AN EXAMPLE OF A PLURISUBHARMONIC MEASURE ON THE UNIT BALL IN C²

Eric Bedford

1. INTRODUCTION

Let $D \subset \mathbb{C}^n$ be an open set, and let P(D) denote the plurisubharmonic functions on D. Given a closed set $E \subset \partial D$, we define the function

(1)
$$u_E(z) = \sup\{v(z) : v \in P(D), v \le 1, \overline{\lim_{\zeta \to z_0}} v(\zeta) \le 0 \text{ for } z_0 \in \partial D \setminus E\}$$

(see [5]). If n=1, then u_E is the harmonic measure of E. For n>1, this is an instance of the generalized Dirichlet problem of Bremermann with upper semicontinuous boundary values. If D is strongly pseudoconvex, then it follows from [4] and [6] that $u_E \in P(D)$, that $\lim_{\zeta \to z_0} u_E(\zeta) = 0$ if $z_0 \in \partial D \setminus E$, and $\lim_{\zeta \to z_1} u_E(\zeta) = 1$ if $z_1 \in \text{int } E$. It was also shown in [4] that if u_E is C^2 , then

(2)
$$\det\left(\frac{\partial^2 u_E}{\partial z_i \partial \bar{z}_j}\right) = 0.$$

The structure of solutions of (2) is discussed in [2]. There it is shown that if $u \in C^2(D)$, $D \subset \mathbf{C}^2$, $\partial \bar{\partial} u \neq 0$ satisfies (2), then there exists a foliation \mathscr{M} of D by Riemann surfaces (1-dimensional complex submanifolds $M \subset D$) such that for each $M \in \mathscr{M}$, $u|_M$ is harmonic on M. Conversely, it is possible to try to construct u by first finding a foliation \mathscr{M} of D and then prescribing that u be harmonic on each $M \in \mathscr{M}$. Any u which is harmonic along the leaves of a complex foliation will satisfy

(3)
$$\det\left(\frac{\partial^2 u}{\partial z_i \partial \bar{z}_i}\right) \leq 0.$$

To construct the solution of (1) we will find a foliation \mathcal{M} and make u be harmonic on the leaves such that u=1 on $E\cap\partial M$ and u=0 on int $(\partial D\backslash E)\cap\partial M$. The only trick is to choose \mathcal{M} so that the resulting function u will be plurisubharmonic, and will thus satisfy (2).

In a related problem (see [1]), the leaves of the corresponding foliation were found by solving a free boundary problem. Here we construct u_E for special D

Received July 3, 1979.

Research supported in part by NSF grant MCS 76-23465A01.

Michigan Math. J. 27 (1980).

and E, where there are enough symmetries that the construction may be reduced to a problem in two real variables. Our methods are elementary, but the examples given here seem to be the only ones that are known explicitly.

2. CONSTRUCTION FOR A SPHERICAL CAP

We let $D = \{(z,w) \in \mathbb{C}^2 : |z|^2 + |w|^2 < 1\}$ and $E = \{(z,w) \in \partial D : \text{Re } z \ge 0\}$. It is easily seen that D and E are invariant under the holomorphic mappings

$$A_{s,t}(z,w) = \left(\frac{z - is.}{1 + isz}, \frac{\sqrt{1 - s^2} e^{it} w}{1 + isz}\right)$$

for -1 < s < 1, $0 \le t < 2\pi$. It follows that u_E is invariant under the $A_{s,t}$, i.e., $u_E(A_{s,t}(z,w))$ is constant in s and t. We will use coordinates x=Re z, $\rho=\log w\bar{w}$, and we set

$$\Gamma = \{(x, \rho) \in \mathbb{R}^2 : (x, \exp(\rho/2)) \in D\}.$$

We will give the function $h = u_E|_{\Gamma}$, and then u_E will be defined on all of D by the invariance under $A_{s,t}$. For $(x,\rho) \in \Gamma$,

$$A_{s,0}(x,\exp(\rho/2)) = (x(s) + iy(s), \exp(\rho(s)/2))$$

where

$$x(s) = \frac{x(1-s^2)}{1+s^2x^2}, y(s) = \frac{-s(1+x^2)}{1+s^2x^2}, \rho(s) = \rho + \log\left(\frac{1-s^2}{1+s^2x^2}\right).$$

If u is invariant under $A_{s,t}$, then $\frac{du}{ds} = u_y = 0$ at $(x,\rho) \in \Gamma$. Taking second derivatives with respect to s, we obtain

$$\frac{d^2 u}{ds^2} = 0 = u_x x_{ss} + u_{yy} (y_s)^2 + u_{\rho} \rho_{ss}$$

which allows us to solve for u_{yy} . Thus for $(x,\rho) \in \Gamma$,

$$\frac{\partial^2 u}{\partial z \partial \bar{z}} = \frac{1}{4} \left(h_{xx} + \frac{2x}{1+x^2} h_x + \frac{2}{1+x^2} h_p \right)$$

(4)
$$\frac{\partial^2 u}{\partial z \, \partial \bar{w}} = \frac{h_{xp}}{2\bar{w}}, \qquad \frac{\partial^2 u}{\partial w \, \partial \bar{w}} = \frac{h_{pp}}{w\bar{w}}.$$

If we set

(5)
$$M(h) = \begin{pmatrix} h_{xx} + \frac{2}{1+x^2} (xh_x + h_{\rho}) & 2h_{x\rho} \\ 2h_{x\rho} & 4h_{\rho\rho} \end{pmatrix},$$

it follows that u is plurisubharmonic if and only if $M(h) \ge 0$, and (2) holds if and only if det M(h) = 0.

Now to construct the foliation we consider the family of curves

$$\gamma(\sigma) = \{(x,\rho) \in \Gamma : \rho + f(x,\sigma) = 0\}$$

where $f(x,\sigma) = \sigma$ arctan $x - \log(1 + x^2)$. Let $(x(\sigma), \rho(\sigma))$ denote the nonzero endpoint of $\gamma(\sigma)$, and let $L(\sigma)$ denote the hypersurface in D swept out by $\gamma(\sigma)$ under the action of $A_{s,t}$. Let $F_{\sigma}(z,w)$ be the function in D which is invariant under $A_{s,t}$ and such that $F_{\sigma}(z,w)|_{\Gamma} = \rho + f(x,\sigma)$. Since $f(x,\sigma)$ satisfies

$$f_{xx} + \frac{2x}{1+x^2}f_x + \frac{2}{1+x^2} = 0$$

it follows from (4) that the complex hessian of F_{σ} vanishes at Γ . Thus F_{σ} is pluriharmonic on D, and since $L(\sigma) = \{(z,w) \in D : F_{\sigma}(z,w) = 0\}$ we see that $L(\sigma)$ is Levi flat, so it is foliated by complex manifolds. If G(z,w) is the invariant function on D such that $G|_{\Gamma} = \arctan x$, then by (4) G is also pluriharmonic on D, and so $G|_{M}$ is harmonic on M for any complex manifold $M \subset L(\sigma)$. Now we define

(6)
$$h(x,\rho) = \begin{cases} \frac{\arctan x}{\arctan x(\sigma)} & \text{for } (x,\rho) \in \gamma(\sigma) \\ 0 & \text{for } (x,\rho) \in \Gamma, x \leq 0. \end{cases}$$

Figure 1

It follows from (6) that u_E is real analytic on $\bar{D} \setminus \{\text{Re } z = 0\} \cup \{w = 0, \text{ Re } z \geq 0\}$ and continuous on D.

For the remainder of this section we will denote by u_E the function obtained from $h(x,\rho)$ in (6) by making it constant on the orbits of $A_{s,\nu}$, and we will show that u_E is in fact the extremal function defined in (1). First we show that $u_E \ge v$ for all v in the competing family in (1), and then we show that u_E is actually plurisubharmonic. (Clearly u_E has the correct boundary values.)

It is easily shown that the curve $s \to \frac{x - is}{1 + isx}$, $-1 \le s \le 1$ is a circular arc

starting at i, passing through x, and ending at -i. This arc is analogous to the curves found in [1]. We will denote by $R(\sigma)$ the region in the z-plane bounded by the interval (-i,i) and the arc above with $x=x(\sigma)$. There is a function $\psi(z,\sigma)$ such that $L(\sigma)=\{(z,w):z\in R(\sigma),\log w\bar w+\psi(z,\sigma)=0\}$. Since $L(\sigma)$ is Levi-flat, $\psi_{z\bar z}=0$ on $R(\sigma)$. In fact $\log w\bar w+\psi(z,\sigma)=F_{\sigma}(z,w)$ although neither $\log w\bar w$ nor $\psi(z,\sigma)$ is invariant under $A_{s,t}$.

Let us choose a harmonic conjugate $\tilde{\psi}(z,\sigma)$ for $\psi(z,\sigma)$ on $R(\sigma)$. It follows that $L(\sigma) = \bigcup_{0 \le \theta < 2\pi} M(\sigma,\theta)$, where $M(\sigma,\theta) = \{(z,w) : z \in R(\sigma), w = \exp(\psi + i\tilde{\psi} + i\theta)\}$. As was observed above, $G|_{M(\sigma,\theta)}$ is harmonic on $M(\sigma,\theta)$ so

$$\tilde{u}(z,\sigma,\theta) = u_E(z,\exp(\psi + i\Psi + i\theta))$$

is harmonic on $R(\sigma)$. If v is any function in the family of (1), it follows that $v(z, \exp(\psi + i\tilde{\psi} + i\theta))$ is subharmonic on $R(\sigma)$ and less than or equal to $\tilde{u}(z, \sigma, \theta)$ at all boundary points of $R(\sigma)$ except perhaps $\{\pm i\}$. It follows that $v \leq u_E$ on $M(\sigma, \theta)$ for all σ, θ , and thus $v \leq u_E$ on D.

Finally we show that u_E is plurisubharmonic. To do this we fix σ and show that $M(h) \geq 0$ holds on $\gamma(\sigma)$. For each real λ , we set

$$P(x,\rho) = \frac{\arctan x}{\arctan x(\sigma)} + \lambda (f(x,\sigma) + \rho).$$

We may choose $\lambda > 0$ such that at $(x(\sigma), \rho(\sigma))$, ∇P is a multiple of ∇h , i.e., ∇P and ∇h are parallel at that point. (In fact we have $\nabla P = \nabla h$ there since P = h on $\gamma(\sigma)$.) Now if we show that $h|_{\gamma(\sigma')} \geq P|_{\gamma(\sigma')}$ for σ' near σ , then it follows that $M(h)|_{\gamma(\sigma)} \geq M(P)|_{\gamma(\sigma)} = 0$. Comparing the second derivatives of P and $\rho - \log(1 - x^2)$ (the defining function for $\partial \Gamma$), we see that $\{P(x,\rho) = 1\}$ is less curved than Γ at $(x(\sigma), \rho(\sigma))$. It follows that $P(x,\rho) \leq 1$ on $\partial \Gamma$ near $(x(\sigma), \rho(\sigma))$ and thus $P \leq h$ on $\partial \gamma(\sigma')$ for σ' near σ . For $(x,\rho(x)) \in \gamma(\sigma')$, P and h both satisfy

$$g_{xx} + \frac{2x}{1+x^2}g_x = 0,$$

a first order differential equation for g_x . If $P \le h$ on $\partial \gamma(\sigma')$, then $P \le h$ on $\gamma(\sigma')$ for otherwise there is an interior point where $g_x = (P - h)_x = 0$, and by unique continuation of solutions, $g_x \equiv 0$. This completes the proof.

Let us remark that by the proof above, there is an alternate formulation of u_E . First we note that $\psi(z,\sigma)$ is the harmonic function on $R(\sigma)$ such that

$$\psi(z) = \log (1 - z\bar{z})$$

for $z \in \partial R(\sigma)$. If we let $\omega(z,\sigma)$ be the bounded harmonic function (harmonic measure) on $R(\sigma)$ such that $\omega(z,\sigma) = 1$ for $z \in \partial R(\sigma) \cap \{\text{Re } z > 1\}$ and $\omega(z,\sigma) = 0$ for $-i \le z \le i$, then

$$u_E(z,w) = \begin{cases} \omega(z,\sigma) & \text{if } (z,\log w\bar{w}) \in L(\sigma) \\ 0 & \text{if } \mathrm{Re} \ z \leq 0. \end{cases}$$

3. REINHARDT DOMAINS

The only other instance in which the solution of (1) is known explicitly is where D and E are Reinhardt, i.e., invariant under $z \to (e^{i\theta_1}z_1, ..., e^{i\theta_n}z_n)$. As was shown in [3], we may introduce the variables

$$\xi = (\xi_1, ..., \xi_n) = (\log |z_1|, ..., \log |z_n|)$$

and reduce (1) to the corresponding problem for convex functions in ξ -space. We give a sketch of the construction in the case n=2 (one can fill in the details using arguments from [3]).

If $D \subset \mathbb{C}^2$ is a strongly pseudoconvex Reinhardt domain with real analytic boundary, then in ξ -coordinates, ∂D becomes a strictly convex curve $\Gamma \subset \mathbb{R}^2$. Let us assume that in ξ -coordinates E is a finite union of closed sub-arcs $\gamma_1, \ldots, \gamma_p$

of Γ . We let D_0 be the convex hull of $\Gamma \setminus \left(\bigcup_{j=1}^p \gamma_j\right)$, and we set $u(\xi) = 0$ for

 $\xi \in \bar{D}_0$. Since Γ is strictly convex, $\bar{D}_0 \cap \Gamma = \Gamma \setminus \left(\bigcup_{j=1}^p \operatorname{int} \gamma_j\right)$. Thus $D \setminus \bar{D}_0$ consists of disjoint connected regions $D_1, ..., D_p$ with $\bar{D}_j \cap \Gamma = \gamma_j$.

For $P \in \gamma$, we let $\nu(P)$ be the outward normal to γ at P. The arc γ_j has endpoints A_j and B_j , and we let C_j be the point on γ_j such that $\nu(C_j)$ is orthogonal to $B_j - A_j$. We define u to be linear on the triangle A_j B_j C_j such that

$$u(A_i) = u(B_i) = 0, u(C_i) = 1.$$

Finally, $\gamma_j \setminus \{C_j\}$ consists of two components. For $P \neq A_j$ in the component containing A_j we make u linear on the segment A_jP with $u(A_j) = 0$, u(P) = 1. For P in the other component, we make u linear on the segment B_jP .

After defining $u(\xi)$ in this fashion, we see that u is real analytic on

$$\bar{D} \setminus \bigcup_{j=1}^p \ \partial(A_j B_j C_j).$$

Further, $u \in \operatorname{Lip}^1(D)$ and $u \in C^{1,1}(\bar{D} \setminus \partial D_0)$.

REFERENCES

- 1. E. Bedford, Extremal plurisubharmonic functions for certain domains in C². Indiana Univ. Math. J. 28 (1979), no. 4, 613-626.
- 2. E. Bedford and M. Kalka, Foliations and complex Monge-Ampère equations. Comm. Pure Appl. Math. 30 (1977), no. 5, 543-571.
- 3. E. Bedford and B. A. Taylor, Variational properties of the complex Monge-Ampère equation. II. Intrinsic norms. Amer. J. Math. 101 (1979), no. 5, 1131-1166.
- 4. H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries. Trans. Amer. Math. Soc. 91 (1959), 246-276.
- J. Siciak, Extremal plurisubharmonic functions in Cⁿ. Proceedings of the First Finnish-Polish Summer School in Complex Analysis (Podlesice, 1977), Part I, pp. 115-152. Univ. Łodź, 1978.
- 6. J. B. Walsh, Continuity of envelopes of plurisubharmonic functions. J. Math. Mech. 18 (1968), 143-148.

Mathematics Department Princeton University Princeton, NJ 08544