p-SUBGROUPS OF COMPACT LIE GROUPS
AND TORSION OF INFINITE HEIGHT IN H*(BG), 11

Mark Feshbach

1. The main purpose of this paper is to describe the size of the p-torsion subring of
H*(BG, Z) where G is a compact Lie group. We construct a subring of H*(BG, Z)
which is a direct sum of reduced polynomial algebras over Z/p‘Z for various i
(Corollary 1.7). This is accomplished by using transfer results largely developed in
Part 1 of this paper [2]. A detection result of Quillen implies this is the best possible
result in a suitable sense (Corollary 1.8).

The integral cohomology of the classifying space of a compact Lie group is
extremely complicated in general. Even the torsion free quotient ring may behave
oddly. For example if G = Spin(12), the quotient ring is not isomorphic to the
invariants of the cohomology of the classifying space of a maximal torus under the
action of the Weyl group [4]. In theory if one knows the rational and mod p
cohomologies of BG, in addition to all the Bocksteins, one can derive a great deal of
information about the integral cohomology of BG. This is often very difficult in
practice however. One might also think that knowing H*(G) one could easily deter-
mine H*(BG) by a spectral sequence argument. The point is that the calculations
become extremely difficult. The transfer techniques used here, however, are straight-
forward and produce a subring of interest.

A result we use several times is the following theorem of Quillen [5], which we
shall summarize briefly. First there is a detection part of the theorem. This says that
any non-nilpotent element in H*(BG,Z/pZ) is detected on some maximal ele-
mentary abelian p-subgroup of G. The second result concerns the existence of non-
nilpotent elements. Let x € ®H*(BL, Z), where the direct sum is over all conjugacy
classes of maximal elementary abelian p-subgroups of G, with L being a representa-
tive subgroup. If the coordinates of x are compatible with the obvious necessary
conditions imposed by the relationship between the elementary abelian p subgroups
of G and G, then some pth power of x is the image of an element of H*(BG,Z/pZ).

We shall only use the detection part of Quillen’s theorem in this paper. We note
that Quillen and Venkov have given a short proof of this part of the theorem for
finite G [6]. One may wonder to what extent the full theorem of Quillen can be used
to prove results like Corollary 1.7 concerning the existence of p-torsion elements in
H*(BG,Z) even though Quillen’s theorem provides no information about the Bock-
steins. The answer is somewhat technical. If a maximal elementary abelian
p-subgroup has p-rank larger than the rank of G, Quillen’s theorem can in fact be
used to show the existence of p-torsion elements which are detected on this subgroup.
This takes a little work however. If the p-rank of the maximal elementary abelian
p-subgroup L is not greater than the rank of G, but L is not contained in a maximal
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torus, Quillen’s theorem does not seem to provide enough information to show the
existence of p-torsion. Part a) of Theorem 1.3 does follow indirectly from the full
Quillen theorem but this makes no comment about p-torsion. Hence we shall only
use the detection part of Quillen’s theorem. The existence of elements will be deduced
by transfer means (although Quillen’s detection resuilt will be used to determine facts
about them). In essence Quillen’s detection result provides an upper bound for the
size of the p-torsion element subring of H*(BG,Z) and the transfer techniques we
use realize that upper bound.

The second section of this paper is more technical and discusses among other
things exactly which elements of H*(BG) can be produced by the transfer techniques
of this paper.

We shall say an element x is p-forsion of infinite height if p‘x = 0 for some i > 0
and x" # 0 for all n. The theorem given below is technical but is directly related to
our discussion of p-torsion elements.

DEFINITION 1.1. Let R be a commutative ring and p be any prime. By the reduc-
tion of Rmod p we mean R® Z/pZ. We say a subset S of R is semi-algebraically
independent mod p if the reduction of elements of S are not nilpotent and any rela-
tion among the reductions of elements in S is a sum of terms which are nilpotent. The
semitranscendental degree mod p of R (std) is the maximum cardinality of a subset
of semialgebraically independent elements mod p.

A reduced polynomial ring is the subring of a polynomial ring consisting of the
elements which have zero constant term.

EXAMPLE 1.2. Let R be a direct sum of two reduced polynomial rings over Z with
r and ¢ independent variables respectively. The std of R is r+1¢.

THEOREM 1.3. Let G be a compact Lie group. Let £ be the set of conjugacy
classes of maximum elementary abelian p subgroups of G.

a) Then the stdmod p of H*(BG) is k, the sum of the p ranks of the conjugacy

class representatives of L.
Furthermore,

b) If every element of £ consists of a conjugacy class of subgroups which are not
contained in maximal tori, then there exist k semialgebraically independent ele-
ments mod p in H*(BG) which are p-torsion of infinite height.

c) If a conjugacy class of p-rank t consists of maximal elementary abelian p sub-
groups of maximal tori in G, then a set of k semialgebraically independent ele-
ments of H*(BG) may be chosen so that exactly k —t of them are p-torsion of
infinite height. The largest number of semialgebraically independent elements
mod p in H*(BG) which are p-torsion is k —t.

Proof. First we note that the stdmod p of H*(BG) is < k. Quillen’s detection
result implies that H*(BG,Z/pZ) mod nilpotents is isomorphic to a subring of
® H*(BL,Z/pZ), where the direct sum is over £, L being a representative sub-
group. The stdmod p of @ H*(BL,Z/pZ) is k. Hence k is an upper bound for the
stdmod p of H*(BG).
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We use transfer techniques to produce the desired elements. Recall the situation in
[2]. G is an arbitrary compact Lie group. L is a maximal elementary abelian p sub-
group of G of prank/. C is the centralizer of L in G. N is the normalizer of L in G.

DEFINITION 1.4, Let W; = N/C be a mod p Weyl group of G.

Let Tr=Y Cg: H*(BL) — H*(BL) be the trace homomorphism where Cg is the
conjugation homomorphism associated to an element g € W; and where the sum is
over W;. Let s> 0. Let Tr® be Tr restricted to p° powers of elements in H*(BL).

Using a lemma concerning the image of H*(BC) in H*(BL) and the double coset
theorem for the transfer [3] we showed in [2] that

(1.5) im[p*(L, G) > T(C, G)] Dim Tr’

where T(C, G) is the transfer associated to the fibre bundle o(C, G) : BC— BG and
s is a nonnegative integer dependent on a unitary embedding of C.

In [2] we merely used the fact that im 77° # 0 to produce a single p-torsion element
of infinite height in H*(BG). In this section we exploit the fact that im 77 is an ideal
in the invariants of H*(BL) under the action of W} . In Section 2 we discuss which
elements are in im 77.

There are three cases that must be considered.

Case 1) L is contained in a maximal torus in G.

Case 2) L is not contained in a maximal torus in G but the intersection of L with the
connected component of G is contained in a maximal torus.

Case 3) The intersection of L with the connected component of G is not contained
in a maximal torus.

In Case 1 any element in H*(BG) which is detected on H*(BL) is torsion free
since H*(BT) is torsion free (7 being the maximal torus containing L). In Case 2 we
showed in [2] by simple means that there is a p-torsion element of infinite height in
H*(BG) which pulls back to an element of infinite height in H*(BL). Case 3 is the
main case. We showed that given any element in im 7r° which is of infinite height
there is a p-torsion element of the form 7(C, G)(y) which hits it.

We now observe that im Tr is an ideal in H*(BL)".. Let A be the polynomial sub-
albegra of H*(BL) on / generators of degree two corresponding to the factors of L.
W; acts on A as a subgroup of GL(/,Z/pZ), the full general linear group. Dickson
[1] has shown that ASY is a polynomial algebra on / homogeneous generators
c,...,¢. Pick integers a; so that all ¢/ have the same degree and p°| a;. Let ¢ be a
nonzero element of ANim 7r° [2, Lemma 1.6]. Then

tefl, ... tefl€im[p*(L,G) - T(C, G)]

by 1.5. These elements are algebraically independent. For suppose F(fcfi,..., tcf!) =
0. We can assume F is homogeneous of degree r. Hence

F(tefr, ... tefty =t"F(cfr,...,cf1)=0

contradicting the fact that the ¢; are algebraically independent.
We thus have / albegraically independent elements of the form 7(C, G)(y) which
map to the the fcfi. We note the following useful fact.
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PROPOSITION 1.6. If K is a maximal elementary abelian p subgroup of G which is
not conjugate to L, then p*(K, G) T(C, G)(y) = 0 for positive dimensional y.

We apply the double coset formula for the transfer [3] and note that all terms in
the sum involve T(KNC%,K) for some g € G. Moreover KN C8 = KN L?# since
L is maximal and hence contains all the elements of order p in its centralizer.
Let KNL&=PB. Then T(B,K) equals 0 on all positive dimensional elements
(0o* (B, K) is surjective and T(B,K) cp*(B, K) is multiplication by the index of B in
K and hence equals 0 on all positive dimensional elements since B is a proper sub-
group). Hence all the terms in the double coset formula are 0.

We now choose a subset S of H*(BG) which has k elements. For Cases 1 and 3
pick / elements of the form 7'(C, G)(y) which pull back to the #cf. The elements for
Case 1 are torsion free since L is contained in a maximal torus. For Case 3 the
elements can be chosen to be p-torsion of infinite height as in [2, p. 232].

For Case 2 we must alter the procedure slightly. Let x € H*(BG) be a p-torsion
element of infinite height which is detected on L [2, p. 232]. We can assume
p*(L,G)(x) =w € AP’ where A is the polynomial subalgebra of H*(BL). Then
{ wecfi}) is algebraically independent. There exist / elements of the form 7T(C, G) (»)
which pull back to the ¢¢fi. Pick / elements of the form x7'(C, G) (¥) which pull back
to the wrcfi. We note that if K is a maximal elementary abelian p subgroup of G
which is not conjugate to L, then p*(K, G)(xT(C,G)(y)) =0as in 1.6.

We claim that S is semialgebraically independent mod p. Suppose F'is a polynomial
in reductions of elements of S. The image of Fin each summand H*(BL) consists of
those terms which are products of the elements associated to L (since the other ele-
ments map to 0). Since there are no relations among the elements associated to L
each term of F must map to 0. By Quillen’s theorem this implies each term is nilpotent.

Finally suppose L has p rank¢ and is contained in a maximal torus. Then no
p-torsion element is detected on L. Hence by Quillen’s theorem the largest number of
semialgebraically independent elements mod p which are p-torsion is k—¢. This
completes the proof. O

Example 1.2 indicates that what the std mod p is really measuring is the maximum
number of independent variables of a direct sum of reduced polynomial rings that
can be embedded in RQZ/pZ. The following shows what the shape of the poly-
nomial subrings is in H*(BG). Corollary 1.8 shows that this result is the best pos-
sible in a suitable sense.

COROLLARY 1.7. H*(BG) contains a subring isomorphic to ® A;, where the
sum is over £. L is a representative subgroup of a class in £ and has p-rankl. A; isa
reduced polynomial ring on [ variables. If L is not contained in a maximal torus the
coefficient ring of Ay is Z/p'Z for some i > 0. If L is contained in a maximal torus
the coefficient ring is Z. (Note that the degrees of the generators of the A; might be
quite high.)

Proof. We take a subring of the subring generated by the elements constructed in
the proof of 1.3. First take high enough pth powers of the elements constructed so
that the product of any two elements corresponding to different classes in £ is O.
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(The product of any two such elements is killed by some power of p and is not of
infinite height since it is not detected on any class in £). Second it is possible that if L
is not contained in a maximal torus then some elements associated to L may be
p-torsion of different pth powers. However, one may choose new elements from the
subring generated by the elements previously associated to L so that the subring they
generate is a reduced polynomial ring on / generators. This completes the proof. 0O

Any subring of H*(BG) which is isomorphic to a direct sum of reduced poly-
nomial rings over coefficient rings of the form Z and Z/p‘Z i> 0 must be of the
following shape. First there can be at most one torsion free summand and its dimen-
sion must be less than or equal to the dimension of the maximal torus of G. This
follows since the torsion free quotient ring of H*(BG) embeds in H*(BT). Second
no two summands are detected on the same class in £ since otherwise their product is
not 0. Third if a summand consists of p-torsion elements the dimension of the sum-
mand is less than or equal to the maximal p-rank of those classes in £ which detect
an element of the summand. Consider the image of the generators of a summand in
each conjugacy class. If these images are not algebraically independent then a non-
trivial relation exists between them. This relation corresponds to a p-torsion element
of infinite height in A*(BG) which goes to zero on the given conjugacy class. If such
a relation held for all detecting conjugacy classes, the product of the corresponding
elements would be a p-torsion element of infinite height which is not detected on any
conjugacy class. This is impossible. Hence the maximum number of independent
variables in a summand is at most equal to the maximal p-rank of a conjugacy class
which detects it.

We thus have the following corollary.

COROLLARY 1.8. Suppose H*(BG) contains a subring isomorphic to a direct sum
of reduced polynomial rings with coefficient rings equal to either Z or Z/p‘Z for
i> 0. Then the number of p-torsion summands is at most equal to the number of
conjugacy classes of maximal elementary abelian p-subgroups of G not contained in
a maximal torus and the number of variables in each summand is bounded above by
the maximal p-rank of the conjugacy classes that detect it, such conjugacy classes
being distinct for each summand.

If a torsion free summand exists the number of variables in it is bounded above by
the dimension of a maximal torus of G. If this summand is detected on any class in
&£, then the torsion free summand corresponds to the conjugacy classes that detect it
as for the p-torsion summands. That is, the conjugacy classes that detect it do not
detect any other summand. If however no conjugacy class detects it (which will
happen if all generators are divisible by p in H*(BG)) and no conjugacy class is
contained in maximal tori, then it is possible to have a torsion free summand which
does not correspond to any class in £. (For example require that all generators be
divisible in H*(BGY) by high powers of p.) This is in a sense an extra summand.

Excepting this possibility, in which the elements in the torsion free summand are
not detected on any elementary abelian p-subgroup of G, we see that the direct sum
of rings generated in Corollary 1.7 is the largest possible in the sense that it achieves
the maximum number of summands with the maximum number of independent
variables in each summand.
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2. In this section we discuss exactly which elements of H*(BG, Z) can be produced
by the transfer techniques of this paper. We also show that if L is a maximal ele-
mentary abelian p-subgroup of a connected compact Lie group which is not con-
tained in a maximal torus, then the normalizer of L mod the centralizer has order
divisible by p. We begin with an example.

Formula 1.5 implies the existence of many elements in H*(BG,Z). Since im Tr
depends only on L and W, these elements exist in general situations. One must con-
sider the three cases mentioned above to decide whether these elements are p-torsion
or not. If L is contained in a maximal torus (Case 1) then the elements are torsion
free. If the intersection of L with the connected component of G is not contained in a
maximal torus (Case 3) then the elements are p-torsion. In the remaining case, where
L is not contained in a maximal torus but the intersection of L with the connected
component of G is contained in a maximal torus, some elements may be p-torsion
whereas others are not. However, if one multiplies these elements by a p-torsion
element of infinite height which is detected on L, then the products are all p-torsion
of infinite height.

EXAMPLE 2.1. U(n) and O(n) have isomorphic maximal elementary abelian 2
subgroups Ly and Ly (namely (Z/2Z)" embedded in the diagonal of the standard
matrix representations of U(n) and O(n)). W; in both cases is ¥,, the symmetric
group on n letters. Ly is contained in a maximal torus in U(n). Hence the elements
created in this case are torsion free. Lo is not contained in a maximal torus in O(n).
If n> 2, Lo intersected with the connected component of O(n) is not contained in a
maximal torus. Hence all the elements created are 2-torsion of infinite height.

In [2] we used the fact that im 77 # O to construct a single p-torsion element of
infinite height in H*(BG). In Section 1 of this paper we have used the fact that im 77
is a nonzero ideal in H*(BL)"L. One may ask how much additional information can
be obtained by analyzing im 77 in more detail. That is, exactly which elements of
H*(BG) can be produced by the transfer techniques of this paper.

We note the following property of im 77.

PROPOSITION 2.2. Let G be any compact Lie group which has L as a maximal
elementary abelian p subgroup with mod p Weyl group W;. Let K be any maximal
elementary abelian p subgroup of G which is not conjugate to L. Then p*(KNL, L)
annihilates positive dimensional elements in im Tr(\ A, where A is the polynomial
subalgebra of H*(BL) generated by the two dimensional elements.

Proof. From 1.5 and 1.6 it follows that for x €im TrN A, p*(KNL,L)(x?°) =0
for some s. Since imp*(KNL,L) is contained in a polynomial subalgebra of
H*(B(KNL)), it follows that p*(KNL,L)(x) = 0. O

The conclusion of this proposition along with the fact that im 77 is contained in the
invariants essentially characterizes im 77.

THEOREM 2.3. If x € H*(BL)"L and p*(KNL,L)(x) =0 for all G and K satis-
Jfying the hypotheses of 2.2, then some power of x is in im Tr.

Note that Theorem 2.3 along with 1.5 tells one which sorts of elements can be
created by the transfer techniques of this paper.



p-SUBGROUPS OF COMPACT LIE GROUPS 305

This theorem follows from the following result.

THEOREM 2.4. Let G be a finite group acting on ¥,[x,,...,x,} = A via an embed-
ding in GL(n,F,), which acts on the one dimensional elements of A. Let Tr=
Yeeg 8 A A.

a) If x€im Tr and g is any element of order p in G then x € K,, the ideal in A
generated by {(g—1)(x;) |i=1,...,n}.

b) If x € AC and x € N K,, then x* € im Tr for some s> 0.

REMARK. No good reference for this result exists. However, it was pointed out to
us that this theorem follows more or less from the theory of covering spaces in alge-
braic geometry. An elementary proof also exists which in addition puts a bound on
the exponent s. However, this is less conceptual than the proof using algebraic
geometry and less enlightening. We shall take advantage of this opportunity to out-
line the conceptual proof, following closely a sketch pointed out to us by a referee.

Let K = N K,. Restated, Theorem 2.4 states that im 7r C K¢ N AC C rad(im 77),
where im 77 is viewed as an ideal in A° and rad is the radical. The inclusion of im 7r
in K5 N AC is easy to establish. If x € im Trg, then x € im Try for any subgroup H.
In particular if g is an element of order p in G, then x € im Tr; implies that there
exists a y such that x=(1+g+---+g? )y = (g—1)?"'y. The last equality holds
since we are in characteristic p. Since (g—1)(uv) = [(g—Dulv+ [(g—1)vig(u) it
follows that x € K. This establishes part a) of the theorem.

The proof of part b) is more complicated. It is straightforward to reduce to the
case where G is a p-group. We shall work in Spec. Let V() denote the variety of the
ideal 1. Since V(rad(l)) = V(I), we seek to establish the equality of V(im 7r) and
V(KgNA®). We now appeal to the theory of covering spaces. The inclusion
A% - A corresponds to a covering map Spec A — Spec A¢ which is generically
|G|-sheeted but which includes, in general, a ramification locus. We claim that
V(Kg) is precisely the ramification locus. If g € G has order p, then V(Kj) is the
locus where the subgroup generated by g acts trivially. Moreover, V(Kg) =
V(NK,) =UV(K,). Hence V(Kg) is the union of all points fixed by any p-cyclic
subgroup of G. If G is a p-group, then any point fixed by an element of G is also
fixed by a p-cyclic subgroup. Hence V(Kg) is the total ramification locus. The image
of the ramification locus in Spec A€ thus equals V(K;N AY). The theorem follows
by noting that V(im 7r) is contained in the image of the ramification locus. If a
covering is unramified the image of the trace is nondegenerate. Hence the locus
where the trace vanishes is supported on the image of the ramification locus.

Proof of 2.3. Let A be identified with the polynomial subalgebra of H*(BL), on
which W, acts by conjugation. Consider the semidirect product of L by W, where
the action of W on L is induced from that of N. Call this group D. Let Lg be a max-
imal elementary abelian p-subgroup of D which contains g and all elements of L
which commute with g. Then Lg is not conjugate to L in D since L is normal. Hence
by 2.2, p*(LgNL,L)is0onim 7rN A. Note that LgN L is exactly those elements of
L which commute with g.

It is not hard to see that the kernel of p*(LgMN L, L) restricted to A is exactly K.
Since the minimal polynomial of g divides X?” — 1 = (X — 1)? there is a basis for L so
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that g is composed of Jordan blocks with 1’s down the diagonal. LgN L is generated
by the last elements in the Jordan blocks. The dual of each element of the basis rep-
resents a generator of A. The action of g on A is given by the transpose of the matrix.
The image of g — 1 on the generators of A consists of the duals of the generators of L
not fixed by g. This is the same as the generators which are in kerp*(LgNL,L).
It follows that if x € A¥LNkerp*(LgNL,L) for all g of order p in W}, then
x*€im7Tr. 0

Finally an interesting and important question is what mod p Weyl groups, W,
exist for the simply connected simple compact Lie groups. The answer is of course
known for certain groups such as O(n) and U(n). We give one preliminary general
result.

COROLLARY 2.5. Suppose L is a maximal elementary abelian p subgroup of
a connected compact Lie group G, which is not contained in a maximal torus.
Then p| |W,]|.

Proof. Suppose pt |W,|. Then im Tr on positive dimensional elements equals the
invariants H*(BL)".. (In fact if x is invariant and has positive dimension then
Tr(x) = gx where g is prime to p). Hence given x € H*(BL)"L there exists a
p-torsion element of the form 7T(C, G)(y) which hits x” for some r > 1.

Let S = Z/pZ be a subgroup of L. Then S is contained in a maximal torus by the
maximal torus theorem. Since p*(S, G) is nontrivial by a result of Swan [7] and
im p*(L, G) is contained in the invariants, there is an element x in A*(BL)"t which
is detected on S. No power of such an element can be the restriction of a p-torsion
element since S is contained in a maximal torus. This contradiction implies that
plIWL|. g
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