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1. Introduction

Let B denote the open unit ball of a complex Hilbert space H. The hyper-
bolic metric of B is given by the formula,

p(x,») =th™'(1—a(x, )2,

where o(x,y) = (1—|x|2)(1=|»|?)/|1—(x, »)|? for all x, y € B. More details
on the metric space (B, p) can be found in the books of Franzoni and Vesen-
tini [FR] and Goebel and Reich [GR].

For n=1 consider the hyperball B”, equipped with its hyperbolic metric,

pn(X,y)=max{p(x;,y;); 1 =i=nj,

forallx=(xy,...,x,) and y=(y,, ..., ¥,) in B”. Holomorphic self-mappings
of B", and more generally p,-nonexpansive mappings, were studied by Kuc-
zumow and Stachura [K1; K2; KSI; KS2], Vigué [V], and Abd-Alla [Al,
A2]. In this paper we shall establish the existence of a common fixed point
for a family of commuting continuous self-mappings of B” that are holo-
morphic on B”. The result provides a positive answer to an open problem of
Kuczumow and Stachura [KS2]. Finite-dimensional cases of this result can
be found in [S], [E], [HS], and [KS2]. For the result in B (n=1), see [KI1]
or [Si].

2. Preliminaries

In order to understand the geometry of the metric space (B”, p, ), it is useful
to study first the space (B, p). For each pair of points x, y in B there exists a
unique metric segment passing through them. The midpoint of that segment
will be denoted by 1x@1y; see [GR]. The proof of the next lemma can be
found in [Sh].

LEMMA 2.1. Forx,y,zin B,

p(3x @3, 2)* < 30(x,2)° +1p(»,2)* = jo(x, »)%.
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The next “cosine rule” is useful when dealing with behavior near the bound-
ary of B.

LEMMA 2.2. For nonzero x and y in B,
ch p(x,y) =|ch p(0,x) ch p(0, ) —sh p(0, x) sh p(0, )- (x, »)/(|x|-| ¥ .
Proof. Since th p(x,y)=(1—o0(x,y))/? and ch?¢=1/(1—th?¢), we have
ch?o(x, ) =|1—(x, »)/((1=|x[>)(1=|y[*)).

The result follows easily by noting that ch?p(0, x) =1/(1—|x|?), sh2p(0, x) =
|x[*/(1—|x]|?), and the corresponding formulas for y. O

The next proposition provides a useful criterion for checking convergence
to a point on the boundary of a given net in B.

PROPOSITION 2.3. Let {x,},cp be a p-unbounded net in B satisfying
(2.1 sup {p(xy, Xg) —0(0,x5)} = R< 0.

Bz

Then there is a point u € 0B such that u=1im, x,,.

Proof. We note first that lim, p(0, x,) = o. Otherwise there would exist M,
and for each i e D an «; = i, such that p(0,x,,) =M. But then, for all 7,

p(0, x;) < p(O0, Xo;) +p(Xq;s %) =<2p(0, xal.) +R<2M+R,

contradicting the p-unboundedness of {x,}. By (2.1) there exists a yo€ D
and a constant ¢ such that ch p(x,, xg)/sh p(0, xg) < c whenever 8= o = v,.
By Lemma 2.2 we have, for 8= a=7y,,

Re(x,,x5)/(|x,||X3]) = coth p(0, x,) coth p(0, xg) — c/sh p(0, x,,).
For a subnet {xg } converging weakly to ¥ we have
Re(x,,u)/|x,|=coth p(0, x,) —c/sh p(0, x,).

Now, for a subnet [xaj} converging weakly to v, we get Re(u, v) = 1. Hence
u=v and |u|=1. Since the subnets were arbitrary, we conclude that the net
{x.}.ep converges strongly to u. Ll

In a similar manner the following more general result can be verified. We
omit the proof.

PROPOSITION 2.4. Let {x,},ep be a netin B. Then {x,},.p converges to
a point on the boundary of B if and only if

lim p(0, x,) + p(0, x5) — p(Xx,, Xg) = oo.
o,

3. Main results

Next we shall examine p,-nonexpansive mappings.



Common Fixed Points of Commuting Holomorphic Mappings 283

DEFINITION 3.1. A mapping 7: B" —» B" is p,-nonexpansive if
on(Tx, Ty) < p,(x,y), Vx,yeB".
N(B"™) will denote the class of all such mappings.

It is known (see [FV; GR]) that N(B") contains all holomorphic self-map-
pings of B". The fixed point set of a mapping 7 will be denoted by F(T).

THEOREM 3.2. Let {T,},c; CN(B") be a commuting family with a p,-
bounded invariant subset C. Then N ,.; F(T,) # ¢.

Proof. We shall use induction on n. The case n =1, which is known (see
[Si]), will be examined in the course of the proof. Let {S,};cp denote the
semigroup generated by {7}, via composition. Each s € D may be identi-
fied with a function f; from 7 to the nonnegative integers which is zero except
for a finite number of entries. That is, if S;=T73 --- T then f(e;) =,
i=1,...,k, and fy(a)=0 for ae'\{ay,..., a;}. This identification induces
a natural order on D. Fix x € C and consider the functional #:B" — [0, )
defined by
h(y) = lim sup p,(y, S;x)*.

teDs=>t

It is easy to see that (7, y) < h(y) for all « €I and y € B". In addition,

Pn(3y1+3¥2, S x) =max{p,(¥;, S X), pp( ¥y, Ss X))

Let a=inf{h(y); ye B"}. It follows that for all b>a the set {ye B";
h(y)=<b} is a nonempty closed and convex invariant subset for {7,},;.
A weak compactness argument shows that K ={ye B"; h(y)=a} is a non-
empty invariant subset.

If n=1, Lemma 2.1 shows that X is a singleton and we are done, so we
may assume n> 1. For x, ye K denote sx®1y=(Lx @1y, ..., 1x,®1,).
By Lemma 2.1 we have

h(3x@3y) < $h(x)+ $h(y)—min{p(x;, ;)%/4; 1<i<n]},

50 x;, = y;, for some i;. For x, y, z € K we consider w=3z® 3 (3x®3»), and
applying Lemma 2.1 twice we obtain

h(w) < 3h(2)+ 3h(x)+ ;h(Y) —m?n{%P(Xi,Yi)2+ 203X ®31,2)%)
I

Hence x; = y; =z;, for some /;. Continuing inductively we see that each fi-
nite subset of K has a common coordinate. This, for subsets of order 2, is
enough to imply the existence of a common coordinate for all the members
of K. After a possible reordering of indices we may assume that K = {x;} X K’
where x; € B and K’C B"~!. For each o€ I define 7;: B*~! - B"~! by

T.y = ((To(X1, ¥)2s s (Tp(x1, ¥)),) VyeB" L,

K’ is invariant under {7}, SO by the induction hypothesis there is a fixed
point y’ for {T/},<; in B"~!. Hence (x;,y’) is the desired common fixed
point for {7_},;- O
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REMARK 3.3. Theorem 3.2 can be generalized to a wider class of semi-
groups, such as left reversible semigroups.

We quote the next result from [K1]. We remark that the existence of a com-
mon fixed point can also be deduced from Theorem 3.2, while the existence
of a p,-nonexpansive retraction follows from a modification of Bruck’s re-
traction method; see [B].

THEOREM 3.4. LetT,...,T,, be commuting mappings in N(B") such that
F(T))# ¢, 1= j=m. Then N]_; F(T}) is a (nonempty) p,-nonexpansive
retract of B".

In order to deal with mappings in CN(B")—that is, those mappings in N(B")
which have a continuous extension to the boundary —it will be convenient
to consider a slightly more general class of mappings; see [K2].

DEFINITION 3.5. N(B”) is the set of all continuous mappings 7°: B — B"
such that 7 |gne N(B") for all ¢ in (0, 1).

Note that we may have Tx € dB" for x € B if Te N(B"). But (as one can eas-
ily check) if Tx =v, where |v; |=--- =|v; | =1, then (Ty); = v}, ..., (T¥); =
v;, for all ye B".

The next lemma is essential for the proof of our main theorem.

LEMMA 3.6. Let {z,},; be a p,-unbounded net in B" such that
sup {pn(zas zﬁ) - Pn(O, ZB)} < 00,
a<f

Then there are indices 1 <i;<i,<---<i,=n (1=<r=n) and points {e;};_  in
0B such that, for any T € CN(B") for which there is oo With {p,(2q> T20)} o= of
bounded, the face K ={y e dB"; y; =ey, ..., y; =} is T-invariant.

Proof. By passing to a subnet and reordering indices if necessary, we may
assume that for some r with 1 <r <n we have:

sup{p,(0,z,)—p(0,(2,);)} < for I=<i=r;
sup{p,(0,2,)—p(0,(2z,);)} = for r+l=i=<n.

Forl1=i=<r and 8=« we have

p((24)i5 (28)i) — p(0,(25)i) = Py (245 2) — £n(0, 25) + M

for some M. Hence by Proposition 2.3 there are e, ..., e, in dB such that
lim,(z,);=e; for 1<i<r. If r=n then lim, z,=(ey,...,e,), lim, Tz, =
(e,...,€,), and (ey,...,e,) is a fixed point of T for each T as in the state-
ment of the lemma. So we may assume r < n.

We shall show that K={yedB"; y,=e,...,»,=e,} is T-invariant for
each T as above. Fix (x,,,...,X,) in B"~", and for each a let v, = ((Z,)15 -+
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(Zo)rs Xr 4155 Xy). We have lim, v, =(ey, ..., €., X, 41, ..., X,) = U, and hence
lim, Tv, = Tv = w exists. We claim that w; = ¢; for 1 <i <r. Indeed, for a=
oy we have, for some R,

max p((Tva)i’ (Za)i) = pn(Tvou Za)

l<i=r

<p,(Tv,, Tz,)+R
=< max p(X;,(24);)+R.
r+l<i=<n
By the definition of r, we shall face a contradiction unless w;=¢; for 1 <i <r.
_]

Next we state and prove our main theorem.

THEOREM 3.7. A commuting family of mappings {T,},cin N(B™) hasa
common fixed point in B".

Proof. We shall use induction on #. The case n=1is known (see [K1]), but
will be verified with a different proof for the sake of completeness. The
proof is divided into several steps.

(1) Assume first that there is =T, for which 7x € 8B" for some x € B".
Without loss of generality, 7x = v = (vy, ..., v,), where |v;|= -+ =|v,|=1and
|0y 15 -++5 |Us| <1 for some 1 <r < n. It follows that for all y € B", (Ty); =v;
for 1< j=<r. Hence, for all e,

(1,(Tx)); =(T(T,x)j=v;, l=j=r.
If r =n (this is clearly the case if #=1), then v is a common fixed point, so

assume r<n. For (z,,1,...,2,)€B" 7" denote Z=(Vy, ..., Ury Zry1s-e+52n)-
For all s, 0<s<1, and o eI we have

Pn(sT, (sTx), sT (s2)) < p, (sTx, sZ)
=max{p(sv;,sz;); r+1=<j=nj
=max{p(v;,z;); r+1=j=nj.

Letting s tend to 1 _we conclude that (7,,(Z)); = v; when 1 < j <r. Hence, the
face {vy,...,v,} X B"~" is invariant under {7,},.;, and we may use the in-
duction hypothesis to establish the existence of a common fixed point.

By (1) we may assume that {T]},.; C CN(B").

(2) Assume there is 7= 1., for which F(T')NB" = ¢. Consider the se-
quence {770}, . Define n; =1, and for k£ =1let n; ., be the least m > n; for
which p, (0, 7™0) =max{p,(0,770); 1 < j < m]}. Denote z, = T"0. By defi-
nition, for kK = m we have

Pn (st Zk) - pn(Os Zk) = pn(T"mO, TnkO) - ,On(O, T”kO)
< p,(0, T"*~"mQ) — p,(0, T"x0) < 0.
For all o we also have supy, p,(2x, T, 2x) < p,(0,T,0) < co. By Lemma 3.6 we

obtain an invariant face (a common fixed point if n=1) for {7}, ;, and we
may use induction.
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(3) By the previous steps we may assume that F(7,,)NB" # ¢ for all «.

Let D be the set of all finite subsets of 1. For each s € D there corresponds
a subset {¢y,..., o}, and by Theorem 3.4 there exists a p,-nonexpansive
retraction Py: B"—» N¥_(F(T,,)NB"). The set D is directed by inclusion.
Consider the net {P;0},. p. Assume first that it is p,-unbounded. For s < ¢
we have

P (P50, P,0) = p,(P0, P,P,0) < p,(0, P,0).

In addition, for each «y in 7 let sy correspond to the singleton {cy}. For
§ = 59 we clearly have T, P;0 = P0. Hence Lemma 3.6 can be applied once
again to produce an invariant face for {7}, , and the result follows from
the induction hypothesis.

The remaining case is when {P,0], . p is p,,-bounded. In that case, consider
the functional /4: B" — [0, o) defined by

h(x)=lim sup p,(x, P,0).

teDs=>t

For all ¢y € I and x € B” we have A( 1,,,x) < h(x), since we may consider only
t = 5o where s, corresponds to the singleton {o}.

Let a=inf, . gn h(x) and consider C={xe B"; h(x)<a+1}. C is a non-
empty, p,-bounded, ({7}, ;)-invariant subset; hence by Theorem 3.2 there
is a common fixed point in B". L]
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