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1. Introduction

The attributes of elliptic pseudodifferential systems that have relevance within
Atiyah-Singer index theory have been abstracted to the concept of Fredholm mod-
ules, or K-cycles in the language of K-homology. Pairing of a K-cycle with a K-
cocycle gives the index. Connes invented cyclic cohomology while looking for a
homology—cohomology formula of this pairing. The Chern—Connes character re-
lates finitely summable Fredholm modules to cyclic cocycles and, more generally,
relates ®-summable Fredholm modules to entire cyclic cocycles. We refer to [5],
and to [4] for the background and definitions.

The prototype for ®-summable Fredholm modules is the Dirac K-cycle (A,
‘H, D), where A = C*°(M) for an even-dimensional Spin-manifold M, H is the
graded Hilbert space of L? sections of the spinor bundle, and D is the Dirac oper-
ator, unbounded on H, which is ®@-summable by Weyl’s asymptotics for heat ker-
nels. The Chern character is represented by the JLO-cocycle in the entire cyclic
cohomology of A. The Chern character has been computed in [2] by using sym-
bol calculus [8] since e=*"P” is a Getzler’s asymptotic operator for which the lead-
ing symbol is known [2; 8; 16; 15]. In this paper we discuss the equivariant case;
if G is a connected compact Lie group acting on M by isometries, then G-action
commutes with Clifford multiplication and D is G-invariant, so we have an equi-
variant ®-summable Fredholm module over the G-algebra .A. The corresponding
equivariant Chern character in the equivariant entire cyclic cohomology (JLO-
version) was defined in [10] and [13]. Apparently Getzler’s symbol calculus does
not apply directly here since e~""P* . T is not an asymptotic operator in the sense
of [2] for an orientation-preserving isometry 7 on M.

On the other hand, for classical geometric operators, direct heat-kernel asymp-
totic techniques were applied to the Hodge—de Rham and Riemann—Roch oper-
ators by Patodi and later improved by Yu [17] into a more essential form, called
Clifford asymptotics for heat kernels. Using this technique, we are able to de-
rive a cyclic cohomological formula for the equivariant Chern character for the
equivariant entire cyclic cohomology.
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In fact, the Dirac K-cycle is finitely summable, so one would naturally consider
the Chern character in the equivariant cyclic cohomology. The reason we consider
the entire cyclic cohomology first is to take advantage of the JLO-cocycle. In
[6], Connes and Moscovici introduced a universal local index formula, based on
(generalized) Wodzicki residues, for the Chern character in the cyclic cohomol-
ogy for finitely summable Fredholm modules. This formula has implications in
many areas, such as quantization and index theorem on infinite-dimensional man-
ifolds. By the results in [6] and using the Mellin transform, one can reduce the
computation of the Chern character in the equivariant cyclic cohomology to its en-
tire equivalent. Thus we also give a formula for the equivariant Chern character
in the equivariant cyclic cohomology.

In Section 2 we recall the definition (JLO-version) of Chern character in the
entire cyclic cohomology by [13; 12]. We then derive, from the JLO-version,
an asymptotic expansion formula that combines many heat operators into one so
we can handle it with classical heat-kernel asymptotic techniques. We are in-
debted to H. Moscovici for this formula in its original form for the nonequivariant
case, though our proof uses a different approach. In Section 3 we apply the Clif-
ford asymptotics method to the Chern character formula. Finally, in Section 4 we
give the cohomological formula for the equivariant Chern character, both in the
equivariant entire cyclic cohomology and in the equivariant cyclic cohomology.

2. The Equivariant Chern Character

The definitions of equivariant (finitely or ®-summable) Fredholm modules and of
equivariant cyclic cohomology are discussed in [13; 12; 10]. For the convenience
of the reader we will reproduce the definitions here.

DEFINITION 2.1. Let G be a compact Lie group. A G-equivariant ®-summable
Fredholm module is a triple (A, H, D), where the following conditions hold.

(i) A = (A, 7, G) is a unital G-Banach algebra; that is, G acts on A by con-
tinuous automorphisms t: G — Aut(A) such that 7(g) is unitary for all
g€qG.

(ii) H = (H, y, p, G) is a graded Hilbert space with y denoting the grading op-
erator, and p: G — L(H) is an even-graded unitary representation of G; the
induced G-action on L(H) is p«(g)P = p(g)Po(g)~".

(iit) Moreover, H is an even-graded G-equivariant /A module; there is a continu-
ous action u: A — L(H) such that u(r(g)a) = p«(g)(a).

(iv) D is an unbounded odd-graded self-adjoint operator on ‘H which is G-invari-
ant, that is, G commutes with p(g) for any g € G.

(v) Foranya € A, [D, u(a)] is densely defined, extending to a bounded operator
on H, and there is a constant N(D) such that

lp@I + 1D, n@]ll = N(D)|lall.4.

(vi) tr(e™P”) < 0.
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DEFINITION 2.2. A triple (A, H, D) is a G-equivariant p-summable Fredholm
module if we replace (vi) in Definition 2.1 by

(vi’) (D + i)~ !isin £P(H), the Schatten—von Neumann ideal of compact oper-
ators.
DEFINITION 2.3.  For a unital G-Banach algebra A, we define:
(i) CZ(A) = Homg(A®"+D, C(G)), where & is the projective tensor product.
We set C; = 0 for n < 0, with the induced action 7, of G,
T.(8)9 @’ ...,a"h) = p(r(g)'a% ..., t(g) la" )z (g) " 'hT(g));
(i) b: CL(A) — CLt'(A), where, for any ¢ € CL(A),

n
bop@®,...,a"hH = Z(—I)"(ao, coatadt et
j=0

4 (_1)n+1(an+1a0, e, an);

(iii) B:C*"(A) — C"*1(A), B¢ = ABy¢, where, for any ¢ € C%1(A) and €
Ce ' (A,

Bod (@, ...,a" Y =¢1,d%...,a"")y = (=)@, ...,a"" ", 1),

n—1
Ap@®,....a" )= @, P, .. aTh);
=0

J
(iv) HCL(A) = H*(C**, b, B)(A), where C™"" = C" ™ isa (b, B)-bicomplex.
G

Before we define the G-equivariant entire cyclic cohomology, note that the norm
on CZ is the restriction of the norm on Hom(A®"*D, C(G)):

gl = sup g’ ...,a"(Ql;

geG;ale A
moreover, as in the nonequivariant case, on C; we have ||b]| <n +2and [|B| <
2n.

DEFINITION 2.4. For a unital G-Banach algebra A,

(i) an even G-equivariant cochain (¢,,) is

(¢2n) € Cgven(A) = { (¢2n)neN | ¢2n € Cén (-A) }

It is entire if the radius of convergence of ) ||¢2,|lz"/n! is infinity;
(ii) an odd G-equivariant cochain (¢2,41) 1S

(P2n11) € CEUA) = { (D2n41)nen | P2ni1 € CHHI(A) ).

It is entire if the radius of convergence of ) ||@2,+1lz"/n! is infinity.
(iii) The G-equivariant entire cyclic cohomology of A is the cohomology of the
short complex
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CG(A) & C(A),
where the boundary operator 8 = d; +d, withd, = (n + 1)b and dy = B/n.

NoTATION. For the rest of this paper, let G be a connected compact Lie group act-
ing on a closed even dimensional Spin-manifold M by isometries, A = C*(M),
and let D be the G-invariant Dirac operator. We omit the standard representations.

When the K-cycle (A, H, D) is fixed, for a bounded operator B on H let V°B =
Band V!B = [D?, Vi-1B] inductively. We also use the notation of [11] as follows:

B(s) = e=P’Be*P’, (1)

DEFINITION 2.5.  The equivariant Chern character ch%(A, H, D) = {ch§ (D) }i>o0
in the equivariant entire cyclic cohomology is defined by

ch§(A, H, D)@’ d',...,a")(g)
=/ str(aO[D,al](S1)[D,a?'](S2 — 51)
Ap
o o [D, ak](sk —_ Sk—l)g)e_D2 dS] dS2 v dSk

= str(aoe_s'D2 D, al]e_(sz—s‘)Dz[D, a?]
Ay

- e_(Sk—Sk—l)D2 [D, ak]e—(l—Sk)ng) dsl dS2 .. dSk, (2)
wherea’ € A, g€ G, and Ag = { (51,52, ..., 5%) lbssl <sH<---<s5 <1}

REMARK 2.6. (i) ch%(D) = {ch¥(D)}i=cven defines an equivariant entire cyclic
cocycle in [13] and [10], which extends the JLO cocycle [11] to the equivariant
situation.

(ii) If k is odd, ch¢(D)(a®, a', ..., a*)(g) = 0 since inside the supertrace is an
odd operator.

(iii) If we introduce a parameter ¢ to replace D? by tD?, then we obtain an
equivariant entire cyclic cocycle ch%(y/tD) = {ch$(y/tD)}i>0 defined by

ch¢(VtD)(@’, d', ..., a")(g)
— k72 / str(a®[D, a'1(s1)[D, a®1((s2 — s1)t)
Ag
<D, @ (A — s e Dg)dsidsy - dsi; ()

this cocycle is cohomologous to ch%(D) in the equivariant entire cyclic cohomol-
ogy [5; 10].

(iv) We would like to remind the reader that the notation for ch, may appear as
ch* in other works. We use Connes’ notation because, in our case, A is conceived
as a space in noncommutative geometry instead of an abstract algebra, the cyclic
cocycles are viewed as closed de Rham currents, and the JLO-cocycle is viewed
as the local index density for D. In this sense, we are calculating G-equivariant
local index for the Dirac operator.
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LEMMA 2.7.

= (=)’ ! NoN
B(s) = Z T V!B + sNVYB(s),
=0 :

where V;;V B(s) is given by

VYB(s) = (=) f VNB(ts) dty dt, - - - dty. 4)
AN

Proof. From

d d
L B(s) = —(e7P’BeD?) = —5¢7P*V(B) "D’ = —sVB(us)
du du

it follows that
1

B(s) = B — sf VB(us) du,
0

which verifies the lemma for N = 1. Repeating the above formula, we prove this
lemma by induction:

sNV;eVB(s)

= (=D f sNVYNB(#1s) dt dty - - - dity
AN

1
= (D" / SN{VN(B)— / sVNTIB(utys) du} dty dty - - - dty
An 0

= (—DV f sNVN¥Bdt dt, - - - diy
Ay

H
+ (_1)N+1 / / SN+1VN+lB(l‘0S)dt0dt1 dty---dty
0<tfi<f<-<ty=<1J0

(=Y

T sVVNB 4 sNTIVYHIB(s). O

Now, if we write [D, a] as da and apply the preceding “Taylor series”, we have

StI'(aO[D, al](Slt)[D’ a2]((32 _ S])t) . [D, ak]((l _ Sk)f)e—Ing)

(—DPH g2 2
= Z —k—'—str(aOV}“(dal)V)‘z(daz)--~Vk"(dak)e"D g)
|A[<N '

(=D Ocry g Ingr2 g2 Ak (g ky ,—tD?
+ ) —T—Str(a V' (da')V}*(da?) - - -V *(da*)e Pg),
1<At,...,Ax <N )
|A=N )

where A = (Ay, ..., A%), s = (s1,..., Sx), and
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V4 if A < N,
{ o ©)
Ve if A; =N.

This observation leads us to the asymptotic formula that is the starting point of
Clifford asymptotics.

THEOREM 1.

chy (VD) (fo, fi» - --» f)(8)
—1Al
= Z Q——t'“‘”‘/z str( foV* (dfi) V2 (df2)

VM (f)e ™ g) + 0(),

where k is even, g € G, f; € A, p > dimM, A = (A, Az, ..., ), Al =
AM+DRF24+2)- - M+ A+ -+ A+ k), and M = At At AL

Proof. We need to prove that every term in (5) is integrable and that the second

part of it is O(#). The proof is reduced to two lemmas that follow. L]
LEMMA 2.8. Forany O < u; < u,, let || - || be the Schatten norm on L£? (and
Il lloo =l - II). We have

_ _ 2 _ 2 -
le=“2" "B (—u2t) | uyuy=t < Crua — uy) /2112 (tr(e™/P7/ 2y

Jor

(i) B a differential operator of order l (in particular, B = V'(da) for a € A)

and
(ii) B = Vi(da) forac A.

Proof.

—(uz—u)tD?
”e (2—u )t B(—uzt)”(uz—ul)_l

D2 _ D2
= ”eult Be™"¥ ”(ug—u])_1

< Ile(uz—ul)tD2/2 . "e(u2+u])tD2/ZBe—-u2tD2”

"—(uz—u,)-l
< Cl(l)(tr(e”’Dz/Z))“2—“‘ . ”e(u2+u1)tD2/2(1 + DZ)!/Ze-—uztDz”
< Cl(z)ll(l + D2)1/2e—(uz—u1)tD2/2" . (tr(e-—tD2/2))u2—u|
< Ci(up — u)P12 (ir(e P2y

The last step follows from

sup{(1 + x)2e™5/2) = (ur) =2~ -u0/2,

This proves (i).
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By Holder’s inequality and (i), for 0 < #; < 1 we have

—(ttg—uy )1D?
lle (e~ (V’(da))(—ﬁuzl‘)H(uz—m)”l

-(1- —u1)tD?
< |le” U mmDI )

e 1027 0D (T A a)) (—1090) | (up sy
< (tr(e™ P72y A==y (uy — up) 2 (110)Y? (tr (e P2y (2w
= Cilua — u)> (1) P (ur(e™ P72y,
Then the proof of (ii) is straightforward by integrating on Ay. ]
LEMMA 2.9. Fors € Ay and small t > 0, with V!l as in (6) for a fixed N,
|(Ms* str(a° V1 (da') V2 (da?) - - - V]* (da*)e ™ g)| < € - sM2M27rs - (7)

here p is a fixed number such that p > dim M. Hence all the terms in (5) are
integrable and we have

£

/ st str(aOV!)“(da')V!)‘Z(da?-) S Ve (dak)e_‘ng) < Cy - tM12-p,
Ag

Proof. Let y be the grading operator. Then
15?5t (a® V) (da") V* (da?) - - V}* (da*) e D7)
< |Ms* (@~ PN (V M da' ) (—s11) e 2P (V2 da?) (—s,0))
e e_(s"_s"—‘)‘Dz(V!“"dak)(—skt)e_(l_s")’ngy)f
< s M@ - e (V' da') (1)
Ne= 6P (T2 da?) (—s52) | gp—sp)

2 2
. ”e-—(sk—sk_l)tD (V!akdak)(—Skt)”(sk —(1—sx D

“lle l—sey-1 - Y1l

—sg—1)"!

By the Weyl asymptotics on the heat kernel we have
tr(e—tDz) ~ (4m)—(dimM)/22(dim M)/2 vol(M),
so as t — O we may relax the estimate to p > dim M and obtain
tr(e~P*/?) < c1PI2.

Then, using Holder’s inequality and Lemma 2.8 for (1, u5) = (0, s1), (51, $2), ...,
we find the desired upper bound for (2.9). O

3. Clifford Asymptotics for Heat Kernels

In this section we apply the Clifford asymptotics developed in [14] and [17]. First
we prove that

lim M2 st oV (df1) VA2 (df) - - - VM (dfi)e ™ g) = 0, ®)

t—0
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where A = (A1, A2, ..., Ax) # O and k is even. This is a consequence of

R St fyV P @)V ) - Ve ) <0, )

where x is a degree function (defined in what follows) under a particular moving
frame.

NOTATION. Since we use the following expression frequently, we make a shortcut
Jor the operator

D} = M2 [N (df) VA2 (dfy) - - - VAAS). (10)

REMARK 3.1. Condition (9) corresponds to
lir%a,_l(Dt") =0 (11D
t—

in the sense of [8] and [2].

Subsequently we compute
lim /% str(foc(dfi)e(dfs) - c(dfi)e™™’g)

by Clifford asymptotics under certain normal coordinate frames in [14] and [17].
The frames E and E™* (introduced in Lemma 3.2) are key to the computation.

Let T be an orientation-preserving isometry acting on a Spin(2n)-manifold
M?", and let MT = {x € M | Tx = x ) be the fixed point set of 7. Then M7
is a disjoint union of a finite number of even-dimensional totally geodesic sub-
manifolds MT, MJ , ..., MT. For our purpose (see Proposition 3.7 below, whose
proof, we emphasize, is independent of the choice of normal coordinate system),
we may assume r # (0. Without loss of generality, we also assume r = 1 and
MT = M] . Let v be the normal bundle of M7, dim M" = 2ny, and dim v,, =
2n1 for xog € MT (hence 2n = 2n¢y + 2n;).

LEMMA 3.2. (i) [14] Let xo € MT. Then there exists an oriented orthonormal
Jrame field E = (E\, E;, ..., Ey,) in a neighborhood of x¢ such that:
(a) for xy € MY, (Ey(x(), Ex(xp), - .., Ean,(x})) are tangent to MT and
(Ezng+1(x0)s Eong+2(x), - - -y E2u(x()) are normal to M7,
(b) E is parallel along geodesics normal to MT;
(c) dT:SO(M), — SO(M)r, is expressed as a matrix-valued function T,

dTE(x) = E(Tx)7 (x),

where x is in a neighborhood of xy in M;
1

cosf; sinf;

d T(xp) = —sinf; cosb,

cosf,,  sinb,
—sinf,, cos6@,, |
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where 0 < 8; <2m fori =1,2,...,ny; and
(e) the orientation of E is the same as the orientation of M.

(ii) [14] There is a neighborhood V of xo in MT such that E is defined on U =
exp(vly Nv(e)) for sufficiently small e, where v(e) = {vev | ||[vl] < e}. If Bo(e)
is the ball of radius & in R*™\, define the homeonorphism ®:V x By(g) — U by
setting

2]11
/. _— . /
q)(x(), Cl1,C2y v v vy Can) =X = expxé)( § CrE2n0+r(x0))-
r=1

We then see (x; ¢) as the coordinates of x with respect to E = (Ey, ..., Ey,) at
xy. Moreover, we have that

(@) T(xg; ¢) = T(xp) and
(b) the isometry T has the form T(xy;c) = (xp; ce~®%0), where O(xy) €
so(2n)) defined by
1
T (xg) =
£OG)
(c) Let E™* be a oriented orthonormal frame field defined over the patch U by

requiring that ET*(Tx) = E(Tx) and that E™ be parallel along geodesics
through Tx. Define the coordinates {y;} of x as

2

(xgs¢) =x = exp( Z y,-E,-Tx(Tx)).

i=1

Then
{ yi = o(lc]), 1 <i <2ny,
Yongtr = Cr — cr + 0(|CD, I<r=< 2”1,
where ¢ = ce” %0,
DEeFINITION 3.3. (i) [17] In the normal coordinates yy, y2, ..., ¥2, at Tx with
respect to the frame field ET* = (ET*, EI*, ..., EI¥), the operator y is defined
on monomials on the Clifford algebra bundle
X(y“Dfe") = |B| — || + || (12)
for multi-indices «, B, and y, with y* = y{' - .- y32",

( P )ﬂl ( P )ﬂzn
DE=(—) ... ,
Y dy1 0y2n

and e¥ = e}’ --- e}’ for y; € {0, 1}.

We denote by (x < m) the linear space spanned by the foregoing monomials
wo with x(wg) < m, and by w; = w; + (¥ < m) we mean that there exists a w3 €
(x < m) such that w; = w, + ws3.
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(i) [14] In the coordinates (xp; ¢) at x5 = xo € MT with respect to the frame
field E = (Ei, Ea, ..., E,), setc = +/tb and define operator x on the monomials

(p(t)ei]eiz R N by

(13)

t—0 tl/2

x(@(t)ei e, -- e,s)_s-—sup{leZl @) oo],

where ¢ (¢) € R. In particular, we have x(r) = —2 and )(e;) = 1. We denote by
P = Q + (x < m) the congruence of P and Q modulo the space generated by
monomials with ¥ < m.

REMARK 3.4. (i) In (i) of Definition 3.3, if we let x(¢) = —2 then
x(t'y*Dle?) = || — la| + |y| —
Up to a sign, this is the same as the “deg” function defined in [9] and [1].
(i1) By Lemma 3.2(ii)(c) we have
yi = o(lel) = 0+ V/to(b)), 1 <i < 2n,
{ Yongtr = ¢ — & +0(lc)) = V1(b, — by +0(1B])), 1=<r <2n;.

Thus _ ;
{ X)) =x(y:)=-1, 1<i<2n,

(o) =x(5)=1 1=<i=<2n,
which means that operator x and x are compatible.

LEMMA 3.5. For f € A= C®(M) we have [D?,[D, f11 =0+ (x < 3).

Proof. By Proposition 13 in [17],

= — Z —5 + - Z Rt_]O{] (17} (Tx)yl eﬂlleaz

ayl 1 ], 02
1
+ —62 Z yfyjRikol10!2(Tx)Rkja3a4(Tx)ealeazea3ea4
i,j,k,01,00,003,04
(x <2). Coas
In general we have
lab,df] = alb,df]+ [a,df1b, (15)
X(@1w2) = x(@r1) + X(@2). (16)

Since df = Z; , €i(f)e;, it follows that x(df) < 1. Note that:
1) [ea,l ++ - eq, df1 =04 (x < k) (which follows from e;e; = —eje; — 28;;);
aei(f) 0 )
(i) [5, df] = Zs, Heallle, =0+ (x < 2);
(iii) [)’s, df]

In other words, for each factor in every monomial in (14), the operation under
[-, df] lowers or fixes its degree. Together with (15), this is also true for every
monomial in (14). ]
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LEMMA 3.6. For fy, fi, ..., fr € C®(M) (k even) we have
M2 £V df1) VR (dfy) - - V() = 04 (X < 0),
where A # 0.

Proof. Note that

VY(df;) = D%, [D?, ..., [D%, D, f11...1]
A t}:xles
=0+ (x <2x + D).
Since x and yx are compatible, we have
(M2 oM (dfi) VR df2) - Vi) < =200 — k42 + k=0
for A #£ 0. [

Now, choose a spin frame field o: U — Spin(M) such that
n,0 = (E{*, EX*, ..., E]"),

where 7,,: Spin(M) — SO(M) is the covering map of bundles. Let K, (x, y) be the

kernel of the heat operator e~'0’ Forx e U, let K,(x) and T*(x) € Hom(S¥*, S%)
be defined by _
K;(x, Tx)[(o(Tx), v)] = [(0(x), K;(x)v)] (17)

and _
T*[(o(x), w)] = [(0(Tx), T*(x)u)], (18)

where [(o(:), v)] (resp. [(o (), u)]) is a section of the bundle Spin(M) X spinc2n S +
v € S* (resp. u € ST) and T*:Spin(M) — Spin(M) is induced by the map
T: M — M. We also define K*(x) € Hom(S*, S*) by setting

D}K (X', Tx)| = (0 (Tx), )] = [(0(x), K} (x)V)], (19)
where the differential operator D," acts on the first variable in K, (x’, Tx), that is,
on x’. Then we have the following proposition.

ProposITION 3.7.

lim M2 ste ( SV (df) V2 (dS) - - - VP (dfi) Te™™)

t—0

= [ lim f str(Dre ™™ T)(x, x) dx dxo, (20)
M on(s)

T t—0
where
lin(a) str(Dt)‘e"’DzT)(x, x)dx = lirré str(K}(x)T*(x)) dx, (21)
— t—

Vxq (e)

¢ is sufficiently small, and A = (A1, Ap, ..., Ax), A; = 0.

Uxg ()

Proof. This is an analog of Theorem 2.2 in [14]. We need a stronger proof, since
in this case we need estimates on the derivatives of the heat kernel. However,
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the proof is made easy by the following estimates of the derivatives for the heat
kernel due to [3], the statement of which is simplified for a compact Riemannian
manifold:

|V;Kt(y, x)l S C(n, T)SS(dimM,l)t—(dimM+1)/2e—0td2(y,x)/t’ (22)

where d(y, x) is the distance between y and x, « is a positive constant depending
only on dim M, and ¢ € (0, T') for any fixed T > 0. On the compact set M \v(g)
let

e =min{d(x,Tx) | x e M\v(e) }.

We see that the factor e~/ for the upper bound of DK, (x’, Tx) rapidly decays;
hence the limit of its integral is 0 when ¢ — 0, regardless of the coefficients of
any power of ¢. L]

REMARK 3.8. Note that (22) is a global estimation; in the neighborhood of the
fixed-point set we have the Minakshisundaram—Pleijel asymptotic expansion (see
[7], [17], and Lemma 3.11 below), which is the basis for Clifford asymptotics for
the heat kernel.

From Proposition 3.7, in order to compute lim,_,o str(D*Te~"°*) we should
find

lim str(K} (x)T*(x)) dx. (23)

t—0 Vxo )

Next, we find the Clifford asymptotics of 7*(x) and K Mx).

LEMMA 3.9 [14]. The operator T*(x) is given by
n1 0
T*(x) = (~1)" [ [ sin =
x)y=(01 a=lsm 5

2n1
t —
. CXP{ - Z Z babﬁ (e e(xo)A-L)aﬂ } (62”0+162n0+2 o)

a, f=1
+ (X < 2n1), (24)
where
(1) ©(xp) € s0(2ny) is in the form
F 0 01 ]
—-6; O
O (xo) =
0 O,
B —0n, 0 don x2m,
and

1 0
T (x0) = [0 e®x0) ];
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(i) x = (xg; ©) = (xg; J1b), and At is a2n x2n| matrix whose (&, 8) element

is given by
2ng

(AD)ap = —3 Z R@no+ay2no+pyij (X0) €i€;.
i, j=1
To apply the Clifford asymptotics of K M(x), we shall introduce some notation.
Let x" be a point near x = (x; ¢), andlety = (¥}, y5, ..., ¥5,) be the normal co-
ordinates of x’ at the point 7x with respect to the orthonormal frame field E7* =
(El*, EI*, ..., EI*) defined in Lemma 3.2(ii)(c); that is,
2n

2n
x,==eXka(:§E:)ﬁE?k(Txi) ::eXka(:EE:J4E%(Txi)‘
i=1

i=1

DEFINITION 3.10 {14]. Let A be the 2n x 2n matrix defined by

- 1 2n
Ay =—3 ) Riu(T)ee, (25)
k=1
where Riﬁl (Tx) are the coefficients of the Riemannian curvature tensor under the

frame field E™* = (ET*, EI*, ..., EI¥) at point Tx. We define A'(y’) as
2n

Ay =) yiyi(AYy (26)
ij=1
forl=1,2,....
LEMMA 3.11[17). There exists a universal function F(t; zy, 22, . ..; Wi, Wy, ...)

that is a power series in t with coefficient polynomials in z; and w; such that the
following conditions hold.
(i) If K;(x') is determined by the relation

K (x', TO)[(0(Tx), v)] = [(o(x"), Ki(x)v)], 27)
then K,(x') has the following Clifford asymptotics at the point Tx:
K 1(x")

( 1 )" { d*(x’, Tx)}
=|—] exp} - ——=
4t 4t

: {F(t; tr(A?), ..., tw(A?); A2(y'), ..., A2 (Y)) + Z ™(x < 2m)}.

m=>0

(i1) The function F is determined by

F(t;—2(u%+---+uf; ,...,(—1)12(u%l+---+u,21’),...;

n n
(DY W3+ V3 uk, . (DY @3,y +vd . )

n

— n Glvl?/41 iuq _ug 2 it
= (e H 8 sinh iuyt/2 exp{ 8 (a1 +v3,) coth 7 [’

a=1
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where vy, ..., Vg, are variables and uy, ..., u, are the generators of the
polynomial ring Rluy, ..., u,].

We refer to [17] for a proof of the lemma.

THEOREM 2. If A = (A1, Ay, ..., Ag) # 0, then we have the following equalities:
KMx)T*(x) = e WPl MV (3 < 20 + 21y, (28)

where f is a bounded continuous function and (X < 2n-+2ny), denotes the space
spanned by monomials that are polynomials in b satisfying x < 2n + 2ny;

lim str(K}(x)T*(x)) dx = 0; (29)

t—0 Uxo (8)

and
lim (M2 ste (VM df) V2 (df) -+ VH(dfi) (Te ™)) = 0. (30)

t—0
Proof. First of all, by part (ii) of Lemma 3.2, we have

2n 2 2
> amongrillVell sl II?‘}

—liylI2/4t
e
4t 4¢

= exp { —
_ o Ib-BI¥/4,Vif

where b = ce~®%9), y is the normal coordinate of x = (x}; ¢) under the frame
field E™ at Tx, and f is a bounded continuous function.

Then, by Lemma 3.6, Lemma 3.9, Lemma 3.11, the fact that Dt" is a differential
operator, and

x{F(t; w(A?), ..., w(A™); A2(y), ..., A" (¥))} =0,
we conclude that

KF0)T*(x) = DK, (', Tl T (x)

— e =B Vif (5 < 20 4 2my)p,

where (¥ < 2n + 2n;); denotes the space spanned by monomials that are poly-
nomials in b satisfying ¥ < 2n 4 2n;. Thus,

lim str(R}x)T*(x)) dx =1lim [ e =814 e (e) db,
t—0 on(g) t—0 R2nt

where w € (X < 2n + 2n1)p. The proof amounts to showing that

lim M= 1b=BI/4 o1 ) db = 0. (31)

>0 fpr2n

Without loss of generality we may assume w = b;, b;, . . . b;, @o, where wy is in-
dependent of b;,, b;,, ..., b;, and x(wg) < 2n 4 2n;. Then x(t"'wp) < 2n. If we
write 1w as

t"wg = t™ Z a){)(t)el,
1c{l1,2,...,.2n)
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where e; = €,Ciy ... €, if I ={iy,i,,...,1i,}, then
str(t"wg) = str(t’”wg’z""’m(t)elez c-e) > 0 as 1 — 0,

since )Z{t"lwg’2""’2"}(t)} < 0. Hence (31) follows from

f e W4 . by - by | db < 00
]R2n|

Now, in order to find the Chern character we need only compute

lim 42 str (foc(dfi)c(dfy) - - e(df)Te™™).

465

(32)

By Proposition 3.7, we need to determine the Clifford asymptotics of the operator

t*2 foc(dfi)e(dfz) - - - c(dfi) Ko (x) T*(x),

and for this we use Lemma 3.11.

(33)

LEMMA 3.12. Forany f € A= C®(M) and x = (xg; ¢) = (x¢; +/tb), we have

(i) f(x) = f(x0) + (X < 0)and
(it) (df)(x) = (@df)(x0) +(x < D).

Proof. (i) follows from
f(x) = f(xo) + V1O(b]) = f(x0) + (X < 0);
(ii) follows from df = Y, ei(f) and e;(f)(x) = &;(f)(x0) + (X < 0).
ProrosITION 3.13.  We have the following Clifford asymptotics:
t*12 foc(@fi)c(dfa) - - - c(dfi) K (x)T*(x)

= %2 fo (xo) c(dfi(x0)) e(df2(x0)) - - - c(dfi(x0)) e~ 1E=PI 4
(—1)"' ny ‘ 001 t 2n1 o N
. { 1_[ sin — exp{ — Z babg(e OV A )aﬂ}

@mt)" 2 4 o pal

P (AT +a(ADE L o@D +e@AabHH,

t(ANY (b —b),...,t(AN? (b —D),...)
" €2ng+1€2n04+2 " " €2p + e‘/;f()—( <2n+ 2”1)1)}:

where AT is a 2ng X 2no matrix defined by

2ng

1
(AN = —3 Z Rijii(xo) exe;
k=1

2ng

> RE(Tx)erer + (X <2)
k,1=1

I
2

(|

(34)

(35)
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for1 <i, j <2ng, and (AT)? (b — b) is defined by

2n

(AT b—b) = ) (by — ba)(bp — bp)(AN)Z. (36)
a, B=1

Proof. This proposition follows from Lemma 3.2(ii)(c), Lemma 3.9, Lemma 3.11
(for y/ = y), Lemma 3.12, and the equalities

2n
tr(A?) = (AN + w(AY? + ) ernpralX < 4D (37)
a=1
and
5 _ 2m
A = 1A G =) +1 Y ermpral(X < 4D), (38)
a=1
which are in Lemma 4.3 of [14]. O

LEMMA 3.14. If ¢ € 2n + 2ny)y then

lim o t*/2 str( fo(xo) c(dfi(x0)) c(df2(x0))

- c(dfilxo) e WPVl g) = 0,

Proof. Using

("% fo(x0) c(@dfi(x0)) c(df2(x0)) - - - c(dfi(x0))P} = —k + k + X(¢)
< 2n+2m,

the lemma can be established in the manner of the proof of Theorem 2. 0

COROLLARY 3.15.

;lirré t*2 ste(foc(dfi)c@fa) - - - C(dfk)(Te—‘Dz))

:f lim/ t"str w’(xo)e"llb_5|’2/4£;ni
MT =0 Jp2n (47Tt)n

ni 9 t 2)‘11
. 1_[1 sin —201 exp{ ~3 Z— babﬁ(e_G(XO)AJ“)aﬂ}
a= o, =1
CF(t5 (AT + (AN, L (AN (AN,
(AN = b), ..., t(ADNH* D —b), ... )ermgr1€mp42 - €2n) dbdxy,

where ' (xg) = t*/? fo(x0) c(dfi(x0)) c(df2(x0)) - - - c(dfi(x0)).
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THEOREM 3. The degree-2ny component of the differential form (with respect to
X0)

- _1)711
. m t(roye—Ib-B17/4 €
lim o t str(a) (x0)e A1)
ni 901 ¢ 2n1
. H sin > exp{ 1 Z bobg (e—@)(xo)AJ_)aﬁ}
a=l a, =1

P w(AT)? +u(AD?, L e (ADH +uah, L

(AN b = b), ..., t(AT) (b —b),...)eanpr1€0m012 - ezn) dbdxy

is the same as the degree-2no component of the differential form

1
eI V7D Jo(xo)(df1)(x0) A -+ - Adfy)(x0)
T 1 — -1
A det!/? _.__._Sinflz(éizn) A Pf{z sinh(izn + Jj@)}
1
— NI Jo(x0)(df1)(x0) A -+ A (dfi)(x0)

-1
AA(TMTY A Pf{zsinh(% + */?G))(v(MT))} ,

where Q" is a 2ng x 2ng matrix defined by

2ngp

1 .. .
QN = —= Riju(xo)wr Awy, 1 <1i,j < 2ny, (39)
2455

and Q% is a 2ny x 2n; matrix defined by

Q) = —% Zi Riju(xQ)wx Awy, 2no+1<i,j<2n.  40)
k=1
Here w = (w1, w2, ..., wy,) is the frame dual to E = (E\, E,, ..., E;,) and Q
is given by
-
o[ 2]
Proof. Since e;e; = —eje; + (x < 1), we canreplace AT and A+ by QT and Q-+

(respectively) in Corollary 3.15.
If we write Q' and Q1 (formally) as
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- 0w -
—U 0
0 /%)
QT = —U2 0 ,
0 up,
—U1 0
0 U
Ql = —vy 0 :
0 vy
L —vnl 0 -
where u; and v; are indeterminants, then we have
2n) nj
D babp(e™®C0QY)p = Zsin Oy - Vo (b3, + b2,
o, B=1 o=

@52 () = (=1 Z4zsm O b2, |+ B2,
and

r Q¥ =2(— 1)[Zu2‘+iv ]

By Lemma 3.11(ii) and Corollary 3.15, it is not difficult to see that the degree-2n¢
component of the differential form (with respect to xg)

lim " str(w’(xo)e_”b_guz/“(;lln—]
t—0 Jp2n dmt)"
2n
nsm—exp{—— — Z bubg(e @0 AL, }
a,8 1

F(t; w(AT? + (AN, .., (AN +w(ah)?, ..
t(ATY2 (b —b),...,.t(AN) b —b),... )€2n0+1€2n042 * + + eZn) dbdxg
is the same as the degree-2ny component of the differential form

" 1 " tosind, 7% /—1u, /2 b /—1vg/2
(=D (2;“/_—1) fRanw(x")(Dl 2 Usinh(u,,/2)nsinh(vﬁ/2)

p=1

L 1 i N —1v \/

y=1
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1
= (2Hﬂ)k/2fo(xo)(df1)(xo)A'--/\(dfk)(xo)
QT/4n (et J=1e\|™
12
A det _——sinh(QT/4n') /\Pf{251nh(4n + ) )]
1
N (Znﬁ)k/zfodf‘ Adfp A N dfi

A Q /=10 -
AA(TMTY APE{2sinh{ — + 010750)
V% 4 2
For more details about the last few steps, see [14]. O

COROLLARY 3.16.
lim £/% ste( foc(dfi)c(df2) - -~ c(dfe) (Te™)

1
= | G Adf e nd,

-1
AA(TMTY A Pf{2 sinh(% + ‘/:;@)(v(MT))} .

4. The Main Results

Combining Theorem 1, Theorem 2, and Theorem 3, we have reached the first goal
of this paper as follows.

THEOREM 4.

lim ch{(VID)(fo, fis .-+, fi)(T)

k'(2n«/—)k/2/ Jodfi ndfa A -+ Ndfi

—1
AATMT) A Pf{ZT sinh(% + J?G)(v(MT))} :

where ds = dsidsy -+ -dsy, k =even, T € G, f; € C®(M), and M7 is the fixed-
point set that is the disjoint union of a finite number of even-dimensional totally
geodesic submanifolds M T M2T yeens MrT . For the other notation see Theorem 3.

Now we derive the equivariant Chern character in the equivariant cyclic cohomol-
ogy. First recall a theorem by Connes and Moscovici.

THEOREM [6]. The equivariant Chern character
q)G(D) - {(D]é;(D)}k=even

Jor the invariant Dirac operator in the equivariant cyclic cohomology is given as
follows.
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(1) If k > 0, then
cbl(c;(D)(va f17 ---1fk)(T)

= ; ()\1)%! F(IAI + 5) res str( oV (df) V22 (dfy) - - - VY (dfy)

. |DI—2S-—k—2|)L|T),
where T € G, f; e C®(M), A = (A1, A2, ..., AL),
M=@+DO+r+2) - Qi+ o+ + A+ k),

and A\! =)»1!)»2!-'°)Lk!.
(ii) If k =0, then

@G (D) (fo)(T) = res{s™ str(fo|D|7*T)},
where fo € C*(M).

In order to compute this Chern character in the cyclic cohomology, we need the
following lemma.

LEMMA 4.1. If O is not an eigenvalue of D?, and we define an operator D* by
setting

D* = foVM(dfi)V*2(dfy) - - - V*(dfp),

then str(D*e~'0T) rapidly decays for large time t.

Proof. Since D* is a differential operator of order |A|, we can replace D* by
(1 4+ D?)/2 for the proof of this lemma. We have

[str((1 + D)M2e~P°T)| = [te(y (1 + DY HM/2e~P7T))
< lly (1 + D?)P2e=%) . gr(e (=07,

The maximal value of the function f(x) = (1 4+ x)!/%2e7"* is (I/te)!/%e'*/2,
where ¢ is a positive number such that & < w1 /(1 +2) and p is the first nonzero
eigenvalue of D2. It follows that

Iy (1 + DZ)'er_'gDzn < C.t7M2, pre=2/2,

Thus,
Istr((1 + D2)|W2e"‘D2T)| < C .12, gte=r2-t(=o)m /2,

which is rapidly decaying for large time 7. Here, we have applied

Tr(e—t(l—e)DZ) < e—t1-e)pu1/2

for large time ¢, which can be found, for example, in [1]. L]
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THEOREM 5. (i) Ifk > 0, then
res str (foVH (df) V2 (df2) - - - V¥(dfi)) - D72+ 2HT)

= (] :—k/Z) 351(1) fIM-k/2 str(fovll(dfl)vhz dfs) - - v dfi) - e_,DzT).

(i) Ifk = 0, then

res (s~ str(folD[™>*T)} = lim str( foe T,
S= >

(ii1) The equivariant Chern character ®5(D) = {CD’é(D)}k:even for the invari-
ant Dirac operator in the equivariant cyclic cohomology is given by

OE D)o, fis -+ » SOT)
1

T kK QaN =D Sy

. Q /=10 -
AA(TMT) APE}2sinh( — + o)t
4 2
wherek = even, T € G, f; € C®°(M), and M7 is the fixed-point set that is the dis-
joint union of a finite number of even-dimensional totally geodesic submanifolds
Ml M],...,MF.

Jodfindfa n--- Ndfy

Proof. By Theorem 2, Theorem 3, and the Connes—Moscovici theorem quoted
prior to Lemma 4.1, we need only prove (i) and (ii).
In the case of k > 0, applying the Mellin transform yields

res str(foVM(dfi) V2 (df) - - - V¥ (dfy) - D72 ~+=21T)

1 o0
— ts—l
S0 T(M +k/2 +5) /0 ’
PR te(( SN df) VR f) - - Y f)e P T) di

1 1 lole} .
= lim +f )Sts_
S->0F(|'\|+k/2+s)(/o 1

PR st (foV I )V () -+ Y (dfi)e D T) d

1 1
— lim st
s—»O0 (A +k/2+5) /o
M2 e [V 1)V (df) - - - VY (dfi)e ™ T) dt.

Here we have used Lemma 4.1.
Because of Theorem 2 and Theorem 3, we have

lim 1472 ste (VA (df) V2 (dfa) - - - VM (dfr) - e ™ °T) = Ly + O(1).

t—0

Thus,
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res str( oV (df1) V2 (dfy) - - V¥ (dfi) - ID| > ~+=2MT)

1 ] 2
= lim (P72 st (/oW (df) VP2 (df) - - - VM) - e7P7T).
NOEYDES str( foV ' (dfi) V2 (df2) (dfe) - e )
Finally, in the case of kK = 0 (which is similar to the preceding situation), we have

: [oosts_1 str( foe ™' T) dt
sT(s) Jo 0

res{s ! str(/o|D|”>7T)} = lim
s=0 s—0

1 o0 2
= lim ———— 571 str —tD dt
lim TG+ D) fo s str(foe )
= lincl) str(foe—’DzT). O
t—

REMARK 4.2. If T is the identity operator, then the formula in part (iii) of The-
orem 6 reduces to the corresponding formula in [6], which was computed using
Getzler’s symbolic calculus.
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