ - <12 =18y,
sa=t 88

to estimate the second term, we repeat the arguments of (2.6).
Ifi < p, then |f®(y)||x—y|*9 < ©8,7. Ifi > p, then | fO(y)|[x — y|*~¢ <
C185 7t + Co8; 7. Thus, by (18),
Agi < Cretdy? + (Cre + 1574 < 1/2.
29 xel;and y € I,,, where m < ny and N; <!. Then
RI(f —8)(x) = Ro f(x) — T} f(x)
|x — yl*¢

q
. r=iyy. _ yli—9 (%)
= Agi <tx"x =y + kE=,- A
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We treat the first term as in (20) and the second term as in (2.8) and obtain, as

before, Ay < 1.
210)x e Land y € I,,, where [, m < n;. Then g(x) = g(y) =0, ¥, > do,
¥ > 8o, and |x — y| > §p. We have R} (f — g)(x) = R} f(x) and
: yIF .
Agi < 1fO@)1x - VQ+Z]f®un( TR

Now we argue as in (2.8):
Agi <8 C1(e+ 1) +185 1Cale + 1) < 1/2.
Therefore,
If—gllg=1f —glg+sup{Agi:i<q,x,yeK, x#y} =<1,
which shows that U C U,; + L. Hence
B(t,t; Uy, Uy, U) < (Nt —np +1)(r + 1),

where 11 and N; are defined in (17) with the restriction 77 79¢t7 — Q ast — 0.

Lower Bound for B
Next we find a lower bound for 8(z, t; U,, Uy, U,). By Tikhomorov’s theorem
(see e.g. [16, Prop. 6]), we have that
B(z,t; U,, U, Uy) > sup{dim L : 2U,NL C U},

where the supremum is taken over all finite-dimensional subspaces L of X. We

define
L =span{e,; :n; <n <N},

where

ny=min{n: Y77 <t/4(e+ 1)} and N, =max{n:h, 7>16/t}.
Thendim L = Ny —ny 4+ 1 or 0if Ny < ny. We show that 2U, N L C l7; it will
follow that B(z,t; U,, U,, U;) = N — np + 1. Let f € 2U,; N L be arbitrary.
Then f = Zivinz orerq; that is,
ar((x —ar)?/q") if x € Iy, no <k <Ny,
0 otherwise,

Sf(x) ={

and |ox| = | fDP(ap)| < | fll; < 2. We will show that f € U—in other words,
that || f]l, < 7 and || f]l, < 1.

Low-3. Bound for || f||,. Here A, ; = |(R}f)®)(x)||x — y|"~P,i < p.
B.1) Letze I, withny, <k < Npandi < p. Then

_ q—i q—i q-—p
(Z ak) . = |f(l)(Z)| < wk < ny

() — _Ym
SRR == G- " "q-p) "
Thus [ f], < 7/2.

l\JIﬂ
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In order to estimate A, ; we must consider several cases.
B2)x,y € I, withny <k < N,. Then, by (7), we have

_ qg—p—1 T
A . < | fp+D _ < 2(77 ag) <9 r
pi STV x =y = @—p—DI lx =yl <2y =3
B3)xeliand y € I,, withny <Il,m < N,. Then
_ q p . k _ q—k
R)’,’f(x) = (x —ap) —a, Z x=y(—aw)
q! = k! (g —Kk)!
2
:>Ap1§( )lx'—al’qllx—yll P

2
— q=k|y _ ylk—P
+k§(k—i)!(q—k)!|y am|""[x = y|

2 —a\"™
< : (‘x al!) |x —a|97P
(g—!'\|x—y|

ly — am\** _
+Z(k—:>'<q k>'(|x—y|) b= el

Since |x —aj| =¥y <hy < |x —y|land |y — am| < ¥ < |x — y|, we have

vl P 1
A, < 2+ 2y P ———e < 2e+ YL P <
PE= (g = i) " (g —p)!

The cases x ¢ supp f or y ¢ supp f can be treated exactly as in (3.3).

N A

Low-4. Bound for || f||,. Here A.; = (R} £)P(x)|lx —y|'™", i <r, butactually
i < g since f4t) =0.

@D Ifl, = 1flg <2 <1/2.

Next we consider the bound for 4, ;.

(4.2) x, y € I; then R;f = (.

43)xelandy€ I, withny <[,m < N,. Then

G oaptt | SO e o y
G- " gkl k-

lx —a|\" r
:>Ar,1§2 lx—‘yl Ix—yl

L (ly —an\7*  |x—yl7r
+2Z(lx—yl) G-l —B

k=i

R HOx) = e

We have |x — y| > hy > hy, and |x — a;| < ¥; < by < |x — y| and similarly
|y —aml < |x — y|. Thus
8

Ar,i = 2|x - YIq_r(l +e) = A
N,

=

I\)IH

If x ¢ supp f or y ¢ supp f, then A, ; may only be reduced.
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Thus || f]l, < T and || f||, < ¢, which implies that f € U and so
ﬂ(rs Z; Ups Uq, Ur) > N2 —ny + 1.

EXAMPLE. Inthis part we give an example of a continuum of spaces £(K; ) which
cannot be distinguished by the linear topological invariant D,, but which can be
shown to be pairwise nonisomorphic by means of the linear topological invariant .
Let
v(t)y=exp(—1/71), O0<t <1

3

Given A > 1 and n > e”, we define

bP = exp(—(Inm)"), ¥ = exp(—exp(lnn)*) = y (6P,
a,(zl) — b}(@).) _ ll’;?.)'

We denote the corresponding Whitney space by £(K;). To simplify notation, we
will omit the superscript (A) except where confusion would result. It can be
checked that

(Inn)*! 1
b, — by > A 1 > b3+1 and v, < Eb,fﬂ.
Thus k, = by — byy1 — ¥ > 3b2, = b3, and (2) is valid with Q = 3. Itis

also clear that lim,,_, o, J, = 00.
Now assume that the space £(K) has property D, for some ¢. Then, for some
M > 0, we have ¥, > oM (hM); that is,

1
exp exp(Inn)* < (pM( )
(h})M
Let u > 1 be given. Given j, we find n = n(j) such that
(Inn)* < (In j)* < (In(n + 1))*.
Then, using (In(z + 2))* < 2*(Inn)*, we have

= exp exp(In j)* < exp exp(In(n + 1))*

1 1
< ¢M(——) < 99”’(——)
(ha )M (by)?M

= gaM(exp 3M(In(n + 2))1) < goM(exp N(In n)")

1 1
ScoN(eXpN(lnj)“) =¢N( )5;0"’(—),
(b;)N ()N

where N = 3M2*. For a given ¢ we thus have that the space £(K) has property
D, if and only if the space £(K,) has property D,,.

Next we show that the spaces { £(K,) : A > 1} are pairwise nonisomorphic;
as our tool we shall use the invariant 8 with T = ©(¢t) = 1/¢(¢), where ¢(¢) =

)
¥;"
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exp(Int)2. Suppose that £(K;) is isomorphic to £(K,) for A < . Then, by
Proposition 2, Vp dp; Vg, 3q Yr 3(r;, C) such that

B(x,t, UMD, UP UM < B(Cr,Cr, UM, UMW, UMW, (21)

P Tq

where (U?) and (UM denote the neighborhood bases in £(K;) and £(K,,),
respectively.

Wetake p =0, gy = p; + 2, r =3g + 1 and estimate N; = Ni(u, Ct), np =
ny(x, ), Ny = N,(A, t). For large enough ¢ one has

Ni = min{# : In(4eCt) < (Inn)*} < exp2Inr)'/*,

ny, = min{n : 4(e + 1) exp(In 1)? < exp2exp(Inn)* } < exp(In(ln HHIA,

. A
Since h, > b2, > b3?", we have

16 1/ 1 1/x
N, > cp3n?t > s —(—1Int) .
2_max{n oz ]_exp2(6 n)

n

Applying the bounds of the corresponding functions 8 in (21) yields

1 1/A
exp 2(67 In t) < Ny —ny < (N; + D)(r +1) <2rN; < 2rexp@In)V,
1

which is impossible for large t when 1 < A < p are fixed constants.

REMARK. The problem of the existence of basis in the space £(K) is still open.
However, in the space £¢(K) of functions vanishing at zero, a basis was con-
structed in [12] under the hypothesis (2). Our results are in accordance with [13]
and [1], where the problem of isomorphic classification of Kothe representations
of £9(K) is considered. On the other hand, in the case of C°-functions defined
on a domain with a sharp point, the compound invariant is not more refined than
the property D,, (see [8]).
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