AN EXAMPLE OF A PLURISUBHARMONIC MEASURE ON THE
UNIT BALL IN C?

Eric Bedford

1. INTRODUCTION

Let D C C” be an open set, and let P (D) denote the plurisubharmonic functions
on D. Given a closed set E C aD, we define the function

(1) ug(z) =sup{v(z):v € P(D),v=1, Egl v{)= O0forz, € 0D\ E}

(see [5]). If n = 1, then u, is the harmonic measure of E. For n > 1, this is
an instance of the generalized Dirichlet problem of Bremermann with upper
semicontinuous boundary values. If D is strongly pseudoconvex, then it follows
from [4] and [6] that up € P(D), that 11m ug() = 0 if z, € oD\E, and

lim u,(0) = 1if 2z, € int E. It was also shown m [4] that if u, is C? then

{—»zl

%u
@) det( = )=
90z,02;

The structure of solutions of (2) is discussed in [2]. There it is shown that if
u € C*(D), D C C? d3u # O satisfies (2), then there exists a foliation .# of
D by Riemann surfaces (1-dimensional complex submanifolds M C D) such that
for each M € #, ul,, is harmonic on M. Conversely, it is possible to try to
construct z by first finding a foliation .# of D and then prescribing that u be
harmonic on each M € .#. Any u which is harmonic along the leaves of a complex
foliation will satisfy

%u
(3) det — |= 0.
02.02;

To construct the solution of (1) we will find a foliation .# and make u be harmonic
on the leaves such that u = 1 on E N oM and u = 0 on int (dD\E) N oM.
The only trick is to choose .# so that the resulting function u will be plurisubhar-
monic, and will thus satisfy (2).

In a related problem (see [1]), the leaves of the corresponding foliation were
found by solving a free boundary problem. Here we construct uj for special D
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and E, where there are enough symmetries that the construction may be reduced

to a problem in two real variables. Our methods are elementary, but the examples
given here seem to be the only ones that are known explicitly.

2. CONSTRUCTION FOR A SPHERICAL CAP

Welet D = {(z,w) € C®: |2]* + |w|® < 1} and E = {(z,w) € 8D : Re z = 0}.
It is easily seen that D and E are invariant under the holomorphic mappings

z2—1is. V l—sze”w)

1+isz 1+ isz

A, (zw) = (

for -1 < s <1, 0 = ¢ < 2w. It follows that uy is invariant under the 4,,,
ie., ug(A,,(z,w)) is constant in s and ¢{. We will use coordinates x = Re z,
p = log wiv, and we set

I = {(xp) € R*: (x,exp (p /2)) € D).

We will give the function 2 = ug|;, and then u, will be defined on all of D
by the invariance under 4, ,. For (x,p) € T,

A, (x,exp (p/2)) = (x(s) + iy (s), exp (p(s)/2))

where
©) x(1 — %) ) —s(1 + x?) ) . (1—-32 )
x(s)=—————, y(s)=————,p(s)=p +log| —— .
1+ s°x® 7 1+ s%x? P 1+ s®x®
du .
If u is invariant under A,,, then :l— = u, = 0 at (x,p) € I'. Taking second
s

derivatives with respect to s, we obtain

d’u
ds®

=0= uxxss+ u_yy (ys)2 + up Pss

which allows us to solve for u,, . Thus for (x,p) € T,

9292 1+ 22 1+

2 2
@ Fu _ h,, o°u _ h,
9200 2 Jwaiw wiw

If we set



PLURISUBHARMONIC MEASURE ON THE UNIT BALL IN C? 367

h,+

xx 2

1+x
(5) M) = s
2h 4h

xp PP

(xh, + h,) 2h

xp

it follows that u is plurisubharmonic if and only if M (k) = 0, and (2) holds if
and only if det M (k) = 0.

Now to construct the foliation we consider the family of curves
v(o) = {(xp) ET:p + f(x,0) =0}

where f (x,0) = o arctan x — log (1 + x%). Let (x (o), p(c)) denote the nonzero endpoint
of v(o), and let L (o) denote the hypersurface in D swept out by v(o) under the
action of A,,. Let F_(z,w) be the function in D which is invariant under A,,
and such that F, (z,w)| = p + f(x,0). Since f(x,0) satisfies

2x
1+ x°

for t fi+ =0

1+ %

it follows from (4) that the complex hessian of F_ vanishes at I'. Thus F, is
pluriharmonic on D, and since L (o) = {(2,w) € D: F_(2,w) = 0} we see that L (o)
is Levi flat, so it is foliated by complex manifolds. If G (z,w) is the invariant
function on D such that G| = arctan x, then by (4) G is also pluriharmonic
on D, and so G|,, is harmonic on M for any complex manifold M C L{(o). Now
we define

arctan x

m for (x,p) € v(©)

(6) h(x,p) =
0 for (xp)E T, x= 0.
P A

-1 x(o) 1

Figure 1
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It follows from (6) that uy is real analytic on D\{Re z = 0} U {w = 0, Re z = 0}
and continuous on D.

For the remainder of this section we will denote by u, the function obtained
from hA(x,p) in (6) by making it constant on the orbits of A,,, and we will show
that u; is in fact the extremal function defined in (1). First we show that
uy = v for all v in the competing family in (1), and then we show that u, is
actually plurisubharmonic. (Clearly u has the correct boundary values.)

x —is

It is easily shown that the curve s — ,—1 = s =1 is a circular arc

1+ isx
starting at i, passing through x, and ending at —i. This arc is analogous to the
curves found in [1]. We will denote by R(c) the region in the z-plane bounded
by the interval (—i,i) and the arc above with x = x(c). There is a function {(z,0)
such that L (o) = {(z,w) : z € R(0), log wiv + ¥ (z,6) = 0}. Since L(o) is Levi-flat,
Y, = 0 on R(c). In fact log ww + Y (z2,0) = F, (z2,w) although neither log w nor
¥(z,0) is invariant under A4 ,.

Let us choose a harmonic conjugate i(z,0) for Y (z,0) on R(c). It follows that
L(c) = U Mi(o,0), where M(c,9) = {(z,w):2 € R(o), w=exp (b + iy + i0)}.

0=0<2w

As was observed above, G| ., is harmonic on M (c,0) so
lZ(Z,O’,e) = uE(Z,eXp (lll + lip + le))

is harmonic on R(c). If v is any function in the family of (1), it follows that
v(z,exp (b + iy + i0)) is subharmonic on R(c) and less than or equal to #(z,0,0)
at all boundary points of R(c) except perhaps {+i}. It follows that v = u, on
M(o,0) for all ¢,06, and thus v = u, on D.

Finally we show that u, is plurisubharmonic. To do this we fix ¢ and show
that M (k) = 0 holds on vy (o). For each real \, we set

arctan x
P(x,p) =— + A (f(x,0) +p).
arctan x (o)

We may choose A\ > 0 such that at (x(o),p(c)), VP is a multiple of VA, ie., VP
and Vh are parallel at that point. (In fact we have VP = VA there since
P = h on y(0).) Now if we show that A|,.., = P|,., for ¢’ near o, then it follows
that M(h)|,, = M(P)|,,, = 0. Comparing the second derivatives of P and
p — log (1 — x®) (the defining function for aI'), we see that {P(x,p) = 1} is less
curved than I' at (x(co),p(c)). It follows that P(x,p) = 1 on oI' near (x(c),p(c))
and thus P < A on dvy(c’) for ¢’ near o. For (x,p(x)) € v(c’), P and 2 both
satisfy

2x
1+x

g-’CI+ 2g1=0’

a first order differential equation for g,. If P < h on dvy(c’), then P < h on
v(o') for otherwise there is an interior point where g, = (P — h), = 0, and
by unique continuation of solutions, g, = 0. This completes the proof.
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Let us remark that by the proof above, there is an alternate formulation of
ugz. First we note that y(z,0) is the harmonic function on R (o) such that

¥(z) = log (1 — 22)

for z € dR (o). If we let w(2,0) be the bounded harmonic function (harmonic measure)
on R(o) such that w(z,0) = 1 for 2 € 0R(c) N {Rez> 1} and w(z,c) = 0
for —i = 2z = i, then

w(z,0) if (z,]log wiv) € L(o)
ug(z,w) =
0 if Rez= 0.

3. REINHARDT DOMAINS

The only other instance in which the solution of (1) is known explicitly is
where D and E are Reinhardt, i.e., invariant under z — (¢ elzl, vy €972). As
was shown in [3], we may introduce the variables

E=(&,..,&,)= (log |z1|7 ..., log lznl)

and reduce (1) to the corresponding problem for convex functions in &-space. We
give a sketch of the construction in the case n = 2 (one can fill in the details
using arguments from [3]).

If D C C? is a strongly pseudoconvex Reinhardt domain with real analytic
boundary, then in £-coordinates, 0D becomes a strictly convex curve I' C RZ. Let
us assume that in &-coordinates E is a finite union of closed sub-arcs v,, ..., v,

P
of T'. We let D, be the convex hull of F\( U 'yj), and we set u(§) = 0 for

j=1

P
¢ € D,. Since T is strictly convex, D, N T = '\ |J int 'yj). Thus D\D,
_\ j=1
consists of disjoint connected regions D,, ..., D, with D, N I' = «,.

For P € v, we let v(P) be the outward normal to vy at P. The arc v, has
endpoints A; and B;, and we let C; be the point on v, such that v(C,) is orthogonal
to B; — A;. We define u to be linear on the triangle A; B; C; such that

u(A;) =u(B;)=0,u(C;)=1.

Finally, v;\{C;} consists of two components. For P # A in the component containing
A; we make u linear on the segment AP with u(A;) = 0, u(P) = 1. For P in
the other component, we make « linear on the segment B,P.

After defining u(£) in this fashion, we see that u is real analytic on

b\ U #@4,B,C)).

Jj=1
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Further, u € Lip*(D) and u € C"*(D\aD,).
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