ORTHOGONAL POLYNOMIALS ASSOCIATED WITH AN
INFINITE INTERVAL

J. L. Ullman

SECTION 1

1.1. Introduction. A problem of great interest in approximation theory is the
asymptotic behavior of the largest zero of orthogonal polynomials. What we show
in this paper, in Theorem 1, is that when such knowledge is available, we can
then get further information about the asymptotic behavior of the norms of the
orthogonal polynomials, assumed to be monic, and in some instances, we also
get the asymptotic distribution of all of the zeros of the orthogonal polynomials.
Since the largest zero behavior for the class of weight functions

W, (x) = |x|° exp (—|x|™), p>-1, m>0

has been determined for m = 2, 4, 6, p arbitrary, in [3] and [4], Theorem 1
can be applied to these cases, formulated as Theorem 2, and we are led to the
explicit determination of the zero distributions.

Thus, aside from the intrinsic interest in this class of weights, Theorem 1
provides a general method for converting largest zero asymptotics to the asymptotic
behavior of other important parameters of orthogonal polynomials.

Added in revision. After this paper was submitted Professor Paul Nevai
informed me of an alternate approach to this problem which will appear in “On
Asymptotic Average Properties of Zeros of Orthogonal Polynomials,” by Paul G.
Nevai and Jesus S. Dehesa.

1.2. Let W(x) be a non-negative continuous function defined for
x € R = (—o,0) and satisfying 0 < | |{|"W(t)dt < o, n = 0, 1, .... Such a
function is called an admissible weight function. There are unique polynomials,
p,(x) =y, X" + ..., n =0, 1, ..., which satisfy

S Pn.(X)p, x) Wix)dx=5%,,, n,m=0,1,....

These are the orthonormal polynomials associated with the weight function W(x).
Let N, (W) = 1/+v,, and refer to N, (W) as the norm of the monic orthogonal
polynomial P,(x) = p,(x)/v,. We assume that W(x) is positive for values of x
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of arbitrarily great modulus. Under these circumstances the zeros of P, (x) are
real and simple and so can be designated as

{xi,n}) xl,n<x2_n< oo <xnm.

We also have the fact that x,,,, — x, , tends to infinity as n tends to infinity.

1.3. We define contracted zero distribution measures as follows. There is a
unique linear function which maps x,, to —1 and x,,,, to 1. Let

_1 =y1,r‘1 <y2,n <... <yn,n = 1

be the images of {x;,} by this mapping. Let v,* be the unit measure with mass
1/n at the y,,,. We call v} the contracted zero measure of p,(x). If the sequence
{v¥ } converges weakly to v, for an increasing sequence {%,}, we call v the contracted
zero distribution measure for the sequence {p, (x)}. The measure defined on Borel
sets {B} of I = [—1,1] by

w Bvl_x2

is called the arcsine measure, and we denote this measure by p,.

We have the result in [1] that

1 dx
w(B) = — S

—  NY*w) 1
lim =—,
"0 X1 X 4
and if for any increasing sequence {%,},
) N, /™ (W) 1
lim = =—,
4

N0 X w1k, +1 X1k
n n n+1

then p; is the contracted zero distribution measure for the sequence {p, (x)}.
We refer to this result as an upper bound result for norm behavior, and we formulate
and prove a lower bound result for norm behavior.

SECTION 2

2.1 A lower bound result for norm behavior.

THEOREM 1. Let W(x) be an even, positive admissible weight function and
let X, (W), N, (W) be the largest zero and the norm of the associated orthogonal
polynomial P, (x), respectively.

Assume that

(2.1) lim (W(X, (W)x))'/** = w(x), x€ I,
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where w(x) is continuous and positive for x € I, and also assume that

2.2) limg log(W(Xn(W)s))I/Z"ds=S log w(s)ds.
Let

R (N (R
(2.3) (w) = exp /fn-S_1 og wis Vi)

(a) It is then true that

NY" (W) _ Gw)

(2.4) lim =
e 2X, (W) 4

Assume that there is a unit measure p. defined on the Borel subsets of I which
satisfies

(2.5) exp S log |x — t| dp = R/ w(x),

x € I, for some value of k.
(b) If for some increasing sequence {&,}
N/*(W) Gw)

(2.6) lim )
e 2X, (W) 4

then the measure arising in (2.5) is the contracted zero distribution measure for
the sequence {p, (x)}.

2.2. Proof of Theorem 1, (a).
Proof of (2.4). We start with the definition

oo

N2 (W) = S P2(t) W(¢t)dt.

Let t = X, (W)s to obtain

oo

N2(W) = X, (W) S P2(X,(W)s) W(X, (W) s)ds

—co

= S P2 (X, (W)s) W(X, (W) s)ds.

-1

The second inequality holds as soon as X, (W) > 1. We then obtain
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2.7

NZ(W) Sl .
q.(s) W(X,, (W)s)ds,

X2n(W)

-1
where g, (s) is the monic polynomial P, (X, (W)s)/X, (W), and has n simple zeros
on I.

Next, we invoke the arithmetic-geometric inequality to obtain

W(X,(W)s] \/—

1 1 1
S Qi(S)W(Xn(W)S)ds=—S g2 (s)[wV1-—s®

-1 T

_ 1 11 ) ds

=exr>Tr _l(ogqr,.(s))\/1_—82

1 Xl logmV1-—s?
-1

3 ex —
p'n V1-—s?

ds

We next use the fact that

1

1
(2.8) log lx — s =1lo x€ I,
S e

the definition (2.3) and the assumptions (2.1) and (2.2) to obtain

im N W) G(w)
n—~w2X(W) 4

this completes the proof of Theorem 1, (a).
2.3. Proof of Theorem 1, (b). We have

oo 1/2k
P2 () W() dt
N,t:’“"(W) (X_m %, (£) W(¢) )

2X, (W) 2X, (W)

1 (X“’ P; (X, (W)s) W(X, (W)s)X, (W) )1/2kn
29 ) "" TR - ds
2 an" (W)

-0

1 L 1/2k
;Xi,’f"" (W) (X q3.(s) W(Xk,,(W)s)ds) ,

—o0

where g, _(s) has been defined following display (2.7).
For sufficiently large n, X, (W) > 1, so that from (2.6) and (2.9) we have
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1 1 , 1/2k G (w)
(2.10) Tm— S a2 (s) W(X, (W)s)ds =—

Let vk be the contracted zero measure of DPr, (x), and hence the zero measure
of g, (x). "Let {t,} be an increasing subsequence of {k,} for which v} converges
weakly, say to v. We will show that v is the measure p of (2.5). Thus it follows
that the sequence {v} } converges weakly to p, so that p is the contracted zero
distribution measure for {p, (X)}. This will then complete the proof of Theorem
1, (b).

By the application of Lemma 5.3, [7, p. 139], (see displays (5.10) and (5.11)
of that reference), it follows from (2.10) that for some increasing subsequence
{p,} of {¢£,}

— G(w)
lim |g, (x)|'/"| W(X, (W)x)|/*= = — forxe I,

except for a Borel set of measure zero, say Z,. Now by assumption (2.1) we have

— L G (w)
(2.11) lim |g, (x)] /Pn < ,x€ INZ,.
noo T 2w (x)

The left side of (2.11) can be written

— lim 1
limexp |\ log |x — ¢|dv, =exp| — log dv,

> n— o |x — ¢t]

1
=exp(— log dv),
| — ¢]

where the last equality holds for x € I except for a set Z, of capacity zero by
the lower envelope theorem of potential theory, ([7], Lemma 4.3, p. 133). We
have at this stage

Gw)
(2.12) exp | log|x —t|dv = , x€ I\Z,,
2w (x)

where Z, = Z, U Z,, and hence is a Borel set of measure zero. We use the fact
that a linear set of capacity zero has measure zero, ([5], p. 286).

We next turn to (2.5), and show that 2 = G(w)/2. Indeed, if p is a solution
of (2.5), we obtain

S log |x — t] dp. = log k — log w(x).

Hence
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L ( log |x — ¢|d ) dx ogk—{ 1 ()
— og |x — ——=logk — — og w(x) —F—=-.
T 1 g a V1-x® g I g V1-—x?

Use Fubini’s theorem on the left side, and (2.8) to obtain

1 (! dx
log(1/2) =logk — — log w(x) —F/———.
B1/2) = Lo X RV

ki)

Hence by (2.3) we have & = G(w) /2. Using (2.5) and (2.11), we then have
(2.13) exp S log |x — t| dv = exp S log |x — t| dpn

for almost all x € I, and it remains to show that (2.13) implies v = p..

It is shown in ([6], p. 259-262) that if w is a unit measure defined on the
Borel sets of I, and if v(z) = X log |z — t|dw, then for z ¢ I

2

(2.14) v(z) = —log |2C| + S P(r,0,0)(v(cos ¢) + log 2) do,

0
where (=re,z=(@(+{")/2,0=r<1 and P(r0,6) is the Poisson kernel

1/2m(1 — r?) /@ + r® — 2r cos(0 — ¢)). Thus if we let a(2) = S log |z — t|dv
and b(z) = S log |z — t|dp then from (2.13) and (2.14) we find for z & I

27

a(z) - b(2) = S P(r,8,0,)(alcos &) — b(cos b)) dd.

4]

Since by (2.13) a(cos ¢) — b(cos ¢) = O for almost all ¢ in [0,2w], it follows
that a(z) — b(2) = 0 for z € I. Since a(z) — b(z) is harmonic for z & I and
regular at infinity where it has the value 0, it follows from the maximum principle
for harmonic functions that a(z) — 6(z) = 0 for z & I. It then follows from a
property of potentials ([7], Lemma 4.4, p. 134) that p = v. This completes the
proof of Theorem 1, (b).

SECTION 3

3.1. The contracted zero distribution measure for a class of weight functions.

THEOREM 2. Let

W,m=1x|"exp (—[x|™), p>-1, m>0.
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The contracted zero distribution measures of the orthogonal polynomials associated
with W,,, are independent of p for m = 2, 4 and 6, and are absolutely continuous
measures. If they are designated as v,, v, and vy, we have the formulas

2
dV2="- 1—x2dx,
v

— - ( )(1+2x)dx

dv6=—— — ( )(3+4x + 8x*) dx.

(3.1) dv,

3.2. Proof of Theorem 2. We first cite results concerning certain parameters
of the orthogonal polynomials associated with the weight functions W, ,,, and then
use those results in conjunction with Theorem 1 to arrive at the stated conclusions.

Let X, (W,,,), N, (W,,,) designate the largest zero and the norm of the monic
orthogonal polynomials P, (x) = P, (x)/, associated with the weight function W,

Yn

It is shown in [2], [3] and [4] that if ¢,_,,, = ——, then for m = 2, 4 and
Yn
6, p > —1, we have
I'(m+1) “i/m
(3.2) limn™"¢,_,,= =d,
- m m
r <—) ¢ (— . 1)
2 2
and
X, (W,..)
(3.3) lim —— =2
e cn—l/2

It is conjectured in [3] that (3.2) is true for all positive, even values of m.
If this is true, then (3.3) would be true by the method of [4] and the method
that follows would yield the contracted zero distribution measures for all such
values of m.

3.2. We now turn to showing the applicability of Theorem 1. We first show
that (3.2) and (3.3) enable us to make the required computation for (2.1). Indeed,
we have

Wy (X, (W, , ()"

X (W,,)x™ )
2n

1 Cp— m X,,(W,m) m
=lxn<W,,,m)|”2"|x|"’2"exp(( 2)( 1,‘,12) ( - ) le"‘)-
n cn——l/2

= X, (W,,)|7/>" |7/ exp (—
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Hence as n tends to infinity this becomes

(3.4)

exp (—2" 7 'dT. X™) = exp (—e, X™) = w, (x).

Note that (3.4) contains the definition of e, . It is also true that (2.2) holds.

3.3. The computation of G(w,,) for m = 2, 4 and 6 proceeds as follows. Since

log w,,(t) = —e,, t™,

This equals

(3.5)

exp

1

™

m—

i

e

Gw,,) = exp (——m S
v

m

m
22
2 2

)

EWA

1

2

'(m+ 1)

)

)_

=exp(

1

m

where the duplication formula for the gamma function is used in the last step.

3.4. We next verify that (2.6) holds for the full sequence {n}. Indeed,

N/™(W,

p,m )

lim —————
n—swo 2Xn (v‘,p,m)

1 Ch1/2

n'/™  NYMW,,.)

m —
oo 20 X (W) c,_10

By (3.2) and (3.3) this can be simplified to

(3.6)

1 1

4

+—lim
dm n—w

The limit in (3.6) has the same value as

3.7

if this limit exists. In fact it does exist since we can equate (3.7) to

n/m
- el/m :

] Chir/2 n
lim v
- (n + 1) n+1

lim

n—oo

N./*(W,,.)

1/m

n

Nn+1/(n + 1)(n+1)/m

N,/n"

This combined with (3.6) yields

(3.8)

the desired result.

n—»w

N, (W,.) 1

2X,(W,,) 4

"1
e

’

N G(w,,)
T4

1/m

n

)

).
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3.5. We now construct a solution for (2.5) when w(x) is replaced by w,,(x)
and k& is given the value G(w,,)/2, m = 2, 4 and 6. Our procedure is to define
R DY

q,.(x)

d = ———dx
Hom aV1-—2x®

and demonstrate that a valid solution is given by

(3.9)

gz (x) = 1 — T,(x)

1
(3.10) q,(x) =1- BT (4T, (x) + 8T, (x))
1
gelx) = 1— E (6Ts(x) + 24T, (x) + 30T, (x)),

where T, (x), & = 2, 4, ..., is the Tchebycheff polynomial normalized so that
T.(1) = 1.

The method which follows shows that if (3.8) holds for any even integer m,
and we use definition (3.9), then (2.5) will have a solution ., , where

(m/2)—1
qm(x)_ ( ) m 2k(x)

We now proceed. Making the mentioned substitutions in (2.5) we obtain

1 "1
exp g log [x — t|dp =— \/ — expe,x™,
2 e
or

(3.11) X q.,(t) 1

log |x — t| —F/— VI dt—log———+e x™

To solve (3.11) we use (2.8) and the relationship

t 1
(3.12) S log |x — | 1( )t —T.(x), x€ L
VvV1- n

The relationship (3.12) can be obtained by contour integration.

In order to use (3.12) we use the identity valid for positive even integer m,

1 m m 1.
313) X" =—— [ T,.@) + ( ) T, (x)+ ...+ T, (x) + —
2™ 1 m 2

2 2
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With this identity, the right side of (3.11) becomes

1 e, ™27 (m
(3.14) log — + — ( ) T, (%)
g 9 gm1 EO: i 2

Now we use (2.8) and (3.12) to find

m/2)—1

e, m
(3.15) q,(x =1- e Z (k )(m = 2R) T, 5, (%).

0

Although we now have a solution to (2.5), in order to show that the right side
of (3.9) defines a unit measure, we must show that ¢,,(x) = 0, x € I, and that

1 (" g,.@

(3.16) — —

X_l Vi-¢

™

dt = 1.

Since |T, (x)] = 1, the non-negativeness of g,, (x) will follow from (3.15) by showing
that

em {m/2)—1 m
pr > m - 2k) . )=

]

m m-—1 m—1
To see this, start with the identity (m — 2k)( L ) = m(( i ) - ( B—1 ))’

k=1, .., m— 1. Then we have

O )60

'm + 1) 2 k k-1

1

I‘(-I;i)l‘(f;-+1)< Yo

I' (m) (m/2) -1

We also can verify (3.16) by term by term integration.

3.6. We know that (3.8) holds only for m = 2, 4, 6, so p,, given by (3.9)
with (3.15) substituted yields solution of (2.5) only for these values of m. The
final step for obtaining (3.10) is to substitute

T,(x) = 2x*> -1
3.17) T,(x) = 8x*—8x%+1
T.(x) = 32x° — 48x* + 18x* — 1

into (3.15) for m = 2, 4, 6, and place this in (3.9). Since g,,(x) has a factor
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(1 — x?), division gives the final result as found in (3.1). Note that in (3.1)
we equate v,, to p,, for m = 2, 4, 6, as is permitted by Theorem 1.

—
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